Ученые считают, что Вселенная может быть разрушена с помощью распада ложного вакуума, который находится в космическом пространстве. Ученые заявили, что из-за распада ложного вакуума Вселенная может быть разрушена. Результаты эксперимента соответствовали численным моделям и подтверждали квантово-механическую природу распада ложного вакуума. Примечательно, что видео показывает как может погибнуть мир в результате распада ложного вакуума.
5 сценариев смерти Вселенной
В результате распада ложного вакуума огромная энергия, запасенная полем, высвободится — в конечном счете, это выразится в образовании большого числа частиц и приведет к повторному разогреванию Вселенной. Но чтоб ещё и ложный вакуум, и чтобы он ещё и распадался — до такого извращения даже мы не доходили. Точнее, есть бесконечный ложный вакуум, который расширяется с бесконечно огромной скоростью, и в нем возникают зоны распада, где формируются вселенные, как пузырьки углекислоты в открытой бутылке газировки. Уже примерно неделю замечаю в СМИ новости про физиков, которые «увидели распад ложного вакуума». Отмечается, что первопричиной вселенской катастрофы вполне может стать распад вакуума Ученые поведали о вероятной смерти мира, которая случится после распада ложного вакуума Ученые рассказали, что.
Распад нестабильного вакуума
Переход между ложным вакуумом и истинным затруднен из-за высокого энергетического барьера, однако может происходить квантовомеханическое туннелирование из одного состояния в другое. **Ученые из Великобритании впервые применили квантовый симулятор для просчета. Событие ложного распада вакуума иногда используется в качестве сюжета в работах, изображающих событие судного дня.
Вакуумный распад: конец света уже наступил?
Вселенная все еще крошечная и невероятно, просто безумно горячая. Считается, что в таких условиях фундаментальные силы электромагнетизм, сильные и слабые ядерные взаимодействия и гравитация были объединены в одно универсальное взаимодействие. В тот момент времени мы могли бы описать столь разнообразные явления, как падение яблока с дерева, и распад ядра урана, с помощью единой системы уравнений. Такое положение вещей может существовать только при самых экстремальных температурах. Но когда Вселенная расширилась, она остыла настолько, что фундаментальные силы начали разделяться. До тех пор, пока, в конце концов, не стали четырьмя отдельным силам, которые мы знаем и очень любим сегодня. И именно в ходе этого процесса в почву физики просыпались прыткие семена будущей вакуумной подлянки. Квантовые поля Наши лучшие современные теории описывают Вселенную с помощью так называемых квантовых полей. Поле — это просто то, что имеет какое-то значение в какой-то точке пространства. Знакомый всем пример — магнитное поле, которое окружает стержневой магнит. Оно описывает силу, генерируемую магнитом, в любой точке пространства.
Это поле квантовано, то есть может принимать только одно из дискретного набора значений, в отличие от континуума значений, разрешенных в классическом поле. Волны в этих квантовых полях, известные как возбуждения, — это то, что мы наблюдаем как частицы. Такие, как фотоны и электроны. Для любой фундаментальной силы или частицы существует соответствующее квантовое поле. Например, два электрона, сталкивающиеся и рассеивающие друг друга, можно представить как две волны в квантовом поле электрона, обменивающиеся фотоном. Который сам является волной в электромагнитном квантовом поле. Важно отметить, что существует также энергия, связанная с отсутствием возбуждений в квантовом поле — так называемая энергия нулевой точки, которая обычно, все же, не равна нулю. Знаменитым примером влияния этой нулевой энергии является эффект Казимира, когда две металлические пластины, разделенные чрезвычайно маленьким зазором, притягиваются друг к другу за счет разницы в «давлении» вакуума между пластинами, и «давлении» на их внешних сторонах. Нулевые точки большинства известных квантовых полей оставались постоянными с тех пор, как впервые разделились вместе с фундаментальными силами в остывающей молодой Вселенной.
В квантовой теории поля, когда не очень стабильное состояние превращается в истинное стабильное состояние, это называется «ложным распадом вакуума». Он происходит за счет создания небольших локализованных пузырьков. Хотя существующие теоретические работы могут предсказать, как часто происходит образование пузырей, экспериментальных доказательств не так уж и много. Теперь международная исследовательская группа с участием ученых впервые наблюдала, как эти пузыри формируются в тщательно контролируемых атомных системах.
Приближение толстой стенки гораздо реже используется в физически интересных теориях. И понятно почему: в этом случае вероятность образования пузырьков новой фазы оказывается экспоненциально подавленной — ложный вакуум практически неотличим от истинного. Вероятность туннелирования зависит от квантовых поправок в потенциал Хиггса, в частности от вклада тяжелых частиц. В настоящее время самой тяжелой элементарной частицей считается топ-кварк — его масса превышает 173 гигаэлектронвольт. Именно поэтому открытия новых тяжелых частиц так важны для космологических моделей — это может повлиять на прогнозы стабильности наблюдаемого мира. Особая роль в распаде вакуума у гравитации — кривизны пространства-времени. В частности, микроскопические черные дыры, которые могут возникать при столкновениях частиц высоких энергий, в сотни раз повышают вероятность рождения в их окрестностях пузырей с истинным вакуумом. Динамика космологических пузырей еще сложнее, если внутри первоначальной Вселенной формируется несколько пузырей — расширяясь и сталкиваясь друг с другом, они создают новый мир с истинным вакуумом. Сегодня неизвестно, в каком состоянии находится Вселенная. Если это истинный вакуум, то волноваться не о чем. Если ложный, то, скорее всего, тоже — размеры наблюдаемой Вселенной слишком велики, чтобы новый пузырь, расширяющийся со скоростью света, в сколь-нибудь разумное по меркам человека время заполнил весь мир.
Теперь мысленно увеличьте эту поверхность в огромное число раз. Это как раз то, что случилось со Вселенной во время инфляции. Нам видна лишь крошечная часть этой огромной сферы. И она кажется плоской точно так же, как Земля, когда мы рассматриваем небольшой ее участок. То, что геометрия Вселенной плоская, было проверено путем измерения углов гигантского треугольника размером почти до космического горизонта. Их сумма составила 180 градусов, как и должно быть при плоской, евклидовой, геометрии. Теперь, когда данные, полученные в наблюдаемой нами области Вселенной, подтвердили теорию инфляции, можно в какой-то степени доверять тому, что она говорит нам о регионах, недоступных для наблюдения. Это возвращает нас к вопросу, с которого мы начали: что лежит за нашим космическим горизонтом? То там, то здесь в ее толще случаются «большие взрывы», в которых распадается ложный вакуум и возникает область космоса, подобная нашей. Но инфляция никогда не закончится полностью, во всей Вселенной. Дело в том, что распад вакуума — вероятностный процесс, и в разных областях он случается в разное время. Выходит, Большой взрыв не был уникальным событием в нашем прошлом. Множество «взрывов» случилось прежде и несчетное число еще произойдет в будущем. Этот никогда не кончающийся процесс называется вечной инфляцией. Можно попробовать представить, как бы выглядела инфлирующая Вселенная, если взглянуть на нее со стороны. Пространство было бы заполнено ложным вакуумом и очень быстро расширялось во все стороны. Распад ложного вакуума похож на закипание воды. То там, то здесь спонтанно возникают пузыри низкоэнергетического вакуума. Едва зародившись, пузыри начинают расширяться со скоростью света. Но они очень редко сталкиваются, поскольку пространство между ними расширяется еще быстрее, образуя место для все новых и новых пузырей. Мы живем в одном из них и видим только малую его часть. К сожалению, путешествия в другие пузыри невозможны. Даже забравшись в космический корабль и двигаясь почти со скоростью света, нам не угнаться за расширяющимися границами нашего пузыря. Так что мы являемся его пленниками. С практической точки зрения каждый пузырь является самодостаточной отдельной вселенной, у которой нет связи с другими пузырями. В ходе вечной инфляции порождается бесконечное число таких пузырей-вселенных. Одна из впечатляющих возможностей — наблюдение за столкновением пузырей. Если бы другой пузырь ударился в наш, это оказало бы заметное воздействие на наблюдаемое космическое фоновое излучение. Проблема, однако, в том, что столкновения пузырей очень редки, и не факт, что такое событие случалось в пределах нашего горизонта. Удивительный вывод следует из этой картины мира: поскольку число вселенных-пузырей бесконечно и каждая из них неограниченно расширяется, в них будет содержаться бесконечное число областей размером с наш горизонт. У каждой такой области будет своя история. Под «историей» имеется в виду все, что случилось, вплоть до мельчайших событий, таких как столкновение двух атомов. Ключевой момент состоит в том, что число различных историй, которые могут иметь место, — конечно. Как это возможно? Например, я могу подвинуть свой стул на один сантиметр, на полсантиметра, на четверть и так далее: кажется, что уже здесь таится неограниченное число историй, поскольку я могу сдвинуть стул бесконечным числом разных способов на сколь угодно малое расстояние. Однако из-за квантовой неопределенности слишком близкие друг к другу истории принципиально невозможно различить. Таким образом, квантовая механика говорит нам, что число различных историй конечно. С момента Большого взрыва для наблюдаемой нами области оно составляет примерно 10, возведенное в степень 10150. Это невообразимо большое число, но важно подчеркнуть, что оно не бесконечно. Итак, ограниченное количество историй разворачивается в бесконечном числе областей. Неизбежен вывод, что каждая история повторяется бесконечное число раз. В частности, существует бесконечное число земель с такими же историями, как у нашей. Это значит, что десятки ваших дублей сейчас читают эту фразу. Должны существовать также области, истории которых в чем-то отличаются, реализуя все возможные вариации. Например, есть области, в которых изменена лишь кличка вашей собаки, а есть другие, где по Земле до сих пор ходят динозавры. Хотя, конечно, в большинстве областей нет ничего похожего на нашу Землю: ведь куда больше способов отличаться от нашего космоса, чем быть на него похожим. Эта картина может показаться несколько угнетающей, но ее очень трудно избежать, если признается теория инфляции. Но это необязательно должно быть так. Свойства нашего мира определяются набором чисел, называемых фундаментальными постоянными. Среди них Ньютонова гравитационная постоянная, массы элементарных частиц, их электрические заряды и тому подобное. Всего существует около 30 таких констант, и возникает вполне естественный вопрос: почему у них именно такие значения, которые есть? Долгое время физики мечтали, что однажды смогут вывести значения констант из некой фундаментальной теории.
Nature Physics: ученые получили доказательства распада ложного вакуума
В частности, именно поэтому некоторые люди боятся экспериментов на LHC — они считают, что эти эксперименты могут вызвать подобный переход. В действительности такие опасения не очень основательны, поскольку энергии, достигаемые на коллайдере малы — их недостаточно для появления пузырей истинного вакуума. Кроме того, при известных нам параметрах Стандартной модели время жизни ложного вакуума превышает текущий возраст Вселенной, то есть в рамках этой модели наш вакуум является метастабильным — то есть для нас он не отличается от истинного. Некоторые теоретики предсказывают, что в определенных ситуациях распад ложного вакуума может ускоряться. Например, вокруг черной дыры пространство-время сильно искривляется, и правила подсчета энергии ложного вакуума несколько изменяются, что должно увеличивать вероятность распада. При этом чем меньше черная дыра, тем проще вокруг нее образуются пузырьки и тем больше вероятность распада. С другой стороны, мы до сих пор продолжаем жить в ложном вакууме, что указывает либо на отсутствие таких черных дыр, либо на недостатки в наших теориях, либо на наше невероятное везение.
Надо лишь, чтобы полная энергия этого пузыря была отрицательной.
Вообще, оценки на основе размерностей работают тогда, когда в задаче не возникает безразмерного параметра. Но на помощь тут приходит дополнительный физический аргумент. Действительно, поверхностное натяжение возникает тут, потому что хиггсовское поле «переваливает через гору». Отсюда получаем, что критический размер пузыря по порядку величины равен Шаг 2. Теперь надо получить вероятность возникновения такого пузыря во Вселенной. Такой размер выбран не случайно: по соотношению неопределенности, на таком размере могут происходить квантовые флуктуации с энергиями порядка v. Иными словами, в таком объемчике хиггсовское поле легко скачет туда-сюда, и может, в частности, перевалить через потенциальную гору.
Ясно, что эта вероятность большая. В этом пузыре имеется маленьких объемчиков, и каждый из них перепрыгивает независимо с вероятностью p. Значит, вероятность того, что все они сразу перепрыгнут, равна причем численным коэффициентом q, который порядка единицы, мы тут пренебрегли. Теперь учтем размеры видимой части Вселенной, радиус которой обозначим через RU. Поэтому если ждать очень долго и смотреть на всю Вселенную в целом, то рано или поздно это где-то случится. В принципе, это уже и есть искомый ответ. Но тут полезно еще сказать вот что.
Послесловие Такого типа оценки — не в применении к хиггсовскому бозону, а в более широком контексте — были впервые даны советскими физиками Кобзаревым, Окунем и Волошиным в 1974 году. Три года спустя задача была решена Коулменом гораздо более строгим способом. Затем последовал ряд работ с еще более аккуратным анализом распада метастабильного вакуума, в котором, кстати, очень важными оказались гравитационные эффекты. Этот процесс, да и сама возможность использовать метастабильный вакуум, затем прочно вошли в космологию в качестве возможного сценария эволюции Вселенной на самых ее ранних стадиях. Интересно, что недавно в этой истории случился еще один зигзаг. Полтора года назад были высказаны подозрения , что метастабильные вакуумы вообще не могут существовать в нашем пространстве-времени, поскольку они распадаются вовсе не медленно, как считалось до сих пор, а наоборот — бесконечно быстро.
Переводчик может ошибиться. Скажите, где он ошибся и как надо перевести лучше. Не надо материть или угрожать человеку за ошибку. Это приведет к пермабану. Порой вы можете увидеть ссылку на взятый комикс или ватермарку.
Порой вы можете увидеть ссылку на взятый комикс или ватермарку. Чаще всего это делают те люди, которые рисуют и переводят комиксы постоянно и хотят отметить свою работу. Не ругайтесь, пожалуйста. Напоминаем, что за ложный вызов модератора полагается наказание. По возможности добавляйте ссылки на достоверный источник перевода и на оригинал комикса.
Как Вселенная разрушится от распада вакуума?
Таким будущим человечество не раз пугали ученые, в частности философ Ник Бостром, автор работы «Живете ли вы в компьютерной симуляции? Насколько опасен истинный вакуум для жизни на Земле — в материале «Ленты. Вакуум в квантовой теории поля отвечает состоянию системы с минимально возможной энергией. Все физические процессы в таком мире происходят с энергиями, превышающими это принимаемое за нулевое значение. Между тем не исключено, что Вселенная или ее наблюдаемая часть находится в метастабильном, или ложном, вакууме. Это означает, что существует еще более выгодное энергетическое положение, в которое может эволюционировать Вселенная — истинный вакуум.
Его отличие от истинного вакуума заключается в том, что в ложном вакууме энергия находится не на минимально возможном уровне, как в истинном, а на субминимальном.
При распаде ложного вакуума минимальный энергетический уровень в вакууме для нашей Вселенной снизится. Согласно большинству расчетов по этой теме, такой распад ложного вакуума будет означать мгновенное исчезновение барионной материи. Есть небольшое число моделей, при которых такой распад не уничтожает сразу всю обычную материю, но вот жизнь нашего типа при этом все равно будет, мягко говоря, маловероятна. Иными словами, это событие почти наверняка означало бы мгновенное уничтожение всех земных наблюдателей. Поэтому реальная регистрация подобного распада маловероятна: если он все же случится, регистрировать будет некому. К тому же это событие, если вообще возможно, очень маловероятно.
Ожидаемое минимальное время до него — десять миллиардов триллионов триллионов триллионов триллионов лет 10 в 58-й степени.
В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Физики впервые наблюдали, как эти пузырьки образуются в квантовой системе, представляющей собой переохлажденный газ, состоящий из изотопов натрия-23 и обладающим свойством сверхтекучей жидкости, при температуре менее одного микрокельвина. Ложный и истинный вакуум в эксперименте представляли собой локальный и глобальный минимумы энергии ферромагнитного атомного конденсата Бозе-Эйнштейна. Результаты наблюдений согласовывались с численными моделями, которые подтверждают квантово-механическую природу распада, что делает атомные сверхтекучие жидкости идеальной платформой для исследования явлений неравновесного квантового поля.
Согласно квантовой теории поля, ложным вакуумом называют состояние с малым значением энергии, которое является относительно стабильным метастабильным , но может переходить в состояние с минимальной возможной энергией, называемое истинным вакуумом. Переход между ложным вакуумом и истинным затруднен из-за высокого энергетического барьера, однако может происходить квантовомеханическое туннелирование из одного состояния в другое. В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Материалы по теме: Игрушка дьяволаНовая частица из коллайдера грозит уничтожить всю физику2 ноября 2018 На Большом адронном коллайдере открыли новую форму материи.
5 сценариев смерти Вселенной
Если это ложный вакуум, то его самопроизвольный распад произойдет намного позже естественной смерти Солнца. Уже примерно неделю замечаю в СМИ новости про физиков, которые «увидели распад ложного вакуума». На канале Kurzgesagt видеосервиса Youtube появилась запись, на которой продемонстрировано разрушение Вселенной в результате распада ложного вакуума внутри неё. Речь идет о потенциальном процессе, известном как распад ложного вакуума. Примечательно, что видео показывает как может погибнуть мир в результате распада ложного вакуума. Ученые наглядно показали, как распад ложного вакуума может уничтожить Вселенную.
Ученые предрекли гибель Вселенной и в доказательство представили видеоролик
Результаты экспериментов соответствовали численным моделям и подтверждали, что распад ложного вакуума имеет квантово-механическую природу. Открытие исследователей: проблема ложного вакуума доказана на практике Международная группа ученых достигла прорыва в изучении распада ложного вакуума, что было подтверждено экспериментально. Аннотация: На примере распада метастабильного состояния скалярного поля (конформный вакуум скалярных частиц над ложным классическим вакуумом).