Термин «кубит» (QuBit — «квантовый бит») был введен физиком Стивеном Визнером в его статье «Сопряженное кодирование» (Conjugate Coding), опубликованной в 1983 году в SIGACT News. Увеличивается количество используемых кубитов, модернизируются системы поддержания кубитной когерентности, ведутся поиски оптимальной технологии изготовления многокубитных архитектур.
Эксперт рассказал, из чего состоит квантовый компьютер, что такое кубиты и для чего они нужны
Поисковые системы интернета переполнены запросами: «наука и технологии новости», «квантовый компьютер новости», «что такое кубит, суперпозиция кубитов?», «что такое квантовый параллелизм?». Новый квантовый компьютер достигает когерентности кубита на заряде электрона в 0,1 миллисекунды. Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе. Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе.
Физик Алексей Устинов о российских кубитах и перспективах их использования
Если выразиться максимально простым языком, кубит похож на магический шар. Если этому шару задать вопрос, то ответом может быть единица или ноль. Но выпадут они с разной вероятностью. Именно вероятности выпадения значений «хранятся» в суперпозиции. Рука об руку с принципом суперпозиции работает эффект квантовой зацепленности. Две взаимосвязанные квантовые частицы синхронно изменяют свое состояние, даже если между ними миллионы световых лет. Зацепленность дает возможность собирать кубиты в «наборы». Если в наборе из двух бит можно хранить одну определенную последовательность из двух значений нулей или единиц , то набор из двух кубитов содержит суперпозицию всех возможных вариантов последовательностей из двух этих значений. А это намного больший объем информации.
Как устроен квантовый компьютер: принцип работы После появления понятия квантового компьютера десятки ученых всего мира пытались создать его физическое воплощение. Главный вопрос: что может использоваться в качестве кубита? В 1994 году европейские физики Петер Цоллер и Хуан Игнасио Сирак описали схему использования специальной ионной ловушки как основы для квантового компьютера. Именно в этот момент стало ясно, что научная теория и практика встретились лицом к лицу. Физические «воплощения» кубитов — это не только ионы. В этих целях ученые пытались и пытаются использовать электроны, ядра атомов, фотоны, сверхпроводящие материалы и даже искусственные наноалмазы. Совсем недавно был разработан оптический квантовый микрочип, на основе которого теоретически может быть создан оптический компьютер, использующий манипуляцию с квантовыми состояниями света. Две основные проблемы, которые пытаются решить конкурирующие исследовательские группы: срок жизни кубитов и их количество в системе.
Вывести квантовую систему из состояния суперпозиции очень легко. Это под силу даже единственному фотону, столкнувшемуся с кубитом. Именно поэтому вопрос, можно ли назвать мозг квантовым компьютером, редко поднимался учеными — сложно вообразить себе квантовые вычисления в биологической среде. Кубиты, даже находящиеся в специально созданных условиях вакуум, охлаждение до сверхнизких температур , разрушаются за доли секунды. Присутствие рядом других кубитов дополнительно сокращает этот срок. А теперь представьте, что вам необходима работающая структура из десятков, а то и сотен таких капризных частиц. Нетривиальная задача, не правда ли? Отдельная тема — программирование на квантовом компьютере.
Программист в данном случае имеет дело с гибридным устройством. Квантовый компьютер состоит из элементов обычного и квантового типа — чтобы была возможность вводить данные и интерпретировать результаты.
Компьютер использовался в Оксфордском университете, в исследовательском центре IBM и Калифорнийским университетом в Беркли вместе с сотрудниками из Стэнфордского университета и Массачусетского технологического института. В 2018 году IBM предложила сторонним компаниям использовать ее 20-кубитный квантовый компьютер через облако. Google представила 53-кубитный компьютер Sycamore и заявила о достижении квантового превосходства. Квантовое превосходство подразумевает способность квантовых вычислительных устройств решать те проблемы, которые не могут решить классические компьютеры. По заявлению компании, Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз.
Самому мощному суперкомпьютеру Summit для той же задачи понадобилось бы около 10 тыс. Компания утверждала, что Summit справится с задачей для Sycamore в худшем случае за 2,5 дня, но полученный ответ будет точнее, чем у квантового компьютера. Это позволил предположить теоретический анализ. В России квантовые технологии также привлекают внимание исследователей. Так, в 2010 году для проведения исследовательских работ в этой области был организован Российский квантовый центр. В 2019 году была разработана сначала единая дорожная карта, а после — дорожная карта на каждое отдельное направление: квантовые вычисления, квантовые коммуникации и квантовые сенсоры. Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», говорит, что создание квантовых процессоров стало одной из основных задач дорожной карты, утвержденной в июле 2020 года.
По его словам, работа ведется в нескольких плоскостях: развитии фундаментальной науки и первых прикладных внедрениях квантовых продуктов. Россия стала одним из 17 технологически развитых государств с официально утвержденной квантовой стратегией. Индустрия 4. На реализацию дорожной карты предусмотрено финансирование в размере 23,7 млрд рублей. Как работает квантовый компьютер Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность. В суперпозиции квантовые частицы представляют собой комбинацию всех возможных состояний, пока не произойдет их наблюдение и измерение. Запутанные кубиты образуют единую систему и влияют друг на друга.
Кубит представляет собой систему, которая находится в контролируемом состоянии суперпозиции двух стационарных состояний — 0 и 1. Это значит, что, в отличие от классических битов, которые могут находиться в состоянии или 0, или 1, кубиты могут быть в состоянии 0 и 1 одновременно. Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними.
Потенциально эти свойства позволяют реализовывать параллельные вычисления и эффективнее классических систем работать с большими объемами информации. Но режим квантового превосходства пока не был достигнут никем — такое устройство могло бы обогнать классические компьютеры в решении большинства задач. Для достижения превосходства требуется машина с 50—60 кубитами и, что важно, достаточно малой декогеренцией, то есть в состоянии, при котором ничто извне не будет мешать кубитам находиться в квантовой запутанности между собой.
Нагрев простой световой нити, такой как в детской игрушке, может легко выпустить безграничный запас электронов. Одним из важных качеств кубитов является их способность оставаться в состоянии 0 или 1 одновременно в течение длительного времени, что известно как «время когерентности». Это время ограничено, и этот предел определяется тем, как кубиты взаимодействуют с окружающей средой. Дефекты в системе кубитов могут значительно сократить время когерентности. По этой причине команда исследователей решила поймать электрон на сверхчистой твердой поверхности неона в вакууме. Неон является одним из шести инертных элементов, то есть он не вступает в реакцию с другими элементами. Используя сверхпроводящий резонатор размером с микросхему — как миниатюрную микроволновую печь — команда смогла манипулировать захваченными электронами, позволяя им считывать и сохранять информацию с кубита, что делает его полезным для использования в будущих квантовых компьютерах. В предыдущих исследованиях в качестве среды для удержания электронов использовался жидкий гелий.
Что такое кубит?
Суммарная жизнь нашей вселенной: 14 миллиардов лет или 14 на 10 в 9 степени. Даже если мы объединим все компьютеры в мире ради решения, казалось бы, такой простой задачки как рассадка 100 человек по 2 автобусам — мы получим решение, практически никогда! И что же? Выхода нет?
Есть, ведь квантовые компьютеры будут способны решить эту задачку за секунды! И уж поверьте — использоваться они будут совсем не для рассадки 100 человек по 2 автобусам! Глава 2.
Биты и Кубиты Давайте разберемся, в чем же принципиальная разница. Мы знаем, что классический процессор состоит из транзисторов и они могут пропускать или не пропускать ток, то есть быть в состоянии 1 или 0 — это и есть БИТ информации. Кстати, рекомендую посмотреть наше видео о том как работают процессоры.
Вернемся к нашему примеру с двумя такси и тремя людьми. Каждый человек может быть либо в одной, либо в другой машине — 1 или 0. Вот все состояния: Для решения процессору надо пройти через абсолютно все варианты один за одним и выбрать те, которые подходят под заданные условия.
В квантовых компьютерах используются тоже биты, только квантовые и они принципиально отличаются от обычных транзисторов. Они так и называются Quantum Bits, или Кубиты. Что же такое кубиты?
Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. Их главное свойство — они способны находиться одновременно в 2 состояниях, то есть в особом состоянии — суперпозиции. Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0.
Суперпозиция — это нечто потрясающее. Считайте что кубиты — это одновременно открытая и закрытая дверь, или горящая и не горящая лампочка…. В нашем случае они одновременно 1 и 0!
Но квантовая механика говорит нам, что квантовый объект, то есть кубит, находится в суперпозиции, пока ты его не измеришь. Помните монетку — это идеальный пример суперпозиции — пока она в воздухе она одновременно и орел, и решка, но как только я ее поймал — все: либо орел, либо решка! Состояние определилось.
Надо понять, что эти кубиты и их поведение выбираются совсем не случайно — эти квантовые системы очень строго определены и их поведение известно. Они подчиняются законам квантовой механики! Квантовый компьютер внутри Говоря о самом устройстве, если мы привыкли к полупроводникам и кремнию в обычных процессорах, то в случае квантовых компьютеров люди все еще ищут, какие именно квантовые объекты лучше всего использовать для того, чтобы они выступили кубитами.
Сейчас вариантов очень много — это могут быть и электроны со своим спином или, например, фотоны и их поляризация. Вариантов множество. И это далеко не единственная сложность, с которой столкнулись ученые!
Дело в том, что квантовые кубиты довольно нестабильны и их надо держать в холодном месте, чтобы можно было контролировать. И если вы думаете, что для этого будет достаточно водяного охлаждения вашего системника, отчасти вы правы, только если залить туда жидкий Гелий, температура которого ниже минус двухсот семидесяти градусов Цельсия! А для его получения используются вот такие вот здоровые бочки.
Например, IBM выпустил 128-кубитную систему. Но есть не только физические, но и логические кубиты. В чём разница? Чтобы достичь нужного уровня, — делают логические кубиты, то есть из большого количества физических кубитов делают один логический кубит, программируют на него протоколы коррекции ошибок, алгоритм и получается, что это один кубит с высоким показателем точности. Поэтому, если вернуться к физическим кубитам, на которых и должен делаться квантовый компьютер, — индустрия находится на раннем этапе, примерно на уровне десяти логических кубитов. В ближайшие годы ожидаем, что будет достижим уровень в сто логических кубитов. Это уже позволит делать интересные вещи — оптимизация маршрутов, клинические тесты, синтетическое создание клинических данных, проксимация квантовых симуляций, оптимизация финансовых портфелей. Для сравнения: чтобы взломать алгоритмы RSA, нужна примерно тысяча логических кубитов. Тут нужно сделать небольшое отступление и сказать, что сегодня в квантовых вычислениях есть ещё один подряд сложностей — пока не придумана квантовая память. Поэтому в ближайшие 10 лет квантовые вычисления будут работать в связке с классическими компьютерами.
Стратегическая долгосрочная задача — создание универсального квантового компьютера. Для этого нужно более 10 000 логических кубитов, надёжное управление многокубитными гейтами, квантовая память. Сейчас мы не можем смоделировать даже средние по сложности молекулярные соединения. Поэтому учёные делают синтетические молекулы и постоянно экспериментируют. Моделирование сильно ограничено размерами молекулярных систем и параметрами точности. Из-за этого создание нового лекарства занимает лет десять. А квантовый компьютер, который способен смоделировать квантовую механическую систему, радикально ускорит процесс. Или фолдинг белка сейчас пытаются сделать рентгеновскими лучами, хитрыми магнитными резонансами. А если будет квантовый компьютер, он сможет смоделировать эту систему, и мы упростим себе жизнь в создании лекарств. Ещё ускорится разработка новых материалов для космических полётов, двигателей, сверхпроводящих систем.
Сделать лучше не получается, потому что мы пока плохо моделируем. За одно интервью невозможно даже перечислить все те применения квантовых компьютеров, которые можно придумать. Даже если он просто сможет ускорить считанное количество процессов важных операций типа преобразования Фурье — это уже будет серьёзным прогрессом. А это только один шаг к созданию универсального квантового компьютера. Поэтому такой хайп. Их уже применяют для оптимизации финансовых портфелей, маршрутов, оптимизации ИИ-алгоритмов. Что может остановить прогресс?
Физик Алексей Устинов о российских кубитах и перспективах их использования Хорошая подробная статья по теме.
Что такое кубит? Как он выглядит, из чего сделан? Наконец, как этот самый кубит можно измерить и для чего он может пригодиться? На эти и многие другие вопросы «Ленты. Это классический бит некая логическая единица, которая может принимать два значения, скажем: ноль и единичка. Так работает обычный компьютер. Кубит отличается от бита тем, что он представляет собой фактически не два отдельных состояния, а два состояния, которые как бы перекрываются. Причем перекрываются в разной пропорции, то есть количество состояний кубита бесконечно, и его можно записать как сумму состояний ноль и один с разными коэффициентами которые, вообще говоря, комплексные числа таким образом, что сумма квадратов модулей коэффициентов равняется единичке.
Какова физическая реализация кубита у вас? Наши кубиты реализованы в виде напыленного на полупроводниковую подложку тонкого металлического у нас алюминиевого плоского кольца. По сути, они представляют собой разрыв в кольце, расстояние между берегами которого составляет несколько нанометров. Берега разделены прослойкой диэлектрика, в нашем случае просто оксидом алюминия. Главное свойство этих переходов заключается в том, что из-за явления туннелирования через эти разрывы протекает сверхпроводящий ток. Это явление было предсказано 50 лет назад Брайаном Джозефсоном. Десятки милликельвин. Как достигаются такие низкие температуры?
Это довольно стандартная технология. Для охлаждения объекта до нескольких кельвин подходит обычный жидкий гелий. Именно он позволяет получать еще более низкие температуры при атмосферном давлении. Речь идет о температурах порядка десятых долей кельвина. Наконец, чтобы опуститься еще ниже, требуется специальная смесь изотопов гелия-3 и гелия-4. В общем, такие низкие температуры можно получать, просто включив прибор в розетку. Там же есть еще один, работающий на гелии-4. Что в вашем кубите играет роль нулей и единиц, то есть двух основных состояний?
В нашем кольце кубит, напомним, реализован как кольцо на полупроводниковой подложке при приложении определенного магнитного поля существуют два равновероятностных состояния.
В феврале 2024 г. Мы его реализовали на ионной платформе. Также у нас есть 25-кубитный компьютер на атомной платформе. Но качество операций лучше на ионной платформе». До конца этого года должны успеть 50 сделать. Посмотрим, может быть, получится и больше», — добавил Юнусов.
Квантовые вычисления для всех
Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. (1) Сформулировать, что такое кубит. Что такое кубит, для чего он нужен и как физически может быть реализован? Для кубитов IBM и Google безошибочная работа кубитов означает, что каждый логический кубит должен состоять из 1000 физических кубитов.
Квантовые компьютеры
Новости по тегу кубит, страница 1 из 1 | Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. |
Что такое квантовые вычисления? | В качестве физического кубита используются фотоны, нейтральные атомы, ионы, квантовые точки, примеси в кристаллах. |
Квантовый бит — QMLCourse | Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0. |
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы | Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. |
Квантовые компьютеры | Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. |
Как работает квантовый компьютер: простыми словами о будущем
Компьютеры на основе квантовых битов смогут производить вычисления значительно быстрее даже самых мощных современных компьютеров. В разработке принимали участие специалисты из Московского физико-технического института, Российского квантового центра, Национального исследовательского технологического университета МИСиС и ряда других научных учреждений. О разработке сообщается в пресс-релизе. Единицей памяти современных компьютеров являются биты. Они могут принимать только одно значение: 0 или 1.
По сравнению с ними кубиты могут кодировать сразу и логическую единицу, и ноль, что открывает совершенно новые возможности хранения и обработки цифровой информации.
В России представлен 16-кубитный квантовый компьютер — самый мощный в стране. К концу года могут представить 20-кубитный квантовый компьютер А до конца 2024 года в России может появиться и 100-кубитный квантовый компьютер Сегодня на Форуме будущих технологий в Москве учёные представили 16-кубитный квантовый компьютер — самый мощный в стране. Его показали Владимиру Путину. Во время демонстрации на этом компьютере был запущен алгоритм моделирования молекулы.
Они могут принимать любые значения между 0 и 1. Это явление называется суперпозицией и существует только в квантах — очень маленьких объектах. Кубитом может быть любой объект, проявляющий квантовое поведение, например фотон. Кубит, находящийся в суперпозиции, при измерении коллапсирует в одно из двух детерминированных состояний 0 или 1. Вероятность состояния 1 или 0 определяется суперпозицией кубита. Если кубит находится в равной суперпозиции, то он находится наполовину в состоянии 0, наполовину в состоянии 1. Для понимания суперпозиции нужно думать о состояниях как о волнах, а не как о двух взаимоисключающих классах. Представьте себе две разные песни, одну из которых назовём песня A, другую песня B. Поскольку при измерении кубит коллапсирует в одно из двух детерминированных состояний, невозможно измерить истинное вероятностное состояние кубита. Впрочем, можно измерить его приблизительно. Суперпозиция — реальное явление: знаменитый эксперимент с двумя щелями демонстрирует, что определённые кванты, подобные электронам или фотонам, находятся в волновых состояниях и, проходя через две щели, вызывают появление интерференционной картины на экране. Источник На аппаратном уровне главная сложность в конструировании кубитов заключается в их вероятностной природе ведь они не детерминированы , что означает, что их состояние может очень легко изменяться под воздействием внешних сил. Кубиты трудно поддерживать по той же причине, по которой они так мощны — множество их возможных состояний трудно контролировать более нескольких секунд. Применение квантовых вентилей для осуществления операций зачастую может приводить к ошибкам вентиля из-за случайного неосторожного обращения с кубитом. Напомню, что кубитом может быть что угодно от фотона до электрона или определённых молекул , если они демонстрируют квантовое поведение. Многокубитные системы и запутанность Ваш компьютер далеко не продвинется с одним битом , ведь он может принимать только два значения, а компьютер работает с огромной многоразрядной системой. Как и биты, кубиты можно собрать в многокубитную систему. В 2-кубитной системе в состоянии 10 первый кубит находится в состоянии 1 и второй в состоянии 0. Однако из-за суперпозиции 2-кубитные системы не ограничены только детерминированными значениями 0 или 1. Они могут находиться в суперпозиции. Это означает, что при измерении системы она имеет равные шансы перейти в одно из четырёх детерминированных 2-кубитных состояний. Запутанность — ещё одно часто встречающееся умное слово, которое сбивает с толку. Скажем, при двух запутанных кубитах A и B в любой суперпозиции, когда Боб измеряет кубит A в состоянии 1, он мгновенно без измерения узнаёт состояние кубита B — тоже 1.
Этот материал было легко очистить от дефектов, но колебания свободной жидкости могли легко нарушить состояние электрона и, следовательно, поставить под угрозу работу кубита. Твердый неон предлагает материал с небольшим количеством дефектов, который не вибрирует, как жидкий гелий. После создания своей платформы команда выполняла операции с кубитами в реальном времени, используя микроволновые фотоны на захваченном электроне, и охарактеризовала его квантовые свойства. Эти тесты продемонстрировали, что твердый неон обеспечивает надежную среду для электрона с очень низким электрическим шумом, который может его побеспокоить. Что наиболее важно, кубит достиг времени когерентности в квантовом состоянии, конкурентоспособного с другими современными кубитами. По словам ученых, простота платформы кубитов также должна обеспечивать простое и недорогое производство. Перспективы квантовых вычислений заключаются в способности этой технологии следующего поколения решать определенные задачи намного быстрее, чем их могут решить классические компьютеры. Исследователи стремятся объединить длительное время когерентности со способностью нескольких кубитов связываться друг с другом, известной как запутанность.
Кудиты лучше кубитов? Российские учёные доказали превосходство отечественной технологии
Что такое квантовый компьютер? Разбор / Хабр | Чтобы сделать кубиты, отдельные электроны помещают в линейный массив из шести «квантовых точек», отстоящих друг от друга на 90 нанометров. |
Что такое квантовый компьютер? Разбор | | В то время как кубиты имеют четыре значения, в нейронных сетях их несравненно больше, а образуемые ими структуры намного разнообразнее, чем entanglement. |
Telegram: Contact @postnauka | Вторая проблема — это заставить кубиты взаимодействовать друг с другом — при взаимодействии их время жизни катастрофически уменьшается. |
Миллион задач в секунду: как работают квантовые компьютеры
Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. Рассказываем, как появился первый квантовый компьютер, сколько кубитов в современных процессорах и какие задачи они могут решать. И делают кубиты на сверхпроводниках, которым нужны экстремально низкие температуры. — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам. В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры.
Что такое квантовый компьютер и как он работает
Чтобы сделать кубиты, отдельные электроны помещают в линейный массив из шести «квантовых точек», отстоящих друг от друга на 90 нанометров. «В области производства квантовых компьютеров всё идёт в соответствии с графиком, 20 кубитов нам обещает Росатом показать в конце этого года. Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность демонстрирует ионный процессор. Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака). IBM объявила о выпуске квантового процессора Eagle с рекордным количеством кубитов (127).
Как устроен и зачем нужен квантовый компьютер
Это была первая демонстрация того, что квантовые вычисления способны привести к полезному результату. Спустя десять лет, в 2019 году, Google объявила о достижении квантового превосходства: всего за 200 секунд их компьютер выполнил серию вычислений, на которую у суперкомпьютера ушло бы десять тысяч лет. А всего через год о достижении квантового превосходства сообщили китайские ученые: их компьютер на запутанных фотонах Jiuzhang за 200 секунд решил задачу, которая потребовала бы у самого мощного суперкомпьютера до 2,5 миллиардов лет вычислений. Сейчас уже ведется работа по подготовке человеческого общества к появлению полноценных квантовых компьютеров: разрабатываются новые стандарты, создаются дорожные карты, стратегии выхода на рынок и сфера применения квантовых вычислений. В России дорожная карта развития квантовых вычислений разработана совместными усилиями Росатома и Российского квантового центра. На создание квантовых компьютеров и облачной платформы для доступа к ним планируется потратить 23,6 миллиарда рублей. Что такое квантовое превосходство Квантовое превосходство — это свойство квантовых компьютеров решать задачи, которые не способны решить классические компьютеры за обозримый период времени.
Сейчас ученые рассматривают это достижение больше как доказательство принципа, чем то, что может повлиять на будущую коммерческую жизнеспособность таких вычислений. В России под эгидой Росатома создана Национальная квантовая лаборатория, куда вступили различные научные организации, включая Фонд «Сколково» , Российский квантовый центр и профильные научные институты. Целью лаборатории является создание квантовых процессоров на базе сверхпроводников, холодных атомов, фотонов и ионов. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии. Квантовое превосходство может быть временным и не исключает появления более эффективных алгоритмов, ускоряющих вычисления классическими компьютерами, поэтому любое заявление о достижении квантового превосходства вызывает скепсис у специалистов и подвергается тщательной проверке. Когда Google опубликовала результаты вычислений квантового процессора Sycamore, IBM заявила, что ее суперкомпьютер способен решить ту же задачу более точно и почти с той же скоростью — за два с половиной дня.
Страны вкладывают огромные суммы в развитие квантовой отрасли. Китай создал новый центр квантовых исследований National Laboratory for Quantum Information Sciences стоимостью 10 миллиардов долларов; Евросоюз разработал генеральный план развития квантовых технологий и планирует потратить на это около миллиарда евро; США, в соответствии с законом о национальной квантовой инициативе, выделили 1,2 миллиарда долларов на развитие проектов в этой области за пятилетний период. Однако для достижения полезной вычислительной производимости, вероятно, понадобятся машины, состоящие из сотен тысяч кубитов. Как работают квантовые компьютеры Классические компьютеры выполняют логические операции, используя биты — единицы информации, принимающие значение либо «0», либо «1». В квантовых вычислениях для этого используются кубиты, представляющие собой квантовое состояние объекта, например, фотона. До момента измерения квантовое состояние является неопределенным, то есть оно находится в суперпозиции двух возможных состояний — «0» или «1».
Суперпозиция одного объекта может быть связана с суперпозициями других объектов, то есть можно сконструировать между ними логические отношения, подобные тем, что существуют на основе транзисторов в классических компьютерах. Однако квантовые системы трудно поддерживать в состоянии суперпозиции достаточно долго, поскольку квантовое состояние нарушается система декогерирует в результате взаимодействия с окружающей средой. Чтобы добиться квантового превосходства, необходимо использовать явление, называемое квантовой запутанностью. Оно возникает в случае, когда две системы настолько сильно связаны, что получение информации об одной системе немедленно даст информацию о другой — вне зависимости от расстояния между этими системами. Хартмут Невен, директор Google Quantum AI Labs предложил новое правило, которое предсказывает прогресс квантовых компьютеров в ближайшие 50 лет. Оно гласит, что мощность квантовых вычислений испытывает двукратный экспоненциальный рост по сравнению с обычными вычислениями.
Медиаконтент иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы может быть использован только с разрешения правообладателей.
Многих это подталкивает к более глубокому изучению математики и квантовой физики. Вместе с тем, широкая популярность темы порождает неверное её понимание и неверные ожидания. Квантовые вычислители не являются заменой классическим. Квантовый процессор, когда он будет полноценно реализован, скорее всего будет сопроцессором, как когда-то для процессоров i8086, i80286 и i80386 были математические сопроцессоры i8087, i80287 и i80387. И даже в процессоре i80486 сопроцессор хотя и был интегрирован в кристалл, но логически представлял собой в нём отдельный блок. До реализации в железе полноценного квантового вычислителя, способного производить универсальные квантовые вычисления, ещё очень далеко. Думаю, более 10, а то и 20 лет. На данном этапе удалось сделать лишь относительно слабые простейшие квантовые вычислители для узкоспециальных математических задач.
На пути к полноценным квантовым вычислителям предстоит решить ещё очень много физических задач. Да и математических, наверное, тоже. А теперь давайте познакомимся с простейшим и интереснейшим объектом квантового компьютера — кубитом.
Возможно помогут умные алгоритмы, которые также разрабатываются. Имитация квантового с помощью квантовых компьютеров Поскольку большие данные сейчас горячая тема, можно было бы ожидать, что квантовые компьютеры будут лучше обрабатывать крупные наборы данных, чем классические. Но это не так. Вместо этого, квантовые компьютеры будут особенно хороши в моделировании природы. Например, квантовые вычисления можно было бы использовать для более эффективного построения молекул лекарств, потому что они в основном работают на той же основе, что и молекулы, которые они пытаются смоделировать. Вычисление квантового состояния молекулы — невероятно сложная задача, которая почти непосильна нашим компьютерам, но квантовые компьютеры справятся с ней на ура. Точно так же квантовые вычисления могут перевернуть область материаловедения или передачи информации.
Благодаря запутанности, кубиты, физические разделенные большим расстоянием, могут создать канал для передачи информации, который с научной точки зрения будет безопаснее наших существующих каналов. Квантовый интернет вполне осуществим. Но самое интересное вот что: мы даже не знаем всего разнообразия удивительных вопросов , которые могут попытаться решить квантовые компьютеры. Просто имея коммерческий квантовый компьютер и позволяя людям с ним работать, мы могли бы наметить новые интересные области, подходящие для этой потрясающей новой технологии. А какие задачи попытались бы решить на квантовом компьютере вы? Расскажите в нашем чате в Телеграме.
Что такое квант
- Наши проекты
- Квантовые вычисления для всех
- Telegram: Contact @postnauka
- Квантовые компьютеры. Почему их еще нет, хотя они уже есть?
Биты и кубиты
- Что такое квантовые вычисления? - Linux Mint Россия
- В России создан первый сверхпроводящий кубит
- Категории статьи
- Кубит — Википедия с видео // WIKI 2
- Как устроен и зачем нужен квантовый компьютер
В погоне за миллионом кубитов
По-видимому, первым обратил внимание на возможность разработки квантовой логики венгерский математик И. Однако в то время еще не были созданы не то что квантовые, но и обычные, классические, компьютеры. А с появлением последних основные усилия ученых оказались направлены в первую очередь на поиск и разработку для них новых элементов транзисторов, а затем и интегральных схем , а не на создание принципиально других вычислитель ных устройств. В 1960-е годы американский физик Р. Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления - это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют. К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.
По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана СН4. Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое по числу частиц количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит лишь из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной! И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданные потенциал и начальное состояние. На это, в частности, обратил внимание русский математик Ю.
Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств. В 1980-е годы эту же проблему изучали американский физик П. Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый Д. Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог. Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р.
Фейн-ман, хорошо знакомый постоянным читателям "Науки и жизни". Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз. И все же долгое время оставалось неясным, можно ли использовать гипотетическую вычислительную мощь квантового компьютера для ускорения решения практических задач. Шор ошеломил научный мир, предложив квантовый алгоритм, позволяющий проводить быструю факторизацию больших чисел о важности этой задачи уже шла речь во введении. По сравнению с лучшим из известных на сегодня классических методов квантовый алгоритм Шора дает многократное ускорение вычислений, причем, чем длиннее факторизуемое число, тем значительней выигрыш в скорости.
Алгоритм быстрой факторизации представляет огромный практический интерес для различных спецслужб, накопивших банки нерасшифрованных сообщений. В 1996 году коллега Шора по работе в Lucent Technologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. Пример такой базы данных - телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом. Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх.
Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума. Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема - ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических. Пути решения этой проблемы наметил в 1995 году П. Шор, разработав схему кодирования квантовых состояний и коррекции в них ошибок.
К сожалению, тема коррекции ошибок в квантовых компьютерах так же важна, как и сложна, чтобы изложить ее в данной статье. Для понимания законов квантового мира не следует прямо опираться на повседневный опыт. Обычным образом в житейском понимании квантовые частицы ведут себя лишь в том случае, если мы постоянно "подглядываем" за ними, или, говоря более строго, постоянно измеряем, в каком состоянии они находятся. Но стоит нам "отвернуться" прекратить наблюдение , как квантовые частицы тут же переходят из вполне определенного состояния сразу в несколько различных ипостасей. То есть электрон или любой другой квантовый объект частично будет находиться в одной точке, частично в другой, частично в третьей и т.
Это не означает, что он делится на дольки, как апельсин. Тогда можно было бы надежно изолировать какую-нибудь часть электрона и измерить ее заряд или массу. Но опыт показывает, что после измерения электрон всегда оказывается "целым и невредимым" в одной единственной точке, несмотря на то, что до этого он успел побывать одновременно почти везде. Такое состояние электрона, когда он находится сразу в нескольких точках пространства, называют суперпозицией квантовых состояний и описывают обычно волновой функцией, введенной в 1926 году немецким физиком Э. Модуль значения волновой функции в любой точке, возведенный в квадрат, определяет вероятность найти частицу в этой точке в данный момент.
После измерения положения частицы ее волновая функция как бы стягивается коллапсирует в ту точку, где частица была обнаружена, а затем опять начинает расплываться. Свойство квантовых частиц быть одновременно во многих состояниях, называемое квантовым параллелизмом , успешно используется в квантовых вычислениях. Квантовый бит Основная ячейка квантового компьютера - квантовый бит, или, сокращенно, кубит q-бит. Это квантовая частица, имеющая два базовых состояния, которые обозначаются 0 и 1 или, как принято в квантовой механике, и. Двум значениям кубита могут соответствовать, например, основное и возбужденное состояния атома, направления вверх и вниз спина атомного ядра, направление тока в сверхпроводящем кольце, два возможных положения электрона в полупроводнике и т.
Это когда частица теряет свои свойства при столкновении с внешним миром. Дело в том, что суперпозиция — штука тонкая, и нарушить её может буквально что угодно: от солнечной бури до изменения климата. Поэтому здесь не получится просто накрыть всё медной крышкой и замазать термопастой — надо искать изоляцию посерьёзнее : Разработка такой изоляции — отдельный технологический вызов.
Пока что единственный рабочий способ — охладить всю систему до абсолютного нуля, чтобы защитить её от внешних воздействий. Делается это обычно с помощью жидкого азота, ионных ловушек или магнитного поля, а потому такая система охлаждения выглядит весьма увесисто. А ещё — довольно сложны в производстве.
Но учёные уверены, что это преодолимо: достаточно вспомнить, сколько места занимал один из первых компьютеров Mark I. И ничего — сейчас его далёкие потомки красуются в большинстве комнат и офисов мира. Читайте также: Глупый мотылёк догорал на свечке: как американцы собрали первый компьютер и придумали баги Первый квантовый компьютер Путь к созданию первой в мире квантовой машины был долгим.
Всё началось ещё в 1950-х, когда знаменитый физик Ричард Фейнман впервые предложил использовать квантовые эффекты для вычислений. Отчасти за эту работу он в 1965 году удостоился Нобелевки. А ещё Фейнман известен цитатой о том, что по-настоящему квантовую механику не понимает никто.
И здесь опять отметился Фейнман — в 1982 году он публикует знаковую статью «Физическое моделирование с помощью компьютеров», в которой, по сути, впервые описывает принципы работы квантового компьютера. Примерно в те же годы математик Юрий Манин предложил идею квантовых вычислений, а американский физик Пол Бениофф — квантово-механический вариант машины Тьюринга. Первую рабочую модель квантового компьютера представили учёные из MIT в 1997 году.
Двухкубитная система работала на принципах ядерно-магнитного резонанса того же самого, что используется в аппаратах МРТ. Модель умела решать довольно сложные задачи по алгоритму Дойча — Йожи. Дальше свои версии ЯМР-компьютеров стали по цепочке появляться во многих мировых институтах и лабораториях — к сожалению, их фотографии отыскать в Сети довольно сложно — учёные неохотно публикуют изображения своих детищ, вероятно, из соображений секретности.
Зато ими охотно делились корпорации в своих пресс-релизах. Вот, например, фото первого в мире 16-кубитного процессора от компании D-Wave, одного из ведущих вендоров в этой отрасли. Первый 16-кубитный процессор от D-Wave Systems Фото: IXBT Конечно, такая мощность далеко не предел — например, та же D-Wave Systems в 2022 году объявила , что собирается разработать квантовый компьютер аж на 7000 кубит.
Но пока это остаётся на уровне фантазий — а самый мощный на сегодняшний день квантовый компьютер работает на 1225 кубитах и принадлежит американскому стартапу Atom Computing. А что сейчас?
Что такое кубит Кубит от англ. Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. Если в обычном компьютере значение бита — 0 или 1 — определяется отсутствием или наличием электричества, то в квантовом компьютере всё зависит от поведения частиц. Главное отличие кубита от обычного бита в том, что значение первого может быть одновременно и 0, и 1. Это одновременное существование двух полярных значений и есть суперпозиция.
Если представить, что частицей была бы Земля, то Северный полюс мог бы быть нулём, а Южный полюс — единицей. Использование полярности здесь — это условность, которая помогает нам использовать кубиты для вычислений. UPD: в комментариях к статье пользователь Дэн Кондратьев справедливо отметил, что кубит — это двухуровневая квантовая система, где эти два уровня обычно являются состояниями одной частицы например, фотона, электрона или атома. Например, если использовать в качестве квантовой системы электрон, то кубитом может быть: спин электрона; Если использовать в качестве квантовой системы переход Джозефсона Josephson junction , то кубитом может являться: направление тока; энергетический уровень. Кубит — это двухуровневые состояния какой-либо системы, и абсолютно необязательно, чтобы система была одной частицей. Далее в статье описываются квантовые эффекты на примере одной частицы, потому что так легче представить квантовую систему. Он провёл эксперимент, в ходе которого пропускал частицы света сквозь непрозрачную доску, в которой находились две крохотные щели.
Юнг пытался проверить, как будут вести себя частицы, для чего установил экран позади доски с щелями, который показывал поведение частиц. Схематичное описание двухщелевого опыта Томаса Юнга. Источник: wikimedia. Как и следовало ожидать, частицы проходили через одну доступную щель и оставляли следы на экране в виде одной тонкой полоски. После этого Юнг открыл для частиц света обе щели. Он ожидал, что частицы станут проходить через них, а на экране появится две полоски.
Декогеренция — что-то вроде неконтролируемого коллапса волновой функции. Если в систему кубитов попадет любой шум из окружающей среды электрические и другие помехи, не заметные глазу , суперпозиция нарушится, информация может потеряться что критическим образом повлияет на точность решения задач.
Ограничение декогеренции — ключевая задача при создании квантового компьютера. Как устроены квантовые компьютеры? Вопреки ожиданиям, современные квантовые компьютеры не очень большие — размером примерно с холодильник но есть еще коробка с электроникой размером с комод. А вот детально они устроены гораздо сложнее привычных компьютеров. Обычно они состоят из: Квантовой системы. Технологии могут отличаются, но в основном роль кубитов играют либо ионы с разными уровнями энергии, либо сверхпроводящие цепи с разными колебательными состояниями, либо топологические кубиты например, майорановские частицы. Некоего кластера, в котором находятся кубиты и в котором они будут как можно дольше стабильны. Кластеры обычно охлаждают до температуры, близкой к абсолютному нулю, или стабилизируют с помощью химических компонентов.
Цель — защитить кубиты от любых внешних помех. Устройства для передачи сигналов кубитам, чтобы манипулировать их состоянием. Часто это делают с помощью микроволновых импульсов или лазерного света с определенной длиной волны. Обычного компьютера, который в рамках программы будет передавать кубитам инструкции алгоритм для решения конкретных задач. Сам принцип работы квантового компьютера еще сложнее, для его объяснения нужно вводить множество терминов типа туннелирования, эффекта Джозефсона, куперовских пар и так далее, при этом всегда будет вероятность неверного объяснения принципов в конце концов, мы не ученые. Поэтому, чтобы не усложнять материал, просто покажем несколько изображений разных квантовых компьютеров: Left Right Кто делает квантовые компьютеры? Определенные амбиции есть у Alibaba, Taiwan Semiconductor и ряда других игроков. Последние, кстати, говорят, что обладают самым быстрым коммерческим квантовым компьютером в мире — модель Advantage предполагает 5000 кубитов, каждый из которых может соединяться с другими 15 разными способами.
Несмотря на довольно большое число разработчиков мы упомянули компании преимущественно из США, но есть другие , у вас дома вряд ли когда-нибудь появится квантовый компьютер. Технология десятилетиями оставалась просто концепцией как раз потому, что кванты очень чувствительны к любым воздействиям, то есть могут коллапсировать даже от небольших помех — и это проблема.