Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность демонстрирует ионный процессор. С другой, кубиты откликаются не только на управляющее поле, но и на слабые электрические поля, присутствующие вокруг и создающие шумы. — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам. Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке.
Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес
Отечественные кубиты состоят из четырех джозефсоновских контактов и выполнены методом литографии из тончайших пластин алюминия, толщиной всего 2 нанометра, которые разделены слоем диэлектрика. Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры. Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. Как и двоичные биты, кубиты лежат в основе вычислений, с одним большим отличием: кубиты, как правило, являются сверхпроводниками электронов или других субатомных частицами.
Как работают квантовые процессоры. Объяснили простыми словами
Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака). Кроме того, кубиты могут быть квантово запутаны друг с другом, что позволяет проводить параллельные вычисления и работать с большими объёмами информации. Фундаментальные принципы кубитов, простое объяснение того, что такое суперпозиция. Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. это элементарная единица информации в квантовых вычислениях. Кубит (q-бит, кьюбит, кубит; от quantum bit) — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений.
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
Но делает это настолько быстро и в такой тесной взаимосвязи с другими «лампочками», что это позволяет компьютеру выполнять сложнейшие вычисления практически со скоростью света. Читайте также: Революция транзисторов: от механических машин до суперкомпьютеров будущего Такая система прекрасно себя зарекомендовала — на транзисторах работают практически все современные устройства: от умных часов до смартфонов, от домашних ПК до суперкомпьютеров. Однако и она не лишена недостатков — существуют задачи, которые с виду кажутся простыми, но на их решении «сыпятся» даже самые мощные машины. Классический пример. Представьте, что вы работаете разъездным торговцем: зарабатываете на жизнь тем, что ходите по домам и продаёте мультиварки. Вам нужно придумать кратчайший маршрут, который позволит заехать в несколько крупных городов хотя бы по одному разу и вернуться домой. Перед вами — знаменитая задача коммивояжёра, и она гораздо хитрее, чем кажется на первый взгляд. Если городов в условии будет больше 66, обычному компьютеру понадобится несколько миллиардов лет, чтобы решить её простым перебором. И тут на помощь приходят квантовые компьютеры, которые могут решать такие задачи в миллионы раз быстрее обычных. Дело в том, что вместо привычных битов у квантовых компьютеров — кубиты. Физически это уже не транзисторы, а квантовые частицы — обычно фотоны или протоны.
В отличие от бита, кубиты могут не только равняться 0 или 1, но и принимать любые значения между ними. Благодаря этому квантовый процессор может выполнять несоизмеримо больше операций за один такт. Как работает квантовый компьютер Как мы отметили ранее, квантовый компьютер использует два классических понятия из квантовой механики: принцип суперпозиции и спутанность. Суперпозиция — это способность квантовой частицы находиться сразу в нескольких состояниях одновременно. У суперпозиции есть интересное свойство: она тут же «схлопывается» при появлении наблюдателя. Представьте, что вы подбросили монету и смотрите, как она вращается. Вы не можете точно сказать, что она сейчас вам показывает — орла или решку, всё вращается, ничего не понятно, остановите это кто-нибудь. Но стоит вам только «прихлопнуть» монетку на ладони, всё становится ясно. Точно так же ведёт себя и кубит — пока вы не воздействуете на него измерительным прибором, он так и будет пребывать сразу во всех состояниях между нулём и единицей. Звучит странно, но это одна из главных заповедей квантовой механики.
Вокруг суперпозиции вообще ведётся много споров в научных кругах — взять хотя бы знаменитый парадокс кота Шрёдингера, который то ли жив, то ли мёртв, то ли вообще живёт сразу в нескольких параллельных вселенных. Читайте также: Кот Шрёдингера: что это за эксперимент и в чём его смысл Мало нам суперпозиции — чтобы вычисления совершались, кубиты должны быть связаны между собой.
Суперпозиция — реальное явление: знаменитый эксперимент с двумя щелями демонстрирует, что определённые кванты, подобные электронам или фотонам, находятся в волновых состояниях и, проходя через две щели, вызывают появление интерференционной картины на экране. Источник На аппаратном уровне главная сложность в конструировании кубитов заключается в их вероятностной природе ведь они не детерминированы , что означает, что их состояние может очень легко изменяться под воздействием внешних сил. Кубиты трудно поддерживать по той же причине, по которой они так мощны — множество их возможных состояний трудно контролировать более нескольких секунд. Применение квантовых вентилей для осуществления операций зачастую может приводить к ошибкам вентиля из-за случайного неосторожного обращения с кубитом. Напомню, что кубитом может быть что угодно от фотона до электрона или определённых молекул , если они демонстрируют квантовое поведение. Многокубитные системы и запутанность Ваш компьютер далеко не продвинется с одним битом , ведь он может принимать только два значения, а компьютер работает с огромной многоразрядной системой.
Как и биты, кубиты можно собрать в многокубитную систему. В 2-кубитной системе в состоянии 10 первый кубит находится в состоянии 1 и второй в состоянии 0. Однако из-за суперпозиции 2-кубитные системы не ограничены только детерминированными значениями 0 или 1. Они могут находиться в суперпозиции. Это означает, что при измерении системы она имеет равные шансы перейти в одно из четырёх детерминированных 2-кубитных состояний. Запутанность — ещё одно часто встречающееся умное слово, которое сбивает с толку. Скажем, при двух запутанных кубитах A и B в любой суперпозиции, когда Боб измеряет кубит A в состоянии 1, он мгновенно без измерения узнаёт состояние кубита B — тоже 1. Если Боб измерит кубит B, он убедится в этом.
Что ещё более замечательно, это явление работает даже если A и B находятся на расстоянии триллионов световых лет друг от друга, так как расстояние не является коэффициентом запутанности. На первый взгляд запутанность выглядит как колдовство, но она реальна и не настолько сложна, если смотреть на её систему кубитов. Если 2-кубитная система с кубитами A и B находится в запутанном состоянии, кубиты могут находиться наполовину в состоянии 00, наполовину в 11. Таким образом, независимо от измерений системы два кубита останутся теми же самыми. Запутанная система может быть так же наполовину в 01, наполовину в 10, где два состояния всегда противоположны друг другу. Состояние 00 или 11 — два кубита останутся теми же Альберт Эйнштейн и другие физики считали запутанность ошибкой, потому что она противоречит специальной теории относительности Эйнштейна, в которой говорится, что ничто не может двигаться быстрее скорости света. Если у Алисы есть кубит A, а у Боба есть кубит B оба кубита находятся в запутанности , и Боб улетит за миллиарды световых лет от Алисы, измерение её кубита покажет то же, что и измерение кубита Боба — любые изменения в кубите Алисы с применением квантового вентиля повлияют на состояние кубита Боба. Формирует ли это общение?
Никто не знает наверняка, потому что невозможно найти точное вероятностное состояние кубита, так как измерение кубита вынуждает его перейти в одно из двух детерминированных состояний.
Мир еще не выбрал лучшую технологию. Сейчас конкурируют 4 варианта кубитов: на одиночных атомах, ионах, сверхпроводниках, фотонах. У каждой платформы есть свои плюсы и минусы. Возможно, какая-то одна в конце концов вытеснит остальных конкурентов. А может, останутся все, и каждая окажется наилучшей для определенного класса задач. Ваше превосходство О фантастических возможностях квантового компьютера говорят лет 40, но вот о кардинальных прорывах не слышно. Зато есть достаточно авторитетные скептики, которые утверждают, что он вообще никогда не будет создан. Что это игрушка, которой морочат голову и умело выбивают огромные деньги, удовлетворяя собственное любопытство.
Руслан Юнусов: Да, такое мнение существует. Но скептики всегда были, есть и будут. Это нормально. Напомню, что сама идея квантового компьютера была сформулирована в 80-е годы, а первые кубиты появились только через 20 лет, на рубеже 2000-х годов. Прошло еще 20 лет, и сейчас лидеры делают вычислители с сотнями кубитов. Что касается глобальных достижений, то за последние годы произошло как минимум несколько. Так, группы в США и Китае смогли достичь так называемого квантового превосходства. Превосходства над чем? Руслан Юнусов: Над суперкомпьютерами.
Им были предложены тесты, с которыми квантовые, имея всего несколько десятков кубитов, справились за несколько минут. Так вот суперкомпьютерам они оказались вообще не под силу. Безоговорочная победа? Значит, квантовые машины уже сейчас можно выпускать в "люди"? Руслан Юнусов: Увы, к этому мы еще не пришли. Да, квантовый победил, но в специальных, абстрактных тестах. А вот для реальных задач в промышленных масштабах он пока не приспособлен. Не может соперничать с традиционными компьютерами. Для этого нужны системы с многими тысячами, а возможно, миллионами кубит.
Но если уже собрали вычислитель из сотен кубитов, почему нельзя, как в конструкторе ЛЕГО, объединить десятки тысяч, миллионы? Руслан Юнусов: Собрать, конечно, можно, но есть проблема - надежность. И она сейчас является ключевой. Чем больше мы хотим объединить кубитов, тем сильней они влияют друг на друга. Как следствие, начинают вылезать ошибки. Понятно, что нам нужны точные, безошибочные вычисления. Кроме того, в отличие от работы кремниевого устройства квантовые состояния довольно неустойчивые.
Физически это реализовано так: В компьютере есть деталь под названием транзистор. Представьте, что это кран на трубе: если его включить, вода польётся, если выключить — остановится. В транзисторе вода — это электричество, и включение-выключение крана тоже зависит от электричества. Представьте, что краны соединены между собой так, что вода из одного крана включает или выключает другой кран, — и так каскадом по цепочке. Транзисторы соединены таким хитрым образом, что когда они включаются и выключаются, на них можно производить математические вычисления. Из-за того, что транзисторов очень много миллиарды , а работают они очень быстро близко к скорости света , транзисторные компьютеры могут очень быстро совершать математические вычисления. Всё, что вы видите в компьютере, — это производные от вычислений. Вы видите окно, буквы, картинки, а где-то в самой-самой глубине это просто сложение и вычитание, а ещё глубже — включение-выключение кранов с электричеством на скорости света. Транзистор в компьютере может принимать значение 1 или 0, то есть «включён» или «выключен». С точки зрения компьютерной логики, этот транзистор называется битом. Это минимальная единица информации в компьютере. Физически бит может быть в процессоре, на чипе памяти, на магнитном диске, но суть одна: это какое-то физическое пространство, которое определённо либо включено, либо выключено. Ключевое слово здесь — «определённо». Программист и инженер может точно узнать, в каком состоянии находится тот или иной бит. Заряд в нём либо есть, либо нет, никаких промежуточных состояний там не существует.
Квантовые компьютеры
В России создан первый сверхпроводящий кубит | Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0. |
Что такое квантовый компьютер | Начинаем погружаться в основу основ квантовой связи и квантовой информатики, так что сегодня узнаем, что такое кубит, для чего он нужен и в каких направления. |
Про квантовые компьютеры простыми словами | Возможные значения кубита можно представить как поверхность сферы с единичным радиусом — специалисты называют ее сферой Блоха. |
Квантовые вычисления – следующий большой скачок для компьютеров
Что такое квантовый компьютер | Чтобы сделать кубиты, отдельные электроны помещают в линейный массив из шести «квантовых точек», отстоящих друг от друга на 90 нанометров. |
Мир квантов: как люди могут воспользоваться их открытием — 05.10.2023 — Статьи на РЕН ТВ | Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. |
Инвестиции в квантовые компьютеры: на что стоит обратить внимание | Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. |
Будущее квантовых компьютеров: перспективы и риски
Всё началось ещё в 1950-х, когда знаменитый физик Ричард Фейнман впервые предложил использовать квантовые эффекты для вычислений. Отчасти за эту работу он в 1965 году удостоился Нобелевки. А ещё Фейнман известен цитатой о том, что по-настоящему квантовую механику не понимает никто. И здесь опять отметился Фейнман — в 1982 году он публикует знаковую статью «Физическое моделирование с помощью компьютеров», в которой, по сути, впервые описывает принципы работы квантового компьютера. Примерно в те же годы математик Юрий Манин предложил идею квантовых вычислений, а американский физик Пол Бениофф — квантово-механический вариант машины Тьюринга.
Первую рабочую модель квантового компьютера представили учёные из MIT в 1997 году. Двухкубитная система работала на принципах ядерно-магнитного резонанса того же самого, что используется в аппаратах МРТ. Модель умела решать довольно сложные задачи по алгоритму Дойча — Йожи. Дальше свои версии ЯМР-компьютеров стали по цепочке появляться во многих мировых институтах и лабораториях — к сожалению, их фотографии отыскать в Сети довольно сложно — учёные неохотно публикуют изображения своих детищ, вероятно, из соображений секретности.
Зато ими охотно делились корпорации в своих пресс-релизах. Вот, например, фото первого в мире 16-кубитного процессора от компании D-Wave, одного из ведущих вендоров в этой отрасли. Первый 16-кубитный процессор от D-Wave Systems Фото: IXBT Конечно, такая мощность далеко не предел — например, та же D-Wave Systems в 2022 году объявила , что собирается разработать квантовый компьютер аж на 7000 кубит. Но пока это остаётся на уровне фантазий — а самый мощный на сегодняшний день квантовый компьютер работает на 1225 кубитах и принадлежит американскому стартапу Atom Computing.
А что сейчас? Квантовые компьютеры уже вышли из области теоретических моделей, построены и давно работают. На момент написания статьи такие машины есть у многих компаний и научно-исследовательских институтов. Какие задачи могут решать квантовые компьютеры Сразу скажем: квантовые компьютеры пока ещё слишком сырые, чтобы массово решать конкретные прикладные задачи.
Всё, о чём пойдёт речь дальше, относится либо к отдельным кейсам, либо к отдалённым прогнозам. Разработка новых лекарств и материалов. Квантовый компьютер может создать новое химическое соединение и просчитать его взаимодействие с уже существующими структурами. Классические, даже сверхмощные, компьютеры неспособны быстро справиться с такой задачей.
Подсчитано , что моделирование молекулы из 70 атомов займёт у классического компьютера около 13 миллиардов лет, тогда как у квантовых вычислителей на этой уйдёт всего пара минут. На практике такое моделирование востребовано в генной инженерии, при разработке и создании новых лекарств и материалов.
Электроны благодаря квантовым эффектам могут «просачиваться» туннелировать сквозь диэлектрик. Кубиты, построенные из нескольких джозефсоновских контактов, работают как настоящие атомы: они могут излучать и поглощать свет, пребывать в нейтральном и возбужденном состоянии. Такие кубиты могут быть созданы с помощью существующих методов литографии, на которых основано производство микросхем. В мае 2015 года российские ученые впервые создали шесть кубитов, каждый из которых состоит из четырех джозефсоновских контактов.
Уже есть успехи — американская IT-компания , например, в конце 2022 года представила процессор, внутри которого 433 кубита.
Теоретически в нем может одновременно содержаться на много порядков больше бит информации, чем атомов в наблюдаемой Вселенной. Но решить какую-то задачу гораздо быстрее обычного компьютера, то есть «продемонстрировать квантовое превосходство», такой процессор пока не может — слишком нестабильны элементы. Подобные удачи, впрочем, уже случались. Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях. Его установят в клинике города Кливленд в США. Он поможет выявлять новые штаммы вирусов и займется поиском лекарств от болезни Альцгеймера.
Но есть и опасения по поводу новой технологии. Наталья Малеева, старший научный сотрудник криолаборатории электронных систем НИТУ МИСиС: «Квантовый компьютер — это разложение больших чисел на простые множители, это несортированный поиск. Обе эти задачи часто вспоминаются в приложении к современной криптографии.
Элементы классических компьютеров могут хранить только один бит: 1 или 0. Кубиты — это квантовые объекты, которые могут находиться в суперпозиции двух состояний, то есть кодировать одновременно и логическую единицу, и ноль. Это открывает новые возможности для обработки информации: компьютер из нескольких тысяч кубитов может производить вычисления со скоростью, недоступной современным суперкомпьютерам.
В роли кубитов могут выступать атомы или электроны — цифровые данные записываются на их спине.
Квантовые компьютеры: как они работают — и как изменят наш мир
Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Фундаментальные принципы кубитов, простое объяснение того, что такое суперпозиция. Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа. Кубиты в квантовом компьютере расположены не слишком далеко, однако именно запутанность связывает их в единую, согласованно реагирующую систему. Увеличивается количество используемых кубитов, модернизируются системы поддержания кубитной когерентности, ведутся поиски оптимальной технологии изготовления многокубитных архитектур.
Что такое квантовый компьютер? Разбор
Что такое квантовый компьютер | Фундаментальные принципы кубитов, простое объяснение того, что такое суперпозиция. |
Что такое квантовые вычисления? - Linux Mint Россия | В 2013 году мы произвели первичные измерения полученных в Германии кубитов (кубит – элемент сверхпроводниковой микросхемы, сделанный из сверхпроводника – тонких пленок алюминия). |
Что такое квантовый компьютер? Разбор / Хабр | Вторая проблема — это заставить кубиты взаимодействовать друг с другом — при взаимодействии их время жизни катастрофически уменьшается. |
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы
Чтобы создать кубит, ученые должны найти место в материале, где они могут получить доступ к этим квантовым свойствам и управлять ими. Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. Но пока до реального взлома всё же невероятно далеко — чтобы взломать код биткоина, нужны десятки миллионов кубитов. Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. В то время как кубиты имеют четыре значения, в нейронных сетях их несравненно больше, а образуемые ими структуры намного разнообразнее, чем entanglement. Последние новости о разработке собраны в этой статье.
Квантовый процессор – это ядро компьютера
- Почему от квантового компьютера зависит национальная безопасность и когда он появится в России
- Российские разработки отстают на 5 лет
- Сердце квантовых компьютеров - как создаются кубиты?
- Категории статьи