Японская компания Taiheiyo Cement предложила использовать для изготовления катодов новый материал, который сократит зарядку аккумулятора в 3-4 раза. Новая структура микрочастиц катода, разработанная командой, может привести к созданию более долговечных и безопасных батарей, способных работать при очень высоком напряжении. Главная» Новости» Катод имеет заряд. В описанном процессе заряда полимерное покрытие катода остается стабильным во всем диапазоне рабочих потенциалов.
Автоматическое зарядное устройство КАТОДЪ-501
Катод это электрод, имеющий отрицательный заряд, а анод заряжен положительно. "В катодах батарей для электромобилей, как правило, используются слоистые оксиды переходных металлов, в том числе богатые никелем. Автоматическое зарядное устройство КАТОДЪ-501 здорово всем народ сегодня решила разобрать и посмотреть что с этим зарядным устройством так как он работает неправильно. Проблема заключалась в том, что катоды на основе подобных соединений отличаются относительно низким содержанием ионов натрия и энергоемкостью. В новой работе авторы также представили катоды для таких аккумуляторов на основе полимерного соединения дигидрофеназина, который призван заменить собой кобальт. Они показали, что такие катоды могут выдерживать до 25,000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных.
3D-модель катода: о чём нам она говорит
- Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов - Eham
- Куда течёт ток? Анод. Катод. - YouTube
- «Катод»: трудно быть лидером
- В Корее разработали натриево-ионный аккумулятор со скоростью зарядки в несколько секунд (2 фото)
- Новый материал для батарей поможет электрокарам ездить дольше на одном заряде | CoLab
- Архив материалов
Создан уникальный катод для металл-ионных аккумуляторов
Новосибирский завод «Катод» изготовил сложнейшее оборудование для участников спецоперации | Он отличается беспрецедентной стабильностью работы при высоких скоростях заряда и разряда, а также имеет высокий электрохимический потенциал. |
Литий в лидерах: химические источники тока | Заряд перестает передаваться по внешней цепи, оставаясь внутри аккумулятора. |
Новосибирский завод «Катод» поставил приборы ночного видения бойцам СВО — РБК | В описанном процессе заряда полимерное покрытие катода остается стабильным во всем диапазоне рабочих потенциалов. |
В Корее разработали натриево-ионный аккумулятор со скоростью зарядки в несколько секунд (2 фото)
Губернатор Андрей Травников во время выездного совещания на площадке АО «Катод» обсудил вопросы поддержки воинских подразделений, участвующих в СВО. Аккумуляторы на базе таких катодов могут обладать плотностью хранения заряда, превосходящей LFP-батареи как минимум в два раза. Исследователи из Токийского столичного университета разработали новый квазитвердотельный катод для твердотельных литий-металлических батарей со значительно сниженным.
Разработаны новые органические электродные материалы для калий-ионных аккумуляторов
В отличие от традиционных литиевых аккумуляторов, новые элементы для накопления заряда используют не только катионы Li, но и анионы галогенов LiCl и LiBr. При этом такой аккумулятор намного безопаснее. Команда продемонстрировала обратимость в течение 150 циклов. Помимо портативных аккумуляторов, этот химический состав можно использовать в устройствах, которые требуют больших энергий на уровне киловатт или мегаватт.
Совершенствованию подвергаются все три компонента системы: электролит, катод и анод. Аноды современных ЛИА в основном изготавливают из графита, а катоды — из литированных оксидов переходных металлов. В 1979 г. Джон Гуденаф University of Texas, Austin, США впервые продемонстрировал электрохимическую ячейку с напряжением 4 В, в которой в качестве катода был использован кобальтат лития LiCoO2 , а в качестве анода — металлический литий. Это было наиболее значимым событием и сделало создание ЛИА реальностью. Прототип электрохимической ячейки с углеродным анодом и катодом из кобальтата лития был создан в 1985 г. Йошино Ashi Kasei Corp. В наши дни для анодов в исследовательской практике применяют разнообразные углеродные материалы, а в промышленности — только некоторые специальные, такие как «мезоуглеродные мезобусы» MCMB — продукт карбонизации пековых смол, выпускаемый японской компанией Osaka gas Co. Любой химический источник тока состоит из двух электродов катода и анода , контактирующих с электро-литом. Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. При включении аккумулятора во внешнюю электрическую цепь в ней возникает электрический ток. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделенных процессов: на катоде восстановитель окисляется, образующиеся свободные электроны, создавая разрядный ток, переходят по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя В конце прошлого века внимание исследователей привлекли также материалы на основе оксида олова. При использовании их в качестве анода литий внедряется не собственно в оксид, а в металлическое олово, образующееся при первоначальной катодной поляризации электрода. Теоретическая емкость аккумулятора с таким анодом почти втрое выше, чем с углеродным, однако недостатком всех металлических анодов является заметное изменение их объема при внедрении лития. Проблему удалось решить благодаря применению кремния, из которого стали изготавливать аноды в виде тонких аморфных пленок или наноструктурированных композитов с углеродом. Сегодня емкость ЛИА лимитируется в основном свойствами катодных материалов. В качестве последних используют различные по структуре соединения. Наиболее широкое распространение получил упомянутый выше кобальтат лития LiCoO2: его слоистая структура обеспечивает двумерную диффузию ионов лития. Преимуществами этой системы являются высокое рабочее напряжение 4 В , относительная простота синтеза, высокая электронно-ионная проводимость, что способствует циклированию при больших плотностях тока, и т. Однако у LiCoO2 имеется и немало недостатков: токсичность, невысокая практическая удельная емкость около половины от теоретической , недостаточная термическая и структурная устойчивость и др. К тому же кобальтовое сырье довольно дорого. В последние годы стали использоваться и другие соединения со слоистой структурой, содержащие ионы нескольких переходных металлов кобальта, никеля, марганца , практическая емкость которых в полтора раза превосходит емкость кобальтата лития. В отличие от слоистой, шпинельная структура обеспечивает трехмерную диффузию ионов лития.
Как устроена Li-ion ячейка? Анод из графита или альтернативного материала с пористой структурой, чтобы ионы Li могли на время встраиваться в пространство между слоями. Сепаратор с электролитом на базе этилен-карбоната, разделяющий электроды и проводящий ионы Li. Слой катода наносится на алюминиевую фольгу, а слой анода — на медную. Между ними находится сепаратор. В зависимости от того, как сворачивается такая лента, получаются элементы питания цилиндрической и призматической формы. Снаружи их защищает прочный герметичный корпус из металла. Электроды соединяют с клеммами-токосъемниками. Особенности анода Углеродным материалам графиту, саже, коксу свойственно обратимо встраивать катионы лития в пространства между слоями с минимальным увеличением удельного объема. Это важно, чтобы исключить риск возникновения огромных внутренних напряжений и вызываемого ими разрушения активных материалов. Удачным экспериментом стало использование в роли анодного материала пентатитаната лития — Li4Ti5O12.
Батарея пережила 200 циклов заряда и разряда, сохраняя кулоновскую эффективность отношение заряда, который батарея отдает при разряде, к тому, который необходим для заряда около 99 процентов. Чтобы выяснить причины такой неожиданной стабильности, авторы аккуратно вскрыли батарею и изучили ее содержимое с помощью сканирующей электронной микроскопии, рентгеновской фотоэлектронной спектроскопии и масс-спектрометрии. Они обнаружили, что во время первого разряда образующийся NaCl в основном осел на пористом углеродном катоде, а при последующем заряде хлорид ионы из NaCl окислились до молекулярного хлора Cl2. При последующем разряде хлор снова восстанавливается до хлорид-иона Cl-. Обратимые заряд и разряд стали возможны благодаря наличию множества пор в катоде, которые могут аккумулировать образующийся хлор. Хлор — активный газ, который может вступить в реакцию и с анодом и с компонентами электролита, но пока он находится в порах катода, вся система остается стабильной. Причем, судя по всему, для удерживания хлора лучше всего подходят микропоры размером менее 2 нанометров. Чтобы проверить эту гипотезу, авторы изготовили несколько ячеек с катодом из другого пористого материала — ketjenblack carbon black. Этот материал имеет удельный объем пор даже больше, чем у аморфных углеродных наносфер, но большая часть его приходится на мезопоры размером от 2 до 50 нанометров. Ячейка с крупнопористым катодом из ketjenblack carbon black тоже показала обратимый разряд и заряд, но проработала всего сорок циклов, а затем ее кулоновская эффективность резко стала уменьшаться.
Из полимеров сделали катоды для литиевых аккумуляторов
Андрей Травников оценил приборы ночного видения завода «Катод» для СВО | | Во время заряда положительным является анод, отрицательным является катод. |
Новосибирский завод «Катод» поставил приборы ночного видения бойцам СВО | «В рамках нашего текущего исследования мы проверили долгосрочную работу металлической батареи Ca с катодом из наночастиц сульфида меди (CuS). |
Последние новости:
- В ЮФУ предложили экологичный метод производства катодов для литий-ионных аккумуляторов
- Создан уникальный катод для металл-ионных аккумуляторов
- Содержание
- Создан уникальный катод для металл-ионных аккумуляторов
- Аккумуляторы будущего: masterok — LiveJournal
В Корее разработали натриево-ионный аккумулятор со скоростью зарядки в несколько секунд (2 фото)
Как объяснили представители компании, катоды нового типа не будут требовать при производстве кобальта или никеля. Последний компонент в последнее время дорожает, а также повышает пожароопасность аккумулятора. Из-за пандемии строительная отрасль Японии переживает не лучшие времена, поэтому производители цемента пытаются найти новое применение своим компетенциям. Читать далее.
Российские ученые разработали катод для натрий-ионных аккумуляторов. Статья с описанием изобретения опубликована в Nature Communications. Современные аккумуляторы для телефонов и электромобилей изготавливаются с использованием лития. Этот металл добывается в ограниченном числе мест на Земле, и потому цена на него растет. В связи с этим ученые по всему миру пытаются найти ему равноценную замену.
Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. Поэтому нами была поставлена задача смоделировать и исследовать новые макромолекулы, потенциально обладающие более высокой энергоемкостью.
Немаловажным является также и тот факт, что помимо литиевых аккумуляторов нам удалось собрать также перспективные натрий- и калий-ионные ячейки на их основе», — отметил Обрезков. Понравился материал?
Титан обладает очень высокой коррозионной стойкостью. Основные титансодержащие реагенты легко доступны, устойчивы и не токсичны. Несмотря его преимущества, причиной, по которой его не могли применить в качестве катодных материалов, долгое время оставался низкий электрохимический потенциал, ограничивающий почти достижимую удельную энергию аккумулятора. Исследователи из Сколтеха создали перспективный, коммерчески выгодный катодный материал на основе фторидофосфата титана.
Разработаны новые органические электродные материалы для калий-ионных аккумуляторов
Необходимо изменить свойства как анодов, так и катодов. У первых хромает скорость заряда, а вторые не отличаются высокой ёмкостью. В новых батареях ионы натрия заменяют ионы лития в катоде, а соли лития в электролите (жидкость, которая помогает переносить заряд между электродами батареи) заменяются. Метка: катод. Литий-металлические аккумуляторы сохраняют 80% емкости после 6 000 циклов заряда-разряда – исследование. Кроме того, использование связующих и несоответствие между катодом и электролитом также могут вызывать побочные реакции.