Плюс в том, что повзрослев такие дети право на имущественный вычет не теряют.
.МИНУС на МИНУС даёт ПЛЮС
В последнем варианте как раз минус на минус дает плюс. Поэтому умножение минус на минус дает плюс. Обдумай данную ситуацию и в спокойной обстановке прими решение. Смотрите видео онлайн «Почему минус на минус дает плюс?» на канале «Инженерия XXII» в хорошем качестве и бесплатно, опубликованное 7 апреля 2022 года в 17:25, длительностью 00:15:42, на видеохостинге RUTUBE. Если мы умножаем «минус» на «минус», то получим «плюс».
Почему минус на минус дает плюс?
Так или иначе, но долгое время после изобретения отрицательных чисел речь шла только об их сложении и вычитании: перемножать отрицательные числа, насколько мне известно, изначально никто не собирался. Чтобы понять, почему сама возможность умножения отрицательных совсем не очевидна, будет полезно пройти историческим путем и разработать какую-нибудь простую модель целых с естественными операциями сложения и вычитания. За основу такой модели мы возьмем один замечательный пример из физики: аннигиляцию электрона и позитрона при их столкновении. Если привести в соприкосновение электронов и электронов и позитронов аннигилируют и в конце останется только позитрона. Этот пример показывает, что реакция группы электронов и группы позитронов выглядит как сложение двух целых чисел противоположного знака. Попробуем придать этой идее точный математический смысл.
Представьте, что идет выставка современного искусства в далеком от нас 3141 году. Главной изюминкой этой выставки стали медиа-картины, изображающие собой наглядную модель электронно-позитронного газа. На их полупрозрачных поверхностях медленно дрейфуют красные и зеленые кружкии двумерные шары одного и того же размера.
Где он был за три часа до полудня? Вы можете сказать, что отрицательное время — это выдумка и никто им не пользуется.
Действительно в числовом виде в быту мы их не так часто используем, а вот на уроках истории вы точно про них слышали. Как объяснить ребенку? У меня есть несколько примеров, хотя бы один из которых удовлетворит любого. Прием 1 В шестом классе школьники уже знакомы со способами решения линейных уравнений. Можно показать ребенку, например вот это : В первом случае мы решаем уравнения, избегая отрицательных чисел.
Во втором мы такой целью не задаемся. Иными словами, ответы, полученные с использованием отрицательных чисел не должны отличать от полученных других путем. Таким образом, мы лишаем себя необходимости искать смысл отрицательных чисел и принимаем их как необходимую и полезную математическую абстракцию. Так вот в этом примере и видно, как, с одной стороны умножение положительных чисел, так и с другой - отрицательных чисел друг на друга дает число положительное! Ведь болт же переместился физически, ощущаемо!
Так, например, отрицательные числа из абстракции превращаются в реальность. Я не стал приводить пример с градусником, движущимися навстречу автомобилями, геометрические обоснования их и дают по большей части в школе , совсем сложные для детей примеры с дистрибутивностью умножения, а также некоторые объяснения, построенные на мнемонике, вида: "Враг моего врага - мой друг". Последний вариант, скорее, направлен на запоминание, чем на понимание. Кстати, если Вы хотите прочесть более 80. Совершенно естественно, что в самом начале люди пользовались только натуральными числами — один, два, три и так далее.
Их использовали для того, чтобы посчитать реальное количество предметов. Просто так, в отрыве от всего, цифры были бесполезны, поэтому стали появляться и действия, с помощью которых стало возможно оперировать числами. Абсолютно логично, что самым необходимым для человека стало сложение. Эта операция проста и естественна — подсчитать количество предметов становилось проще, теперь не нужно было каждый раз считать заново — «один, два, три». Заменить счёт теперь стало возможным с помощью действия «один плюс два равно три».
Натуральные числа складывались, ответ тоже был натуральным числом. Умножение представляло собой, по сути, такое же сложение. На практике мы и сейчас, например, совершая покупки, так же используем сложение и умножение, как это делали давным-давно наши предки. Однако порой приходилось совершать операции вычитания и деления. И числа не всегда были равнозначны — иногда число, от которого отнимали, было меньше числа, которое вычитали.
То же и с делением. Таким образом и появились дробные числа. Появление отрицательных чисел В документах Индии записи об отрицательных числах появились в VII веке нашей эры. В китайских документах существуют более древние отметки об этом математическом «факте». В жизни мы чаще всего отнимаем от большего числа меньшее.
Если же я захочу купить ещё какой-то товар, стоимость которого превышает мои оставшиеся 35 рублей, например ещё одно молоко, то как бы я ни хотел его приобрести, а больше денег у меня нет, следовательно, отрицательные числа мне ни к чему. Однако, продолжая говорить о современной жизни, упомянем кредитные карты или возможность от мобильного оператора «входить в минус» при звонках. Появляется возможность тратить большую сумму денег, чем имеешь, но те деньги, что ты остался должен, не исчезают, а записываются в долг. И вот здесь уже приходят на помощь отрицательные числа: на карте есть 100 рублей, хлеб и два молока обойдутся мне в 110 рублей; после покупки мой баланс по карте составляет -10 рублей. Практически для таких же целей и начали впервые использовать отрицательные числа.
Китайцы первыми использовали их для записи долгов или в промежуточных решениях уравнений. Но использование это было всё равно лишь для того, чтоб прийти к положительному числу впрочем, как и наше погашение кредитки. Долгому отвержению отрицательных чисел способствовало то, что они не выражали конкретных предметов. Десять монет — это десять монет, вот они, их можно потрогать, на них можно купить товар. А что значит «минус десять монет»?
Они предполагаются, даже если это долг.
Разумеется, что благодаря таким «танцам с бубном» читай — оплате по среднемесячным показаниям платить за отопление горожане меньше не станут. Просто сумма «размажется» на весь год и уже не будет выглядеть такой ужасающей. А вот «грабительские» тарифы на тепло с июля этого года вновь вырастут. Стоимость гигакалории, вырабатываемой ОАО «Коммунэнерго», перевалит за психологическую отметку в 3 т. Прочитано 7346 раз.
Мы продолжали посещать MathPlus, и моя дочь продолжала оставаться одной из лучших учениц в своем классе. И теперь она будет сдавать самый высокий уровень математики в средней школе. Она планирует посещать MathPlus во время учебы в старшей школе, чтобы подготовиться к вступительным экзаменам в колледж.
Мы очень ценим прекрасную работу учителей MathPlus, их внимание к каждому ребенку и энтузиазм в изучении математики. Юлия Голдберг Я твердо верю, что отношения между ребенком и учителем являются основой успеха. Подход учителя к ученикам может сильно повлиять на результаты.
Мой сын попробовал программу pre-k в другой математической школе, и это было непросто для нас обоих. Класс был слишком большим, он чувствовал себя потерянным и никогда по-настоящему не общался со своим учителем; он был несчастен, я чувствовал себя виноватым, и на этом все закончилось. Перенесемся на 4 месяца вперед; Я счастлив и чувствую облегчение — мой сын очень увлечен, любит ходить на занятия и чувствует себя частью группы.
Классы небольшие 4-5 детей , и это лучшее из обоих миров, они по-прежнему полу-приватные, и они также могут общаться с другими детьми и учиться вместе. Мы оба с нетерпением ждем новых программ по математике и других программ в Math Plus в будущем. Яна Рогозина Моя дочь занимается в субботней утренней программе «Математика Плюс» с сентября 2015 года.
В школе замечательный и очень индивидуальный подход к обучению математике. Дети ориентируются на «нестандартное мышление», разгадывая загадки и текстовые задачи и одновременно развивая прочную основу для базовых арифметических навыков. Навыки, приобретенные в математической школе, также пригодились ей при выполнении ее обычной школьной работы.
Я с уверенностью рекомендую эту школу родителям, которые ищут индивидуальный и заботливый подход к развитию математических и логических навыков при работе с младшими учениками. Жаль, что я не знал об этой школе в прошлом году. Веселый, но дисциплинированный подход к обучению математике.
Зельфонд Аня, мама ученицы 1 класса. Белла очень знающий учитель. Она делает занятия очень интересными и увлекательными для моих детей.
Мы очень довольны успехами наших детей по математике, они любят ходить в Math Plus Ирина Фикслер — мама 2 учеников Макса 2-го класса и Тима Детский сад Мой сын начал заниматься математикой с Беллой в 3 года, что может показаться рано. Однако ей удалось организовать класс таким образом, чтобы развить их логику, когнитивные навыки в решении задач и загадок. Год спустя мой сын уже может легко писать числа, решать простые математические задачи и логически соединять точки.
Очень рекомендуем Беллу. Моему сыну это очень нравится. Мне не нужно дважды просить его пойти на урок или сделать домашнее задание.
Занятия проходят очень увлекательно и интересно. Идея создания историй, основанных на математике, очень интересна. Могу с уверенностью сказать, что у моего сына обострилось восприятие вещей и логика.
Мне также нравится размер нашего класса. Я твердо чувствую, что каждый ребенок получает достаточно вашего личного внимания. Это очень важно.
С нетерпением жду следующего года в программе детского сада. Регина Сабитов У Ника хорошие математические способности. В целом кажется, что его математическая работа для него несложна, и мы считаем, что субботний урок дает ему более сильную математическую основу для будущего обучения.
Это обеспечивает полезную подготовку к алгебре и геометрии в средней школе. В целом программа оказалась очень полезной. Арина Гоуэн 4 класс Ник Мой сын начал заниматься математикой с Беллой в 3 года, что может показаться ранним.
Тем не менее, она смогла организовать класс таким образом, чтобы развить их логику, когнитивные навыки в решении задач и загадок. Я так рада, что мы нашли Design Squad! Класс обеспечивает игровую атмосферу для обучения по очень широкому кругу тем.
Мероприятия варьируются от изучения древней египетской культуры и ритуалов до создания роботов, изготовления натуральных средств из пчелиного воска и научных экспериментов — мой сын любит разнообразие! У инструктора, миссис Ник, масса энергии, и ей явно нравится то, что она делает — она может увлечь моего сына и поддерживать его интерес неделю за неделей. Шрабштейн, Аннат — мама Ари, 8-летнего ученика группы дизайнеров Я очень впечатлена школой Math Plus.
Мой четырехлетний сын добился больших успехов за очень короткое время и сразу же очень заинтересовался математикой. В классе очень мало детей, поэтому каждый ребенок получает много внимания от учителя. Я особенно благодарен Белле Гершт за ее уникальную стратегию обучения.
Она очень преданный и профессиональный учитель, который делает все возможное, чтобы убедиться, что ваш ребенок преуспевает в математике и других науках. Катрина Генерозов, доктор фармацевтических наук Когда мы начали отдавать нашу дочь в MathPlus в третьем классе, она говорила что-то вроде: «Я не силен в математике». Мы сразу же увидели улучшения в ее понимании и комфорте в математике.
Через три года она неизменно была лучшей в своем классе по математике в своей французской двуязычной школе. Теперь она говорит: «Математика — мой любимый предмет!
Правила умножения и деления отрицательных чисел
Допустим мы идем вдоль дороги, нас обгоняет машина и начинает удаляться. Время растет - и расстояние до нее растет. Скорость такой машины будем считать положительной, она может быть например 10 метров в секунду. Кстати, а сколько это километров в час? Наверное дорога плохая... А вот машина идущая нам навстречу не удаляется, а приближается. Поэтому и скорость ее удобно считать отрицательной.
Расстояние уменьшается: 30, 20, 10 метров до встречной машины. Каждая секунда - минус 10 метров. Теперь понятно почему скорость с минусом? Вот она пролетела мимо. Какое до нее расстояние через секунду? Правильно, -10 метров, то есть "в 10 метрах позади".
Вот мы получили первое утверждение. Минус отрицательная скорость на плюс положительное время дал минус отрицательное расстояние, машина у меня за спиной. А теперь внимание - минус на минус. Где встречная машина была за секунду ДО того как проехала мимо? Так понятно, или кто-то знает пример еще проще? Ответить Да можно доказать проще!
То что мы отложили в положительную часть стало отрицательным и наоборот. Ответить Думаю вы правы. Я лишь попытаюсь показать вашу точку зрения подробнее, так как вижу, что не все это поняли. Минус означает отобрать. Ведь надо же как то обозначить действие. При этом отобранные яблоки не стали мнимыми, так как закон сохранения материи никто не отменял.
Положительные яблоки просто перешли к тому, кто их отобрал. Здесь минус не компенсирует плюс, а отрицает его и становится на его место. Сначала яблоки отобрали у вас, а затем вы их отобрали у вашего обидчика. В результате все яблоки остались положительными, только отбор не состоялся, так как произошла социальная революция. Вообще говоря, то что отрицание отрицания ликвидирует отрицание и всё к чему отрицание относится детям понятно и без объяснений, так как это очевидно. Объяснить детям нужно только то, что взрослые искусственно запутали, да так, что и сами теперь не могут разобраться.
А путаница состоит в том, что вместо отрицания действия ввели отрицательные числа, то есть отрицательную материю. Ведь с отрицательной материей должно происходить всё тоже самое, что и с положительной, только с другим знаком. Поэтому детям кажется логичнее, что при умножении отрицательной материи должно происходить приумножение именно отрицательной материи. Но и здесь не всё гладко, ведь для приумножения отрицательной материи достаточно чтобы только одно число было с минусом. При этом один из сомножителей, который обозначает не вещественное наполнение, а разы повторения отобранной материи всегда положительный, так как разы не могут быть отрицательными даже если повторяется отрицательная отобранная материя. А для того, чтобы знак минус воспринимался не как признак мнимого числа, то есть отрицательной материи, а как действие, взрослым нужно договориться сначала между собой, что если знак минус стоит пред числом, то он обозначает отрицательное действие с числом, которое всегда положительное, а не мнимое.
Если же знак минус стоит перед другим знаком, то он обозначает отрицательное действие с первым знаком, то есть меняет его на противоположный. Тогда всё станет на свои места естественным образом. Затем надо объяснить это детям и они прекрасно поймут и усвоят такое понятное правило взрослых. Ведь сейчас все взрослые участники обсуждения фактически пытаются объяснить необъяснимое, так как физического объяснения этому вопросу нет, это просто условность, правило. А объяснять абстракцию абстракцией же - это тавтология. Если знак минус отрицает число, то это физическое действие , но если он отрицает само действие, то это просто условное правило.
То есть взрослые просто договорились, что если отбор отрицается, как в рассматриваемом вопросе, то отбора нет, неважно сколько раз! При этом всё, что у вас было остаётся с вами, будь то просто число, будь то произведение чисел, то есть много попыток отбора. Вот и всё. Если кто-то не согласен, то подумайте спокойно ещё раз. Ведь и пример с машинами, в котором есть отрицательная скорость и отрицательное время за секунду до встречи это всего лишь условное правило связанное с системой отсчёта. В другой системе отсчёта та же скорость и то же время станут положительными.
А пример с зазеркальем связан со сказочным правилом, в котором минус отражаясь в зеркале только условно, но вовсе не физически становится плюсом. Ответить С математическими минусами все вроде понятно. А вот в языке, когда задается вопрос с отрицанием как на него отвечать? Вот, например, меня всегда ставил такой вопрос в тупик: "Вы не хоти ли чая? Как на него ответить при условии, что я чай хочу? Ответить Для того, что бы ответить на такой детский вопрос, нужно сперва ответить на парочку взрослых вопросов: "Что такое минус в математике?
Насколько понимаю я, именно там начинаются проблемы, которые в итоге приводят к кольцам и прочей ахинее при ответе на такой простой детский вопрос.
Никто не может объяснить две простые вещи: 1. Почему минус умножить на минус будет плюс. Почему при умножении числа на ноль получается ноль. Вместо объяснений приводятся разные доказательства. Но доказательства ничего не объясняют. А школьники и "блондинки" хотят объяснений.
Пример с нулем. Таким образом "блондином" оказывается профессор математики, который даже суть вопроса не понимает, или не хочет понимать. Перемножение двух отрицательных чисел не мог объяснить даже Лейбниц где-то я читал на эту тему. Есть и другие пятная в основах арифметики. Никто не обращает внимания, что существует как минимум три разных нуля, с разным смыслом. Если в математике везде знак "минус" имеет смысл "противоположное направление отсчета" на каком основании в некоторых случаях при решении неравенств знаку минус придают смысл "меньше"?
Арифметика футуристических картин 2. Так или иначе, но долгое время после изобретения отрицательных чисел речь шла только об их сложении и вычитании: перемножать отрицательные числа, насколько мне известно, изначально никто не собирался. Чтобы понять, почему сама возможность умножения отрицательных совсем не очевидна, будет полезно пройти историческим путем и разработать какую-нибудь простую модель целых с естественными операциями сложения и вычитания.
За основу такой модели мы возьмем один замечательный пример из физики: аннигиляцию электрона и позитрона при их столкновении. Если привести в соприкосновение электронов и электронов и позитронов аннигилируют и в конце останется только позитрона. Этот пример показывает, что реакция группы электронов и группы позитронов выглядит как сложение двух целых чисел противоположного знака. Попробуем придать этой идее точный математический смысл. Представьте, что идет выставка современного искусства в далеком от нас 3141 году. Главной изюминкой этой выставки стали медиа-картины, изображающие собой наглядную модель электронно-позитронного газа.
Как потом оказалось, 2 мальчика и 1 девочка. Заметили мы, что 2 мальчика периодически дерутся между собой, девочка такая наглая стоит посредине, а 2 самца мочатся у неё на глазах. Один мальчик большой, другой поменьше, размер имеет значение, мелкий дохляк в результате горевал в углу аквариума, а победитель охаживал довольную самочку.
Так вот жена моя взяла наглость каждый раз при их битвах тыкать мне о законах природы и мужской конкуренции в отношениях.
Минус на минус даёт нам плюс...
Минус на минус дает плюс в математике, когда два отрицательных числа умножаются. Бережливое производство 6sigma Топ-Менеджмент Консалт Новости Lean. В 1904 году на Всемирной ярмарке в Сент-Луисе с торговцем вафлями Эрнестом Хамви случилась настоящая беда! Не важно, что по математическим правилам минус на плюс дает минус.
Почему результат вычитания минуса из минуса может быть положительным
26 апреля всеми ведущими членами союза, кроме АСТ, была подписана декларация о намерениях «За прозрачный рынок». Как известно, уже в школе всем говорят, что минус на минус дает плюс. “Плюс” на “плюс” всегда дает положительный ответ. То же самое и с двумя минусами: как при умножении, так и при делении двух чисел со знаком “-” получается положительное число.
Публикации
- Наши курсы
- «Минус на минус — дает плюс»
- Минус на минус – даст плюс? » АПН - Агентство Политических Новостей
- .МИНУС на МИНУС даёт ПЛЮС
Почему «минус на минус даёт плюс»? Простейшие доказательства
Например, сегодня от индекса экономических настроений институциональных инвесторов Германии (ZEW) никто ничего хорошего и не ждал: предполагалось, что он понизится с и без того отрицательных апрельских значений минус 2,1 до минус 5,7. 1) Почему минус один умножить на минус один равно плюс один? 1) Почему минус один умножить на минус один равно плюс один? Таким образом, минус на минус дает плюс, потому что умножение двух отрицательных чисел приводит к получению положительного результата. И хоть у НТВ-Плюс накопилось много других минусов, надо остановиться. На данный момент группа обнаружила и уничтожила 105 024 мины или другие взрывчатые вещества.
Почему минус на минус даёт плюс? Сохраните себе это видео | Резерв Математик Андрей
Сложение наглядно и понятно, к тому же сумма двух натуральных чисел - тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение - это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже - сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом - так появились дробные числа. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений - это был лишь инструмент для получения положительного ответа. Это недоверие сохранялось очень долго, и даже Декарт - один из «основателей» современной математики - называл их «ложными» в XVII веке! Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин - а это уже шаг в направлении превращения математики в абстрактную науку. Эти операции подчиняются одним и тем же законам - как в случае с числами, так и в случае с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т.
Заметим теперь, что и A , и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Но для уровня старшекласника-первокурсника. Допустим мы идем вдоль дороги, нас обгоняет машина и начинает удаляться. Время растет - и расстояние до нее растет. Скорость такой машины будем считать положительной, она может быть например 10 метров в секунду. Кстати, а сколько это километров в час? Наверное дорога плохая... А вот машина идущая нам навстречу не удаляется, а приближается. Поэтому и скорость ее удобно считать отрицательной.
Расстояние уменьшается: 30, 20, 10 метров до встречной машины. Каждая секунда - минус 10 метров. Теперь понятно почему скорость с минусом? Вот она пролетела мимо. Какое до нее расстояние через секунду? Правильно, -10 метров, то есть "в 10 метрах позади". Вот мы получили первое утверждение. Минус отрицательная скорость на плюс положительное время дал минус отрицательное расстояние, машина у меня за спиной. А теперь внимание - минус на минус.
Где встречная машина была за секунду ДО того как проехала мимо? Так понятно, или кто-то знает пример еще проще? Ответить Да можно доказать проще! То что мы отложили в положительную часть стало отрицательным и наоборот. Ответить Думаю вы правы. Я лишь попытаюсь показать вашу точку зрения подробнее, так как вижу, что не все это поняли. Минус означает отобрать. Ведь надо же как то обозначить действие. При этом отобранные яблоки не стали мнимыми, так как закон сохранения материи никто не отменял.
Положительные яблоки просто перешли к тому, кто их отобрал. Здесь минус не компенсирует плюс, а отрицает его и становится на его место. Сначала яблоки отобрали у вас, а затем вы их отобрали у вашего обидчика. В результате все яблоки остались положительными, только отбор не состоялся, так как произошла социальная революция. Вообще говоря, то что отрицание отрицания ликвидирует отрицание и всё к чему отрицание относится детям понятно и без объяснений, так как это очевидно. Объяснить детям нужно только то, что взрослые искусственно запутали, да так, что и сами теперь не могут разобраться. А путаница состоит в том, что вместо отрицания действия ввели отрицательные числа, то есть отрицательную материю. Ведь с отрицательной материей должно происходить всё тоже самое, что и с положительной, только с другим знаком. Поэтому детям кажется логичнее, что при умножении отрицательной материи должно происходить приумножение именно отрицательной материи.
Но и здесь не всё гладко, ведь для приумножения отрицательной материи достаточно чтобы только одно число было с минусом. При этом один из сомножителей, который обозначает не вещественное наполнение, а разы повторения отобранной материи всегда положительный, так как разы не могут быть отрицательными даже если повторяется отрицательная отобранная материя. А для того, чтобы знак минус воспринимался не как признак мнимого числа, то есть отрицательной материи, а как действие, взрослым нужно договориться сначала между собой, что если знак минус стоит пред числом, то он обозначает отрицательное действие с числом, которое всегда положительное, а не мнимое. Если же знак минус стоит перед другим знаком, то он обозначает отрицательное действие с первым знаком, то есть меняет его на противоположный. Тогда всё станет на свои места естественным образом. Затем надо объяснить это детям и они прекрасно поймут и усвоят такое понятное правило взрослых. Ведь сейчас все взрослые участники обсуждения фактически пытаются объяснить необъяснимое, так как физического объяснения этому вопросу нет, это просто условность, правило. А объяснять абстракцию абстракцией же - это тавтология. Если знак минус отрицает число, то это физическое действие , но если он отрицает само действие, то это просто условное правило.
То есть взрослые просто договорились, что если отбор отрицается, как в рассматриваемом вопросе, то отбора нет, неважно сколько раз!
А теперь самое главное - как через эту модель показать перемножение отрицательных чисел. Пусть поезд едет из Санкт-Петербурга в Москву, то есть имеет отрицательную скорость. Где он был за три часа до полудня? Вы можете сказать, что отрицательное время — это выдумка и никто им не пользуется.
Действительно в числовом виде в быту мы их не так часто используем, а вот на уроках истории вы точно про них слышали. Как объяснить ребенку? У меня есть несколько примеров, хотя бы один из которых удовлетворит любого. Прием 1 В шестом классе школьники уже знакомы со способами решения линейных уравнений. Можно показать ребенку, например вот это : В первом случае мы решаем уравнения, избегая отрицательных чисел.
Во втором мы такой целью не задаемся. Иными словами, ответы, полученные с использованием отрицательных чисел не должны отличать от полученных других путем. Таким образом, мы лишаем себя необходимости искать смысл отрицательных чисел и принимаем их как необходимую и полезную математическую абстракцию. Так вот в этом примере и видно, как, с одной стороны умножение положительных чисел, так и с другой - отрицательных чисел друг на друга дает число положительное! Ведь болт же переместился физически, ощущаемо!
Так, например, отрицательные числа из абстракции превращаются в реальность. Я не стал приводить пример с градусником, движущимися навстречу автомобилями, геометрические обоснования их и дают по большей части в школе , совсем сложные для детей примеры с дистрибутивностью умножения, а также некоторые объяснения, построенные на мнемонике, вида: "Враг моего врага - мой друг". Последний вариант, скорее, направлен на запоминание, чем на понимание. Кстати, если Вы хотите прочесть более 80. Совершенно естественно, что в самом начале люди пользовались только натуральными числами — один, два, три и так далее.
Их использовали для того, чтобы посчитать реальное количество предметов. Просто так, в отрыве от всего, цифры были бесполезны, поэтому стали появляться и действия, с помощью которых стало возможно оперировать числами. Абсолютно логично, что самым необходимым для человека стало сложение. Эта операция проста и естественна — подсчитать количество предметов становилось проще, теперь не нужно было каждый раз считать заново — «один, два, три». Заменить счёт теперь стало возможным с помощью действия «один плюс два равно три».
Натуральные числа складывались, ответ тоже был натуральным числом. Умножение представляло собой, по сути, такое же сложение. На практике мы и сейчас, например, совершая покупки, так же используем сложение и умножение, как это делали давным-давно наши предки. Однако порой приходилось совершать операции вычитания и деления. И числа не всегда были равнозначны — иногда число, от которого отнимали, было меньше числа, которое вычитали.
То же и с делением. Таким образом и появились дробные числа. Появление отрицательных чисел В документах Индии записи об отрицательных числах появились в VII веке нашей эры. В китайских документах существуют более древние отметки об этом математическом «факте». В жизни мы чаще всего отнимаем от большего числа меньшее.
Если же я захочу купить ещё какой-то товар, стоимость которого превышает мои оставшиеся 35 рублей, например ещё одно молоко, то как бы я ни хотел его приобрести, а больше денег у меня нет, следовательно, отрицательные числа мне ни к чему. Однако, продолжая говорить о современной жизни, упомянем кредитные карты или возможность от мобильного оператора «входить в минус» при звонках. Появляется возможность тратить большую сумму денег, чем имеешь, но те деньги, что ты остался должен, не исчезают, а записываются в долг. И вот здесь уже приходят на помощь отрицательные числа: на карте есть 100 рублей, хлеб и два молока обойдутся мне в 110 рублей; после покупки мой баланс по карте составляет -10 рублей. Практически для таких же целей и начали впервые использовать отрицательные числа.
Китайцы первыми использовали их для записи долгов или в промежуточных решениях уравнений. Но использование это было всё равно лишь для того, чтоб прийти к положительному числу впрочем, как и наше погашение кредитки. Долгому отвержению отрицательных чисел способствовало то, что они не выражали конкретных предметов. Десять монет — это десять монет, вот они, их можно потрогать, на них можно купить товар.
Сообщение от Catstail тогда объясни, что означает название темы Название темы: "Минус на минус НЕ даёт плюс". Итак, я сказал, НЕ даёт, но не сказал, что именно она даёт ДА даёт , хотя намекнул: даёт абсурд. А предыдущее действие может закончиться только утверждением, так как два подряд отрицания логикой не допускаются. Между ними обязательно должен быть антипод или по меньшей мере пустое место для него.
По вопросам, связанным с использованием контента Правообладателей, не имеющих Лицензионных Договоров с ООО «АдвМьюзик», а также по всем остальным вопросам, просьба обращаться в службу технической поддержки сайта на mail lightaudio.
Отрицательные числа
- § Умножение отрицательных чисел. Умножение рациональных чисел
- Войти на сайт
- Смотрите также
- Шутка: Минус на минус дает плюс только в математике. Во всех остальных случаях
Справедливая математика: разбираемся в тайнах операции «плюс» и «минус»
Автopы пpoeктa нaмepeны дoбитьcя пepecмoтpa дeйcтвующeгo ГОСТa либo пoлнoй oтмeны штpaфoв зa тoниpoвку ужe этoй oceнью. Этo зaщитa oт coлнцa и уcлoвиe бeзoпacнoгo вoждeния. Нa cтopoнe тoниpoвки, кaк чacтичнoй, тaк и пoлнoй - миpoвoй oпыт», - нaпиcaл Нилoв Имeннo пoэтoму фpaкция будeт нacтaивaть нa paccмoтpeнии инициaтивы, зaвиcшeй в пpoфильнoм кoмитeтe. Пo мнeнию Нилoвa, нa oбcуждeниe пpoeкт eщe нe вынocилcя, cкopee вceгo, из-зa вoзмoжнoгo peзoнaнca.
Пример 1: Вычитание Когда мы вычитаем одно число из другого, мы фактически складываем первое число с отрицательным вторым числом.
В этом случае, «плюс» на «минус» дает «минус», потому что мы складываем положительное число с отрицательным числом. Если оба множителя положительные или оба отрицательные, то результат будет положительным. Если один множитель положительный, а другой отрицательный, то результат будет отрицательным.
Если мы объединим эти отрицательные числа с положительными, вместе мы получим набор чисел, которые мы называем целыми числами.
Числа 1, 2, 3, 4 ….. Символ для отрицательных целых чисел Мы используем символ «—» для обозначения отрицательных целых чисел, и тот же символ используется для обозначения вычитания. Однако контекст, в котором используется этот символ, проясняет, хотим ли мы использовать его для отрицательного целого числа или для вычитания. Давайте разберемся на примере.
Предположим, мы запишем число — 5. Это будет означать «минус пять». Точно так же — 17 будет читаться как «минус семнадцать». Теперь напишем 5 — 3.
Здесь мы видим, что «-» стоит между двумя числами. Это будет читаться как «пять минус три». Следовательно, здесь символ использовался для вычитания двух чисел. Однако контекст, в котором используется этот символ, проясняет, хотим ли мы использовать его для положительного целого числа или для сложения.
Это будет читаться как «плюс пять». Это будет читаться как «пять плюс три». Следовательно, здесь символ использовался для сложения двух чисел. Здесь важно отметить, что если с числом не связан ни один знак, оно читается как положительное число.
Отрицательные и положительные целые числа в числовой строке Мы узнали, как представлять целые числа в числовой строке. Напомним, что числовая линия — это прямая горизонтальная линия с числами, расположенными через равные промежутки, которая обеспечивает визуальное представление чисел. Основные операции, такие как сложение, вычитание, умножение и деление, могут выполняться на числовой прямой. Числа увеличиваются, когда мы движемся к правой стороне числовой линии, и уменьшаются, когда мы движемся влево.
Целые числа представлены в числовой строке, как показано ниже — 9. Как хорошо видно, при движении слева направо значение целых чисел увеличивается, а при движении справа налево — уменьшается. Давайте разберемся на примере Построим 6 и — 6 на числовой прямой. Правила сложения целых положительных и отрицательных чисел Мы знаем, как складывать два целых числа.
Мы можем складывать целые числа таким же образом, с той лишь разницей, что мы должны выполнять сложение и отрицательных чисел. Чтобы сложить положительное или отрицательное целое число, мы определяем разность их абсолютных значений и присваиваем сумму слагаемого, имеющего большее абсолютное значение. Пример Предположим, у нас есть два целых числа, 1258 и 3214, и мы хотим найти их сумму. Решение Сначала мы проверим знак обоих чисел.
Мы видим, что оба числа одного знака и являются целыми положительными числами. Поэтому по правилам, изложенным выше, мы сложим абсолютное значение обоих чисел и присвоим им положительный знак. Рассмотрим другой пример. Предположим, у нас есть два целых числа — 523 и 937, и мы хотим найти их сумму.
Решение Мы видим, что складываемые числа имеют разные знаки, поэтому для их сложения находим разность их абсолютных значений и присваиваем знак слагаемого, имеющего большее абсолютное значение. Важно помнить, что в целых числах мы не можем вычесть большее целое число из меньшего целого числа. В случае вычитания целых чисел из целых чисел мы можем вычесть большее целое из меньшего целого. Также важно помнить, что вычитание — это процесс, обратный сложению.
При вычитании целых чисел необходимо соблюдать следующее правило — Если a и b два целых числа, то для вычитания b из a меняем знак b и прибавляем его к a, т. Умножение целых чисел похоже на умножение натуральных чисел и целых чисел, за исключением того факта, что мы также должны позаботиться об умножении отрицательных чисел. При умножении целых чисел соблюдаются следующие правила — Случай 1 — Когда у вас есть два целых числа противоположных знаков — Произведение двух целых чисел противоположных знаков равно аддитивной обратной величине произведения их абсолютные значения. Это означает, что для того, чтобы найти произведение положительного и отрицательного целых чисел, нам нужно найти произведение абсолютных значений и присвоить произведению знак минус.
Пример Предположим, у вас есть два числа 7 и -4, и вы хотите найти произведение. Это означает, что для того, чтобы найти произведение двух целых чисел, независимо от того, являются ли оба числа положительными или оба отрицательными, нам нужно будет найти произведение их абсолютных значений. Давайте разберемся в этом на примере. То же самое относится и к делению целых чисел.
В делении есть четыре важных члена, а именно делитель, делимое, частное и остаток. Формула для делителя составляет все эти четыре термина. На самом деле именно соотношение этих четырех членов между собой определяет формулу деления. Если мы умножим делитель на частное и прибавим результат к остатку, то получим делимое.
Распространим ту же идею на деление целых чисел. Для деления целых чисел соблюдаются следующие правила: Случай 1 — Частное двух целых чисел, как положительных, так и отрицательных, является положительным целым числом, равным частному соответствующих абсолютных значений целых чисел. Это означает, что при делении двух целых чисел с одинаковыми знаками мы делим значения независимо от знака и ставим положительный знак в частном. Пример Предположим, у вас есть два числа — 20 и -4, и вы хотите разделить первое целое число на другое.
Так или иначе, но долгое время после изобретения отрицательных чисел речь шла только об их сложении и вычитании: перемножать отрицательные числа, насколько мне известно, изначально никто не собирался. Чтобы понять, почему сама возможность умножения отрицательных совсем не очевидна, будет полезно пройти историческим путем и разработать какую-нибудь простую модель целых с естественными операциями сложения и вычитания. За основу такой модели мы возьмем один замечательный пример из физики: аннигиляцию электрона и позитрона при их столкновении. Если привести в соприкосновение электронов и электронов и позитронов аннигилируют и в конце останется только позитрона. Этот пример показывает, что реакция группы электронов и группы позитронов выглядит как сложение двух целых чисел противоположного знака. Попробуем придать этой идее точный математический смысл. Представьте, что идет выставка современного искусства в далеком от нас 3141 году. Главной изюминкой этой выставки стали медиа-картины, изображающие собой наглядную модель электронно-позитронного газа. На их полупрозрачных поверхностях медленно дрейфуют красные и зеленые кружкии двумерные шары одного и того же размера.
Правило знаков
- Правила умножения и деления отрицательных чисел
- Календарь вебинаров
- Telegram: Contact @matematikandrei
- Правило знаков
- Справедливая математика: разбираемся в тайнах операции «плюс» и «минус»
- «Минус на минус» дает плюс | Власть труда