Запчасти для электронных устройств. Подсветка для ТВ. Если вы планируете создать динамическую фоновую подсветку телевизора, то в случае с нашим комплектом, как и с любым другим (кроме штатной подсветки Ambilight от Phillips), вам потребуется компьютер, либо Smart TV приставка.
Смарт-подсветка для любого телевизора (14 фото + видео)
Технология подсветки LED в современных телевизорах, в чем преимущества и недостатки led экранов. Nanoleaf представила 4D-подсветку для телевизора в стиле Ambilight. Стартап Nanoleaf, известный своими световыми панелями, выпустил новый комплект из специальной камеры и светодиодных лент для телевизоров. Телевизоры же с Direct расположением диодов дают более равномерную подсветку, но увеличивают толщину экрана и энергопотребление за счет увеличения количества диодов. Nanoleaf представила 4D-подсветку для телевизора в стиле Ambilight. Стартап Nanoleaf, известный своими световыми панелями, выпустил новый комплект из специальной камеры и светодиодных лент для телевизоров. Наиболее распространённым типом после ЖК-телевизоров 4К с боковой подсветкой идут модели со светодиодной подсветкой Direct-LED.
Что такое LED-телевизоры и в чем их преимущество для телезрителя
Технология Direct LED применяется исключительно в дешевых моделях. В телевизорах с подсветкой этого типа существенно увеличилось число светодиодов. Поэтому подобную подсветку уже нельзя назвать прямой. Она является полноматричной. Благодаря этому, FALD может использоваться и на флагманских телевизорах. Если рассматривать основные преимущества такой подсветки, то стоит отметить: отсутствие засветов по краям телевизора; высокий уровень яркости и контрастности; равномерность. Она также известен под названием LIT. В недорогих моделях LED-лента может находиться с двух боковых или одной верхней или нижней стороны. Минусом этой подсветки считается чрезмерное распространение свечения. На черном экране подсветка заметна по краям с высокой плотностью светодиодов.
Напомню: ключевым моментом репортажа был рассказ о запуске производственных линий по выпуску наиболее современных и наиболее актуальных на сегодняшний день плоскопанельных телевизоров Samsung со светодиодной подсветкой — так называемых LED TV. С тех пор на редакционную почту не раз приходили письма, в которых наши читатели просят подробнее рассказать о технологии LED TV. Основные вопросы лежат в плоскости технических подробностей технологии, её преимуществах перед конкурирующими предложениями и так далее. Но почти всегда речь идёт о ценовом факторе: действительно ли стоит отдавать за LED TV сумму, порой более чем в два раза превышающую стоимость ЖК и плазменных телевизоров с аналогичными диагоналями и разрешением экрана, будет ли реальная отдача от таких затрат. Что характерно, по прошествии времени актуальность задаваемых вопросов не снижается. Плоскопанельные ТВ входят в моду, постоянно расширяется их ассортимент. За примером далеко ходить не надо: в планах Калужского завода Samsung Electronics выпуск до конца года порядка 75 тысяч телевизоров всех трёх LED TV серий - 6000, 7000 и 8000, с диагоналями 32, 37, 40, 46 и 55 дюймов и с особым упором на наиболее "ходовые" 32- и 40-дюймовые модели. Уже сейчас эти модели присутствуют на прилавках большинства российских розничных сетей, наряду с этим растёт выбор "светодиодных" моделей телевизоров от других компаний, так что рост интереса к этой технологии вполне понятен. Словом, сегодня мы публикуем краткий обзор особенностей технологии производства плоскопанельных дисплеев со светодиодной подсветкой. Для начала стоит определиться с терминологией, устоявшейся к настоящему времени. Термин LED TV, впервые введённый в обиход Samsung Electronics и используемый рядом компаний, и разные вариации этого термина вроде LED-backlit LCD, используемые другими компаниями, на практике означает что речь идёт о старом добром плоскопанельном ЖК экране, но оснащённом более современной и качественной подсветкой — светодиодной. Иными словами, говорить о том что LED TV — это именно телевизор со светодиодным экраном с технической точки зрения было бы не совсем корректно. Настоящий светодиодный экран — где каждый пиксель отображается с помощью одного светодиода или группы светодиодов, можно встретить, например, на огромных рекламных щитах, глядя на которые издалека мы видим цельную картинку, а не отдельные светодиоды. Другой пример — дисплеи на органических светодиодах Organic Light-Emitting Diode, OLED , где определённые виды органических полимерных материалов излучают свет при воздействии электрического тока. Технология OLED действительно перспективна как основа для выпуска высококачественных дисплеев для телевизоров и мониторов — такие дисплеи легче, не требуют подсветки, обладают более качественной цветопередачей, большим диапазоном яркости, меньшим расходом энергии, в некоторых версиях даже гибкостью. Более того, по мере совершенствования технологии ожидается, что со временем производство OLED-дисплеев станет даже выгоднее выпуска ЖК экранов. Однако в силу ряда технологических ограничений - например, срока жизни синих полимерных люминофоров, который заметно короче чем у красных и зелёных органических светодиодов, в настоящее время технология OLED применяется главным образом в производстве экранов с небольшой диагональю для различных мобильных устройств. Серийно выпускаемые OLED телевизоры в настоящее время обладают небольшой диагональю, скорее, это редкая экзотика с огромной ценой нежели массовый продукт. Хотя, повторюсь, перспективы у технологии многообещающие. Однако в обиходе "с лёгкой руки" Samsung всё же прижился более короткий и, видимо, более удобный в маркетинговом плане вариант - LED TV. До недавнего времени мы пользовались жидкокристаллическими телевизорами и мониторами, в большинстве своём оснащёнными традиционной подсветкой на основе так называемых флуоресцентных люминесцентных ламп с холодным катодом Cold Cathode Fluorescent Lamps, CCFL , проще говоря, ламп дневного света. Производство экранов по технологии CCFL LCD "обкатано" на множестве поколений таких приборов и в настоящее время сравнительно недорого, а удобства по сравнению с предыдущим поколением дисплеев на электронно-лучевых трубках, главным образом такие как меньший вес и меньшее энергопотребление, привели к повсеместному хотя и не окончательному вытеснению последних из повседневного обихода.
OLED Это самая современная технология, используемая производителями телевизоров для формирования картинки. Благодаря органическим светодиодам изображение получается с помощью диодов. Под влиянием электротока они светятся и самоизлучаются. Каждая ячейка в этой технологии — самостоятельный световой источник. Экран не нуждается в подсветке. Это главное отличие от LED. Телевизоры OLED используют свечение органических светодиодов в каждом из 8. Поэтому здесь прекрасный уровень света и затемнения. Мало того, вплоть до 1 пикселя можно отключать свет! Например, компания LG выпустила модель G6 с разрешением 4К, экран которой обладает толщиной всего 2. Угол обзора в OLED экранах доведён до совершенства.
Стоит ли покупать телевизоры с технологией QLED Для того, чтобы определиться с вопросом приобретения телевизоров с QLED-матрицей, стоит подумать, кому и какие телевизоры могут оказаться полезными, и почему стоит выбирать именно такие модели. Попробуем разобраться в этом вопросе. Хотя бы потому, что они дешевле и не подвержены выгоранию при длительном использовании. На OLED-панелях слишком большое расстояние между светодиодами. Поэтому любители поиграть с помощью консолей в непосредственной близости от телевизора смогут рассмотреть пиксельную сетку. Некоторым это не особенно нравится, поэтому им больше подойдут QLED-панели, лишенные подобного недостатка в силу своей конструкции. Это вариант для тех, кто хочет получить действительно качественный продукт. Смотреть Отзывы пользователей о технологии QLED Пользователи отмечают, что картинка у них очень качественная — отдельные пиксели невозможно рассмотреть, даже если приблизиться к экрану вплотную. Также отмечается отличная насыщенность цветов по сравнению с LED-панелями и гораздо более высокая яркость — даже под прямыми солнечными лучами изображение остается хорошо различимым.
Подсветка для TV своими руками
А в QLED используется светодиодная подсветка, от которой идет свечение и на незажженные пиксели. Отсюда разница в черном. Большие габариты телевизоров Из-за многослойной конструкции экрана QLED-телевизоры несколько толще и тяжелее OLED-моделей, ведь у последних нет слоя со светодиодами и прочих слоев — в них только панель с органическими светодиодами, поляризационный слой и стекло. Стоит ли покупать телевизоры с технологией QLED Для того, чтобы определиться с вопросом приобретения телевизоров с QLED-матрицей, стоит подумать, кому и какие телевизоры могут оказаться полезными, и почему стоит выбирать именно такие модели. Попробуем разобраться в этом вопросе. Хотя бы потому, что они дешевле и не подвержены выгоранию при длительном использовании. На OLED-панелях слишком большое расстояние между светодиодами. Поэтому любители поиграть с помощью консолей в непосредственной близости от телевизора смогут рассмотреть пиксельную сетку. Некоторым это не особенно нравится, поэтому им больше подойдут QLED-панели, лишенные подобного недостатка в силу своей конструкции.
Более того, новинка совместима с Apple HomeKit, что позволяет интегрировать её в существующую систему умного дома. Дорогущий Google Pixel Fold удался — это лучший гибкий камерофон в мире Windows 11 скоро станет полностью облачной системой Представлена экшн-камера Insta360 Go 3 с беспородным дисплеем Источник: MacRumors.
Распрямление скрученных кристаллов тяжело контролировать точно, поэтому матрицы TN, зачастую, имеют 6-битный цвет, а 8 бит достигается путём той самой ШИМ — кристалл «дрожит» между двумя положениями, и достигается промежуточная яркость. Интересно, когда доберутся до 1 КГц.
Впрочем, одна из возможных реализаций дисплеев светового поля потребует частоты обновления экрана в десятки МГц Когда говорят «TFT дисплей», зачастую, подразумевают именно TN-кристаллы. Напомню: TFT — это не тип дисплея, и не вид ЖК, а способ управления пикселями, он есть в любых дисплеях, даже в светодиодных. Чтобы хоть как-то улучшить углы обзора TN, на них стали наносить специальную плёнку. Её так и называют — film. Кроме того, при увеличении разрешения углы обзора TN матриц улучшаются, поэтому в современных дисплеях дела с углами обзора обстоят не так плохо, как раньше.
Кристаллы не скручиваются, а просто поворачиваются в плоскости экрана. Их положение можно очень точно регулировать, поэтому экраны с IPS-кристаллами имеют очень хорошие, точные и сочные цвета с 8-ми или даже 10-битной градацией. К недостаткам можно отнести медлительность и проблемы с чёрным цветом. Первые матрицы имели время отклика порядка 50 мс. Сейчас самые быстрые умеют переключаться за 5 мс — по современным меркам это не предел мечтаний, но неплохо.
IPS в закрытом положении плохо блокирует свет, поэтому такие дисплеи вместо чёрного показывают серо-сине-фиолетовое марево. IPS дисплей может выручить подсветка с локальным затемнением, выключающая свет в областях, где он не нужен — тогда проблемы чёрного остаются только в виде ореолов вокруг ярких объектов. Samsung выпускает свою, немного улучшенную версию IPS, и называет её PLS — расстояние между субпикселями чуть меньше, сами они чуть больше, поэтому такой дисплей чуть ярче, чем IPS, и плотность пикселей у него может быть выше. Это вещество немного сдвигает спектр в правильную сторону, благодаря чему цвета и улучшаются легче «пролезают» через светофильтры. Эти кристаллы тоже поворачиваются, только не в плоскости экрана, а перпендикулярно ему.
Изначально кристаллы находятся в плоскости экрана вертикально. При подаче напряжения они поворачиваются перпендикулярно экрану, то есть как-бы смотрят торцом на наблюдателя. Долгое время VA означало, что у экрана средняя хуже, чем у TN, но лучше IPS скорость, средний уровень цветопередачи, отличный уровень чёрного и отличный контраст. Потом VA развилась, победили проблему углов обзора, научились добиваться высокой точности цветопередачи — у субпикселей появились субсубпиксели , выключая и включая их можно достичь большего числа промежуточных состояний — а это повышает точность цвета. Сейчас это одни из самых распространённых типов матриц и в мониторах и телевизорах.
Как покрасить свет? ЖК у нас или светодиодный телевизор — свет получен и дозирован. Теперь надо его покрасить. Красящие светофильтры Элементарно — это цветные стёкла. Если стараться не погружаться в толщу физики, смысл такой: белая подсветка — это смесь всех возможных цветов.
Светофильтр может пропустить какой-то один цвет из этого света, а все остальные нет. При этом, всё, что не пропущено, не исчезает, а трансформируется в тепло. Закон сохранения энергии никто не отменял. У светофильтров может быть не только разный цвет, но и разная плотность Например, если мы светим белым светом сквозь красное стекло, то из белого цвета стекло пропустит красный, а зелёный и синий цвет превратит в тепло. В результате получаем два недостатка: плохая энергоэффективность и низкая яркость — мы тут большую часть света просто гасим.
Если мы хотим сделать цвета точнее и насыщеннее, нам нужно сильнее фильтровать свет — для этого фильтр должен быть плотнее. Так мы сильнее погасим ненужные нам цвета, и оставим только то, что нужно. Но это влечёт за собой большую потерю яркости. Если хотим сделать такой дисплей ярче, мы должны светить белым светом ярче, чтобы после светофильтра больше оставалось. От этого больше кушаем энергии, светофильтр больше греется и греет остальные куски дисплея и т.
Либо энергоэффективность и яркость, либо неплохие цвета. Древнющее, дешёвое, прожорливое, очевидное и сердитое решение. Встречается как в ЖК, так и в светодиодных телевизорах. Красящие квантовые точки Свет — это электромагнитные волны. Оранжевый свет имеет частоту около 480 000 ГГц Квантовые точки — это особое вещество, каждая частица которого работает как антенна для электромагнитных волн.
Частица-точка устроена так, что может поймать волны с одной частотой, преобразовать их в волны с другой частотой, и излучить обратно. В зависимости от размера частицы, она будет излучать ту или иную частоту. И происходит это всё в видимом спектре — то есть с теми электромагнитными волнами, которые наши органы чувств умеют ловить, а наш мозг интерпретирует сигналы от этих органов чувств как цвет. На этих наномасштабах уже сильно заметно, что электромагнитная энергия не непрерывна — она квантуется на фотоны. Поймал один фотон с частотой побольше — излучил два с частотой поменьше, ну и всё в таком духе.
Из-за существенного влияния квантовых эффектов, эти частицы порошка называются квантовыми точками. У квантовой точки антенной выступает сам шарик, торчащие палочки-молекулы нужны, чтобы это дело не распалось В дисплеях на квантовых точках свет, который пихают в точки, обычно либо синий, либо фиолетовый. Тут важно правило — мы можем только уменьшить частоту, увеличить не получится. Поэтому, мы можем из фиолетового сделать синий, зелёный и красный, из синего — только зелёный и красный. А из зелёного синий уже сделать не получится.
В итоге, в отличие от светофильтров, утилизирующих большую часть света в тепло, мы тут всю световую энергию окрашиваем в тот свет, что нам нужно. Мы не греемся, мы энергоэффективны, мы очень яркие. Всё хорошо и замечательно. Таким образом, в настоящее время квантовые точки — это просто технология окрашивания света, а не тип дисплея. Теоретически, квантовым точкам можно посылать энергию напрямую электричеством — если в неё передать электрон, она вполне может излучить фотон.
Такой дисплей был бы восхитительным — не ЖК, не светодиоды, а новый способ эмиссии света. Но пока так не умеют. Комбинация светофильтров и квантовых точек Этот способ получения цвета встречается в некоторых ЖК-телевизорах. Смысл тут такой: у ЖК телевизора стоит синяя подсветка, на неё сверху ставят слой из смеси квантовых точек — красных, зелёных и синих. Получается белая подсветка, но с очень хорошим спектром, идеально подходящим для фильтрации светофильтрами.
То есть квантовые точки тут не в роли красящего слоя, а как дополнительный обвес подсветки, чтобы её свет лучше переваривался светофильтрами. А дальше всё по накатанной — жидкие кристаллы фильтруют свет, светофильтры красят. Но, поскольку белый свет тут у нас с чётко выверенным спектром, у светофильтров получается делать свою работу гораздо лучше. А зачем вообще красить? Светодиоды, вообще-то, могут быть цветными, безо всяких светофильтров и квантовых точек.
В OLED дисплеях изначально так и было, но технология не прижилась. На данный момент прерогатива без окрашивания есть только у MicroLED дисплеев. Тут у нас сами микросветодиоды генерируют нужную длину волны, ничего не надо красить, всё хорошо. Зрение В плане здоровья телевизор может нагадить следующими способами: Использовать ШИМ для регулировки яркости и просто потому что может — ищите телевизоры без ШИМ Быть настроенными на слишком большую яркость, и, как любой яркий объект, сильно перегружать глаза Иметь большой контраст между яркостью экрана и яркостью окружения. Смотреть экран в абсолютной темноте — не круто Быть слишком близко — глаза устают от постоянного просмотра объектов вблизи Не напоминать о том, что надо моргать Съесть деньги и не оставить их на доктора Иметь плохой спектр Как от плохого спектра устают глаза На всякий случай, повторю дисклеймер: я не претендую на экспертизу в данной области, а лишь изложу свою поверхностную гипотезу по этому вопросу простыми словами, и буду рад дополнениям, уточнениям и критике со стороны людей, разбирающихся в теме.
На данный момент у меня нет возможностями подтвердить или опровергнуть её, и всё это — лишь мои домыслы, которыми я посчитал нужным поделиться. Одним словом, предлагаю эту тему к обсуждению. Организм, руководствуясь сугубо показаниями нервной системы может неадекватно регулировать физиологические процессы глаза, если светить в него нестандартным спектром — отсюда дискомфорт. Видимый свет — это электромагнитные волны. Амплитуда, частота, фаза и длина волны — вот это всё.
Фазу трогать не будем, у нас тут пока не голографические дисплеи. Частота у света очень высокая. В остальном всё так же, как и у других электромагнитных волн. Теперь важное: в реальности цвета радуги не являются смесью каких-то готовых, как мы привыкли. Не состоят они из трёх каких-то там базовых цветов.
Все цвета радуги вполне себе самостоятельные. Каждому цвету соответствует своя длина волны. Жёлтый, фиолетовый, бирюзовый, оранжевый — это не смеси цветов, а самостоятельные цвета со своей длиной волны. Представление о цвете, как о смеси трёх цветов — это именно представление, модель, которую придумали люди, чтобы было проще. А вот белый свет — коктейль всех возможных длин волн, всех-всех цветов.
Не только красного, зелёного и синего, а вообще всей радуги целиком. Смесь эта неравномерная — амплитуда волн одной длины в нем больше, а другой — слабее. У волн каждой частоты своя концентрация, так сказать. Если каждой длине волны померить её амплитуду, то можно нарисовать график — как высока концентрация волн с разными длинами волн в нашем коктейле. Это называется спектром.
Спектр — ключевая штука в вопросах естественности картинки Как же мы видим всё это? У нас в «пикселях» глаз не супернаучные измерительные спектрографы, видящие весь спектр, а кое-что попроще. В глазах стоят четыре вида «сенсоров» для четырёх определённых частот электромагнитных волн. Первый вид — это палочки, наше сознание интерпретирует сигналы от них, как яркость. Три других — колбочки.
Наше сознание интерпретирует сигналы с них как цвета: красный, зелёный и синий — именно из-за этого мы воспринимаем цвет как смесь трёх цветов. Вот только ловят эти сенсоры не строго определённые длины волн, а целые диапазоны, причем каждый сенсор в своем диапазоне по-разному чувствителен к разным длинам волн. К примеру, зелёный сенсор ловит хорошо 534 нм. Но и 500 нм он тоже обнаружит, только хуже. Обнаруженная яркость будет меньше.
Сенсор яркости палочка лучше всего ловит 498 нм — это очень близко к зелёному, и поэтому зелёный цвет кажется нам самым ярким. Как мы видим разные цвета? Например, жёлтый? Жёлтый — это 570 нм. Значит, думай, что это жёлтый».
Хотя, в реальности, это может быть и не жёлтый, а обманка в виде того самого зелёного и красного, которую излучил дисплей. Да, ваш дисплей если это не Sharp особой серии настоящий жёлтый цвет показать не сможет, всё это обман. Некоторые живые существа, кстати, вполне могут это заметить. Здесь должна быть маленькая формула с интегралом, но, к несчастью для интегралов, они очень пугают большинство людей. Объясню словами.
Сенсор не детектирует какую-то одну длину волны, а суммирует амплитуды яркость всех обнаруженных длинн волн. Но не просто суммирует. Перед этим суммированием всего-всего, он домножает яркость каждой длины волны на свою сенсора способность видеть эту длину волны, то есть свою чувствительность к этой длине волны. Пример с зелёным сенсором. Посветим на него одновременно несколькими длинами волн: 450 нм, 500 нм, 550 нм и 600 нм.
Каждая волна будет иметь условную яркость в 1 единицу. Посмотрите на график, и увидите, какая у него чувствительность к этим длинам волн. Как он будет действовать? Яркость волны длиной 450 нм, равную 1 он умножит на 0,1 Яркость волны длиной 500 нм, равную 1, он умножит на 0,4 Яркость волны длиной 550 нм, равную 1, он умножит на 1,2 Яркость волны длиной 600 нм, равную 1, он умножит на 0,4 А потом всё это сложит. Получится 2,1.
И он отправит значение 2,1 в зрительный нерв на самом деле не сразу, в сетчатке есть своя мини-нервная система, выполняющая предварительную обработку информации, но это не важно. Пример двух спектров, которые на химическом и физическом уровне абсолютно разные, но для сенсора — то же самое Теперь убираем все эти четыре длины волны, и, вместо этого, светим одной в 525 нм и яркостью 2,1. Сенсор снова сделает это умножение-сложение, и у него снова получится 2,1. То же самое. Поэтому, с информационной точки зрения, для сенсора два этих воздействия — абсолютно одно и то же.
Сенсор выдаёт только интенсивность, просто циферку — и мозг, как-бы, будет видеть одно и то же. Только вот сенсор живой и электрохимический. Он требует обслуживания, заботы и управления, надо подкачивать разные нужные вещества и калибровать всякие биологические штуки. Кислород с витаминками, и всё такое. Не одно и то же всё время, а по ситуации: от воздействия света разной интенсивности и длины волны в палочках и колбочках возникают разные фотохимические реакции, и баланс веществ в них постоянно меняется.
Чтобы грамотно рассчитать калибровку нервных окончаний и дозу веществ и витаминок в нужный момент времени, организм должен понять, какое на этот сенсор идет воздействие со стороны внешней среды, и на основе этого сделать нужные организменные штуки с этим сенсором. Адаптировать его к ситуации. А какое воздействие на глаз может быть со стороны внешней среды? Если не брать во внимание нештатные сценарии шлицевая отвёртка , то это могут быть только электромагнитные волны разной частоты длины волны. Очень условный гипотетический!
Организм начеку — как только эта длина волны появилась, надо усилить подкачку новых молекул этого витамина, чтобы концентрация не снижалась. Но сенсор даёт очень скудную информацию — лишь одно число, и по нему непонятно, что там происходит. Вдруг там 458 нм, или 461 нм?
Такой термин как LED TV был введен корпорацией Samsung в 2007 году для продвижения собственной линейки жидкокристаллических телевизоров, подсветка в которых осуществлялась не лампами, а светодиодами. Хотите знать больше? При прямой Direct LED или задней подсветке, светодиоды расположены по всей площади матрицы, равномерно освещая её через рассеиватель: Толщина LED телевизора уменьшается, но не на много, по сравнению с LCD TV, в которых применена ламповая подсветка. Вот как выглядит матрица с яркими белыми светодиодами: Торцевая или боковая подсветка Edge LED имеет свои плюсы и минусы.
Динамическая подсветка для любого телевизора
Подсветка ЖК ТВ - Купить в Москве, цены от 220.00 руб. в интернет-магазине ICLED | Расскажем о динамической Led подсветке Ambilight для телевизора, а также о том, как реализовать такую подсветку с помощью светодиодной ленты. |
Что такое Ambilight и почему, попробовав однажды, вы не захотите телевизор без этой подсветки | Решив купить качественную светодиодную ленту, вы можете существенно сократить расходы на электроэнергию, получив необходимое освещение. |
какая подсветка в телевизорах лучше и долговечней | Наиболее распространённым типом после ЖК-телевизоров 4К с боковой подсветкой идут модели со светодиодной подсветкой Direct-LED. |
Что такое LED-телевизоры и в чем их преимущество для телезрителя
Сравнительный тест 6 жидкокристаллических телевизоров со светодиодной подсветкой | Мы выявили неисправность светодиодной подсветки и определили Какие светодиоды в телевизоре их тип и характеристики. |
OLED, LED, QLED. Сравниваем и анализируем: что лучше? | Запчасти для электронных устройств. Подсветка для ТВ. |
Подсветка от LED телевизоров. Кто и как использует? | Форум по ремонту Monitor | Светодиодная подсветка с прямой подсветкой использует светодиодную подсветку на задней панели телевизора, непосредственно за ЖК-панелью, обеспечивая довольно равномерное распределение света по экрану. |
Подсветка Ambilight для телевизора LG : Аксессуары и внешние устройства | Если у Вас когда-либо был современный телевизор от Philips, то Вы наверняка сталкивались с технологией фоновой подсветки Ambilight. |
Подсветка Ambilight для телевизора LG : Аксессуары и внешние устройства | В наличии более 300 моделей светодиодных подсветок для телевизоров всех известных производителей, таких как lg, самсунг, филипс и т.д. |
Типы подсветки LED телевизоров — какая лучше Edge или Direct
Много приходит крупноформатных телевизоров с LED подсветкой и с дефектной матрицей, от таких телевизоров клиенты отказываются. предлагает светодиодная лента для подсветки телевизора, 42399 видов. Все светодиодные ленты в категории. Хотите приобрести экологичную, энергосберегающую и высококачественную светодиодную подсветку телевизора от профессиональных производителей? Если вдруг на ТВ пропало изображение, а звук остался – то скорее всего сгорела светодиодная подсветка.
Edge LED против Direct LED – какая светодиодная подсветка лучше для ЖК-экрана
Подскажите пожалуйста как переделать подсветку ЖК телевизора с LED подсветкой на светодиодную ленту? После приобретения телевизора с большей диагональю и погружения в геймерство это стало ещё более актуально, ведь светодиодная подсветка не только создаёт идеальную атмосферу для просмотра фильмов. Светодиодная подсветка (LED-подсветка) используется во многих (в последнее время в подавляющем количестве) устройствах с ЖК-экранами (телевизоры, мониторы, мобильные устройства и пр.).