Новости фрактал в природе

Международная группа ученых обнаружила первую в природе молекулу, которая является регулярным фракталом. Фракталы в природе. Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию.

Физики нашли фракталы в лазерах

И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития. Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже? Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности.

Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность.

А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача. Получается, что рынок, как минимум, имеет фрактальные свойства. Само наличие закономерностей в движении говорит об этом.

После ряда его исследований и предположений многие его друзья-ученые отвернулись, считая, что он занимается не научными, а бесполезными исследованиями. Однако вскоре, изучая работы французских ученых Жулиа и Фату, Мандельброт и используя компьютеры, Мандельброт открыл множество, которое является самым существенным примером фрактала, — множество Мандельброта [1]. В наши дни данное открытие играет огромную роль, так как позднее появилось такое понятие, как фрактальная геометрия природы. В ней показано, что всё, что кажется нам хаотичным в природе, на самом деле имеет свой определенный порядок, а ярким примером этого является дерево и рост его веток. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. Библиографический список Мандельброт Б. Фрактальная геометрия Природы.

Потапов А. Фракталы и хаос как основа новых прорывных технологий в современных радиосистемах. Дополнение к кн.

Функция Вейерштрасса. Иллюстрация: Eeyore22, www. Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач. Например, одно из свойств фракталов основано на их способности иметь дробную размерность.

Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной. Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие. Способность поглощать кислород напрямую зависит от площади дыхательной поверхности легких, но при этом они должны занимать относительно небольшой объем. Именно поэтому небольшие человеческие легкие имеют дыхательную поверхность большую, чем стандартный теннисный корт. Теорию фракталов используют в материаловедении. Шероховатости и неровности, остающиеся на поверхности любого металла после его полировки или изготовления, имеют фрактальную природу.

И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла. Аналогичные результаты были в исследованиях полимеров. Оказалось, что полимерные цепочки образуют сложные и запутанные структуры, которые определяют ключевые показатели полимеров. И эти запутанные цепочки — тоже фракталы! Отдельное развитие получили алгоритмы для генерации фракталов. Часть из них придумали еще в XIX веке, другие появились, когда возникла теория фракталов. Вместе они стали основой раздела в искусстве, посвященного фрактальным узорам.

Вскоре выяснилось, что можно генерировать компьютерную графику при помощи фракталов. Особенно актуально это оказалось для биологических структур: деревьев и растений. У капусты Романеско, например, невооруженным глазом видна фрактальная структура. Капуста романеско, www. В свою очередь, математическая теория перколяции широко используется в статистической физике и химии. Более того, теория фракталов вместе с теорией перколяции широко применимы при добыче нефти и газа. Это объясняется тем, что порода, в которой находится нефть, имеет фрактальные пустоты и представляет собой что-то наподобие губки Менгера.

Фрактал — это сложная геометрическая фигура, обладающая свойством самоподобия. То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Это свойство объектов американский правда, выросший во Франции математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами от латинского fractus — изломанный.

Фракталы вокруг нас

Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. Фото подборка встречающихся в природе или искусственно созданных фракталов. В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Немного о фракталах и множестве Мандельброта Антон Ступин Что породило само понятие фрактал?

Фракталы в природе и в дизайне: сакральная геометрия повсюду

Фракталы в природе. Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest!
Фракталы в Природе - 24 photos. Елена Лаврина's photos. Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы.
ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк.
Случайность как художник: учёные обнаружили первую фрактальную молекулу Просмотрите доску «Фракталы в природе» пользователя Александрина в Pinterest.
ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ. Фракталы в природе.

Фракталы в природе

Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом. чудо природы, с которым я предлагаю вам познакомиться. Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только. Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. (с) Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек.

Фракталы – Красота Повтора

фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов. Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы. Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений. Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только. Просмотрите доску «Фракталы в природе» пользователя Александрина в Pinterest.

Любопытные фото природы, которые успокоят

Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Природа зачастую. Одним из таких исследований является изучение фракталов в природе. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас.

Фракталы в природе (102 фото)

14 Удивительные фракталы, обнаруженные в природе Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе.
Фракталы: что это такое, какими они бывают и где они применяются / Skillbox Media Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек.

Навигация по записям

  • Фрактал. 5 вопросов
  • Открыта первая природная фрактальная молекула
  • Предварительный просмотр:
  • Математика в природе: самые красивые закономерности в окружающем мире
  • Фракталы в природе и созданные человеком

1 из 9: Романеско

  • Последние записи
  • Фракталы в природе (102 фото)
  • Прекрасные фракталы в природе
  • Фракталы и их дизайн — неопознанные элементы науки

Компьютерные игры

  • Подписка на дайджест
  • Фрактальные узоры в природе и искусстве эстетичны и снимают стресс
  • 14 Удивительные фракталы, обнаруженные в природе - Окружающая среда 2024
  • Сейчас на главной
  • Что такое фрактал?

Фракталы. Чудеса природы. Поиски новых размерностей

Получалась, так называемая, Пыль Кантора приложения 1, 2. Джузеппе Пеано Giuseppe Peano; 1858-1932 — итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности.

Уникальность такой линии в том, что она заполняет всю плоскость. Позднее аналогичное построение было осуществлено в трехмерном пространстве приложения 3, 4. Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту приложение 5. Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный».

Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе. Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому». Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств.

В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась. При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками.

Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден. Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров — завихрений.

Для нас — это откровение не меньшего масштаба, чем открытие чрезвычайной нестационарности Вселенной на самых различных ее уровнях 2 — от мира планеты Земля до комет и астероидов, от рождающихся и взрывающихся звезд и бурно эволюционирующих звездных комплексов объединений молодых звезд — до квазаров, сияющих подобно сотне галактик, и до всей нашей Вселенной, в немыслимом темпе раздувающейся до «почти бесконечных» размеров. Дело в том, что именно в последние полтора-два десятка лет мы с удивлением осознали, что живем в Мире, где нас со всех сторон окружают объекты и системы дробной размерности [ 2 ]. Это крайне непривычно. И в жизни, и в науке мы до сих пор встречали, как нам казалось, лишь объекты очень небольшого набора целочисленной, притом невысокой, размерности: точки размерность 0 ,"линии 1 , поверхности 2 , тела 3. Минимальное количественное расширение этого набора в физике произошло хотя и давно, но все же уже в этом веке, когда Г. Минковский в 1908 г.

Позже, в 20-х гг. Калуца, О. Клейн, Ю. Румер и др. В развитие этой линии уже относительно недавно в теории возникли 10- и 11-мерные физические пространства, а затем дело дошло и до варианта 506 измерений! Впрочем, в подчеркиваемом формально-математическом смысле, физики уже во второй половине прошлого века, во времена Больцмана и Гиббса, оперировали с фазовыми математическими пространствами размерности порядка 1023 число Авогадро. Математики же, люди перед Природой куда менее ответственные, чем физики или астрономы, гораздо раньше тех же физиков обжились в многомерных пространствах, а с легкой руки великого математика Давида Гильберта, — и в «бесконечномерных». Однако, в смысле целочисленности и дискретности, сколь угодно большое натуральное число N тождественно 1 или даже 0. И вот мы узнаем, что живем во Вселенной, на каждом шагу, на всех уровнях масштабов заполненной объектами, структурами, системами дробной размерности!

Перечислим хотя бы некоторые направления «фрактальных прорывов» в современной науке. Модель динамического хаоса тоже, кстати, фрагмент новой грани научной картины мира и турбулентность в воде, атмосфере и в Космосе 4 ; модели эрозии почвы и сейсмических явлений, организация полимеров и коллоидов, фликкер-шум и химические реакции, флуктуации температуры и плотности, морфология планет и спутников, облаков и горных хребтов; «блуждание пьяницы» и вероятность выживания, модель Изинга в теории кристаллов и «странный аттрактор»; солнечные пятна и «скрытая» масса галактик; структура речных систем и береговая линия моря; электропробой диэлектриков и растрескивание при разрушении; «дьявольская лестница» и теория конечных автоматов; фрагментация протогалактической среды и пыль у звезд типа R Северной Короны; множественное рождение частиц и совокупность ресничек на стенках кишечника; кластеризация во Вселенной и динамика экситонов; переменные звезды и структура рентгеновского источника Геркулес Х-1... Автор сам не очень понимает некоторые из этих терминов — так широка проблема. Фрактальный рост. Отложение цинка при электролизе Рис. Фрактальная структура Фигура Лихтенберга при электрическом разряде Как видим, действительно «природа очень любит фрактальные формы» [ 3 ]. Мандельброт [ 4 ]. Но чтобы увидеть это, должен был найтись такой Мандельброт или другой «мальчик», заметивший, что король-то голый! А до этого мы — вслед за нашими интеллектуальными и научными лидерами — столетиями в упор не видели самого очевидного.

Когда же, вслед за «пионером», прозревают остальные, картина мира резко изменяется, перестраивается, и ранее невозможное оказывается очевидным. Эсхер Эшер. На математическом языке ее так называемая размерность Хаусдорфа—Безиковича тогда больше привычной топологической. Заметим, кстати, что размерность линии, превосходящая 1, при этом не обязательно будет дробной размерность плоской броуновской траектории равна 2. Видимо, мыслима и размерность линии в трехмерном объеме, превосходящая двойку. Вообще же разнообразие здесь велико, и в ряде случаев размерность «предельного объекта» может быть оценена лишь приближенно численно как итог компьютерного моделирования предельного процесса. В некоторых же объектах она элегантно выражается аналитически. Так, размерность Хаусдорфа—Безиковича знаменитого канторова множества «остаток» от процедуры: из отрезка вырезаем среднюю треть, из оставшихся двух отрезков — тоже, и т. Математический смысл фрактальности довольно абстрактен, и здесь, пожалуй, не стоит пытаться определить фрактал во всей его математической строгости и сложности.

Однако геометрический смысл фрактальности весьма нагляден и прост. Это, схематизируя, бесконечная — вверх и вниз — пирамида единообразно на один и тот же множитель изменяющихся ступеней. Такая лестница масштабов может быть и не откровенно иерархическо-геометрической, а скрытой во временном поведении системы. Например, совокупность броуновских частиц в каждый момент представляется предельно хаотичной. Но траектория броуновского движения каждой частицы в идеале если не подойти слишком близко к характерной величине размера атомов и расстояний между ними выглядит совершенно одинаково при любом масштабе «увеличении микроскопа». Масштабная инвариантность, или самоподобие, фрактальной структуры является ее характернейшим свойством. Она может проявляться бесконечно разнообразно. Любопытно, что именно через это свойство фракталы не называя их так, естественно , значительно раньше их первооткрывателя Мандельброта увидел талантливый голландский художник с острым взглядом — М. Эсхер 1902—1972 иногда, в более ранней и менее точной транскрипции — Эшер.

Физический смысл объекта-фрактала также довольно нагляден. Это структура пространственно-иерархического типа, со все меньшим при удалении от некоторого центра , но убывающим строго закономерно, единообразно, заполнением объема 6. Выразительный пример — крона «зимнего дерева», без листьев. На эволюционно-биологическом уровне аналог — эволюционное древо жизни Земли, а в еще более общем плане — Мировое Древо ряда религиозных космологии. Открытие фракталов Смотрите, как повсюду окружают нас непонятные факты, как лезут в глаза, кричат в уши, но мы не видим и не слышим, какие большие открытия таятся в их смутных очертаниях. Ефремов Осознание фрактальности мира, как почти все крупнейшие обобщения в науке, началось с весьма частного вопроса — с мысленного опыта американского математика Бенуа Мандельброта: длина участка береговой линии между двумя городами оказалась зависящей от того, как ее измерять, то есть от «длины линейки». Можно сказать, что это заранее очевидно и тривиально. Но те, кто так рассуждали и на этом останавливались в бесконечном множестве «аналогичных случаев» до Мандельброта, и не заметили, не открыли фрактальность Вселенной! Мандельброт, между тем, вышел за рамки старой научной картины мира, в которой не было места для фракталов.

Впрочем, у математиков, знакомых с хаусдорфовской размерностью еще с 1919 г. Но к этим разговорам долго не прислушивались, даже некоторое время и после провозглашения Мандельбротом его открытия. Нобелевская премия по физике Кеннету Вилсону за работу, в которой прямо использовались представления о модели физической системы с дробной размерностью, не особенно изменила положение. Но час пробил! Наша Вселенная «изменилась» — она «стала» фрактальной 7. А точнее, барьер в догматическом сознании научного сообщества был-таки преодолен. В итоге необратимо изменилась наша картина мира, в том числе — и астрономическая. Несомненно, какие бы с нею дальше ни происходили изменения, какие бы ни совершались научные революции, аспект фрактальности навсегда вошел в ее «твердое ядро» принципов-постулатов и не будет изъят ни при какой ревизии [ 6 ]. Патологические структуры, которые были изобретены математиками, желавшими оторваться от свойственного XDC веку натурализма, оказались основой множества хорошо знакомых, повсюду нас окружающих объектов», — констатировал выдающийся физик XX века Фримен Дайсон [4].

Концепция «раздувания» в космологии и фрактальность пространства Вселенной?

В космическом хаосе, говоря словами Гете, есть "законы, охраняющие сокровища жизни, которыми украшает себя Вселенная". На каждой новой ступени организации материи вступают в силу новые правила. Это не означает, что известные до сих пор законы природы неверны, но это лишь означает, что трудно обнаружить все скрытое в них. Приведем примеры. Долгосрочный прогноз солнечной системы невозможен уравнения являются неинтегрируемыми. Невозможность осуществления до настоящего времени управляемого термоядерного синтеза связана с тем, что нет адекватного представления о хаотическом движении заряженных частиц в системе магнитных линз.

Изучение развития яиц насекомых показывает, что морфогенез невозможно понять только из знания молекулярного строения соответствующего генома. Нелинейные процессы приводят к ветвлению. Система может выбрать ту или иную ветвь, последствия выбора однозначно предсказать невозможно, поскольку для каждого из этих решений характерно усиление отклонений. Хотя в каждый отдельный момент причинная связь сохраняется, но после нескольких ветвлений она уже не видна. Рано или поздно начальная информация о состоянии системы становится бесполезной. В ходе эволюции генетическая информация генерируется и запоминается. Законы природы допускают множество различных исходов, но наш мир имеет одну единственную историю.

Хаос - фундаментальное понятие философии, социологии и естествознания. Оно играло существенную роль уже в мировоззрении философов древности. По их представлениям хаос - состояние материи при отсутствии всех факторов, влияющих на нее и позволяющих выявить ее свойства и структуру. При действии разных факторов из хаоса может рождаться все, что состовляет строение Мироздания, т. Таким образом, Хаос противопоставляется Порядку. Отсюда и представление о хаосе как о беспорядочном движении. В физику понятие хаоса было введено Л.

Больцманом и Дж. В качестве меры хаотичности движения они использовали понятие энтропии. В странном мире хаоса и турбулентности начиная с 70-х г. XX века ученые стали находить непривычную, но вполне определенную упорядоченность, образуемую путем бесконечного в принципе повторения какой-либо исходной формы во все уменьшающемся масштабе по определенному алгоритму, инструкции или формуле фрактальные закономерности. В современной науке фрактальность поведения сложных нелинейных систем считается их неотъемлемым свойством как строго доказанный математический факт. Оказывается, что если система достаточно сложна, то она в своем развитии обязательно проходит через чередующиеся этапы устойчивого и хаотического развития. Причем сценарии перехода от порядка к хаосу и обратно поддаются классификации, и вновь все многообразие природных процессов распадается на небольшое число качественно подобных.

Один из таких сценариев может быть описан с помощью наглядного геометрического образа, рисунка, являющегося фракталом. Речь идет о так называемом логистическом отображении, впервые использованном П. Ферхюльстом в 1838 г. Согласно этой модели, общее число х n особей n-го поколения пропорционально числу х n-1 особей предыдущего поколения с коэффициентом пропорциональности, линейно убывающем в зависимости от этого числа особей.

Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе.

Прекрасная иллюстрация последовательности Фибоначчи. Молнии ужасают и пугают и одновременно восхищают своей красотой. Фракталы, созданные молнией, не произвольны и не регулярны. Романессу - особый вид брокколи, крестоцветный и вкусный двоюродный брат капусты - является особенно симметричным фракталом. Папоротник является хорошим примером фрактала среди флоры.

Каждое соцветие копируется точно таким же только меньше. Фото сделано снизу, чтобы разглядеть это во всей красе.

Физики нашли фракталы в лазерах

В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности. Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. В своей книге “Фрактальная геометрия природы” (1982) Бенуа Мандельброт ввел термин фракталы, и создал математику для их описания. В ней он впервые заговорил о фрактальной природе нашего многомерного мира.

Похожие новости:

Оцените статью
Добавить комментарий