Новости термоядерная физика

83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался.

Академик В.П. Смирнов: термояд — голубая мечта человечества

В качестве следующего шага планируется создание на его основе будущего китайского испытательного термоядерного реактора CFETR , который рассматривается как «искусственное солнце» нового поколения и который станет первым в мире демонстрационным термоядерным реактором. В свою очередь в Германии было объявлено о собственном прорывном достижении в области термоядерного синтеза. Учёные из Института физики плазмы имени Макса Планка IPP нашли способ значительно уменьшить расстояние между горячей плазмой в устройствах ядерного синтеза и стенкой корпуса.

Чтобы добиться безубыточной реакции синтеза, физики внесли изменения в ход эксперимента, основываясь на результатах предыдущих исследований.

Они увеличились мощность лазеров примерно на восемь процентов, а также изготовили мишень с меньшим количеством дефектов и отрегулировали способ подачи энергии, чтобы взрыв внутрь был более сферическим. До коммерческого получения термоядерной энергии еще далеко Пока что о коммерческом получении термоядерной энергии речь не идет. Дело в том, что воспламенение не компенсирует всю энергию, потраченную на работу лазеров — около 322 мегаджоулей, — а только ту, что была потрачена непосредственно на нагрев мишени.

Таким образом, NIF не является установкой для эффективного производства энергии, а служит лишь для экспериментального доказательства самой возможности воспламенения. Многие специалисты сомневаются, что сам подход с использованием лазеров может стать основой для получения термоядерной энергии из-за множества сложных технических проблем. В NIF используется инерциальный управляемый термоядерный синтез ICF , когда реакция инициируется путем теплового сжатия мишеней размером с булавочную головку с помощью лазеров.

Однако чтобы доказать, что тип синтеза, проводимый в NIF, может быть жизнеспособным методом производства энергии, эффективность выхода — высвобождаемая энергия по сравнению с энергией, которая идет на создание лазерных импульсов — должна вырасти в 100 и более раз. Этот результат все еще далек от фактического прироста энергии, необходимого для производства электроэнергии Тони Роулстоун, эксперт в области термоядерного синтеза из Кембриджского университета Теоретически проблемы, связанные с низкой эффективностью лазерного нагрева, могут быть решены путем повышения скорости испускания импульсов и быстрого отвода тепла и мусора из камеры для запуска следующей мишени.

Если верить расчетам, то космический аппарат с таким двигателем сможет разогнаться до 804 672 километров в час. К примеру, 55 миллионов километров - расстояние между Землей и Марсом — он мог бы преодолеть меньше, чем за трое суток. В два раза быстрее, чем поезд идущий от Москвы до Владивостока.

Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3.

Проблемы NIF, как прототипа термоядерной электростанции, были видны еще до начала строительства — даже если бы 1,8 мегаджоуля термоядерной энергии получалось бы в каждом выстреле, затраты энергии «из розетки» все равно составляли бы скорее 500 мегаджоулей, а количество выстрелов не превышало бы 2-3 в сутки. Кроме того, мишени для NIF представляли собой произведение криогенного ювелирного искусства: капсула миллиметрового размера и сверхточной формы наполняется топливом при температуре 15 кельвин и поддерживается при этой температуре в процессе помещения в установку и до момента эксперимента. Ну и разумеется, никакой энергоустановки в проекте предусмотрено не было, термоядерное тепло просто рассеивалось через градирни. В реальности все оказалось еще скромнее.

Установка произвела первые полноценные выстрелы в 2010 году и вместо мегаджоулей термоядерной энергии ученые увидели сотни джоулей. Три года непрерывных усилий по совершенствованию установки привели к первому breakeven — выходу около 15 килоджоулей термоядерной энергии, что было больше, чем сообщали рентгеновского тепла стенки сосуда с капсулой. Однако это было далеко от того, что обещали до начала строительства NIF. Впрочем, основного заказчика этой установки все устраивало. Дело в том, что условия, создающиеся в топливной капсуле и хольрауме очень похожи на то, что происходит в термоядерном боеприпасе в момент срабатывания. И изначально NIF создавался как большой стенд для верификации нового поколения программ, симулирующих поведение ядерного оружия, а энергетическое направление было приятным бонусом, на который выделялось меньше трети фондирования.

Но команда термоядерщиков LLNL продолжала совершенствовать режимы работы лазеров, конструкцию хольраума и капсулы. Вместе это позволило поднять симметричность и стабильность сжатия капсулы, побороть лазерно-плазменные неустойчивости на хольрауме, увеличить эффективность передачи энергии от лазеров на хольраум и от хольраума на сжатие капсулы. Как работает NIF Специально профилированный во времени затравочный импульс «мастер-лазера» расщепляется на 192 луча, каждый из которых проходит 4 раза через 192 усилителя лазерного излучения и направляется на систему преобразования частоты, где исходное инфракрасное превращается в рабочий ультрафиолет. Через систему фокусировки 192 луча с точностью в 10 микрон проходят через окна в хольрауме, попадая на его внутренние стенки, за 10 наносекунд разогревая их до 3 миллионов градусов. Сфера с топливом, «купаясь» в излучаемом хольраумом рентгеновском излучении начинает испаряться снаружи, а реактивная сила отдачи начинает сжимать внутренние слои к центру симметрии капсулы. Примерно за 2 наносекунды при давлении в 200 миллиардов атмосфер размер сферы уменьшается в 30 раз, а плотность топлива возрастает до 1000-1300 грамм на кубический сантиметр — примерно в 100 раз плотнее свинца.

В момент максимального сжатия, в разогретой центральной части начинается термоядерная реакция, которая, как пожар, распространяется от центра к периферии. Всего несколько десятков пикосекунд продолжается горение, мощность которого в этот короткий миг сравнимо с потоком солнечной энергии на всю планету Земля и в десятки тысяч раз превосходит всю остальную мощность человеческой цивилизации. Как итог — в 2019-2020 году выход термоядерной энергии в экспериментах NIF начал заметно расти, перешагнул порог 100 килоджоулей, а весной 2021 года несколько выстрелов дали энергии от 400 до 700 килоджоулей и наконец 8 августа 2021 года — 1350 килоджоулей. Эта энергия в 2-5 раз превосходила энергию рентгеновского излучения от стенок хольраума и в 10-20 раз — энергию, переданную топливной сфере и свидетельствовала о том, что зажженная термоядерная реакция в маленькой точке в центре сжатой сферы успевает прогреть и поджечь окружающий ее относительно холодный топливный материал. Теперь ученые, работающие в NIF провели пресс-конференцию, где рассказали, что 5 декабря 2022 года, при мощности лазера в 114 процентов от номинальной командой было получено заметное превышение выхода термоядерной энергии 3,15 мегаджоулей над вложенной энергией лазера 2,05 мегаджоулей , что является рекордным достижением для всех установок термоядерного синтеза. Журнал Science добавляет несколько деталей про выстрел 5 декабря.

Рекордный эксперимент потребовал заметных усилий от команды экспериментаторов. Для корпуса топливной капсулы использовался искусственный алмаз, который давал наиболее гладкую сферическую поверхность без пор. Было максимально уменьшено отверстие, через которое капсула заполняется топливом. Лазер был настроен на максимальную мощность и энергию, что позволило придать испаренной оболочке капсулы больше ускорения и сжать топливо чуть больше.

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

Работа физиков из Ливерморской национальной лаборатории Лоуренса в Калифорнии была опубликована в журнале Physical Review Letters. Термоядерная реакция позволяет звездам генерировать огромные объемы энергии, однако на Земле ее крайне трудно воспроизвести, так как для поддержания такой реакции требуется чрезвычайно высокоэнергетическая среда. Для этого ученым необходимо обеспечить стабильное "зажигание", которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент.

Испытания — уже прямо в космосе — запланированы на 2027 год. Не удивительно, что термоядерный двигатель принципиально будет похож на термоядерный реактор - тот самый неисчерпаемый источник энергии, которого ждет-не дождется человечество. Только вместо «бублика» -тора, в котором вспыхнет рукотворное Солнце и пойдут реакции термоядерного синтеза, аналогичные тем, что разогревают наше светило, ракетный двигатель сделают в виде цилиндра, открытого с одной стороны — оттуда с огромной скоростью и будет вырываться плазма, нагретая до сотен миллионов градусов. И создавать тягу. Если верить расчетам, то космический аппарат с таким двигателем сможет разогнаться до 804 672 километров в час.

Также по теме Российский токамак с реакторными технологиями ТRТ находится на стадии разработки эскизного проекта, концепция будущего термоядерного... Однако учёные придумали, как объединить свойства обоих металлов в одной конструкции. Этот слой будет принимать на себя основную атаку — и плазмы, и химически активного лития», — объяснил RT кандидат химических наук, заведующий лабораторией гетерогенного синтеза тугоплавких соединений ИФХЭ РАН Владимир Душик. Созданное таким методом вольфрамовое покрытие не имеет пор, что является важным преимуществом — это исключает риск взаимодействия медной подложки с агрессивной средой. Ошибка в тексте?

Считалось, что установка не заработает. Действительно, с нашей стороны выглядело авантюристично.

Но я и еще некоторые другие верили в заложенные решения. Мне прямо говорили, что машина никогда не будет работать. Благодарен нашему научному и административному руководству того времени, согласовавшему начало работы.

Сейчас нас призывают превосходить мировой уровень. Не исключено, хотя и время другое. Она заработала и дала результаты мирового уровня.

Установки, о которых мы говорим и которые видим сейчас, помимо исследовательских, фундаментальных и прикладных направлений имеют еще одно направление, именуемое «спецтематикой». Это не оружие, но это работы ради знаний в оборонной физике, поэтому они поддерживались. Именно поэтому наш институт оказался закрытым и я перестал ездить за рубеж на конференции.

А потом, уже в конце 1980-х гг. Оказалось, что наши результаты по выходному продукту в сотни раз лучше, чем американские. Как всегда в таких случаях, требуется примерно два года, чтобы нас услышали.

Поначалу был определенный уровень недоверия, но потом решили проверить результаты в совместном эксперименте на «Ангаре-5-1». В 1993 г. Сначала в 1992 г.

Они просили приехать в следующем году со своей диагностикой и проверить наши результаты. Министерство разрешило нам провести совместный эксперимент. Оказалось, что результаты, которые они получили, даже лучше, чем то, что намерили мы.

Но в основном все совпало. Повторилась ситуация, которую мы имели в конце 1960-х гг. Академик Л.

Арцимович, руководитель программы УТС того времени, пригласил английских физиков приехать в Курчатовский институт с новой диагностикой и сопоставить измеренные параметры с нашими измерениями. Все подтвердилось, и даже больше. После этого практически все лаборатории мира, связанные с работами по магнитному удержанию плазмы, стали делать токамаки.

Сейчас с нашим участием строится первый экспериментальный реактор ITER, в котором мощность термоядерной реакции должна в 10 раз превзойти мощность, затрачиваемую на поддержание реакции. ITER — это тоже токамак. Работы по физике высоких плотностей энергии продолжаются, лидером этого направления у нас был В.

Фортов, с которым мы здесь тоже работали. Сегодня мы переживаем новый этап в области термоядерных исследований благодаря новой федеральной программе. Она очень сложна.

Существуют проблемы создания такого реактора. Одна из важнейших — взаимодействие плазмы со стенкой, то есть эрозия стенки. Было предложено несколько способов ее защиты.

Кстати, самые активные исследования этой проблемы проводятся здесь на токамаке Т-11М под руководством С. Энергетический термоядерный реактор предполагает, что мощность, выделяемая в процессе интенсивной термоядерной реакции, должна превосходить затрачиваемую на поддержание плазмы не менее чем в десять раз. И тогда на стенку камеры идет очень высокий поток частиц, который ее разрушает.

Проблема первой стенки — одна из важнейших для энергетического реактора. Если вы снизите требования к интенсивности реакции, то эти потоки уменьшаются и проблема защиты стенки перестает быть такой острой. Но возникает вопрос: а где мы можем применять эти нейтроны?

Оказывается, мы можем их использовать в целях создания топлива для обычных атомных реакторов. Это так называемые гибридные системы «синтез — деление», и они сейчас здесь очень активно обсуждаются и развиваются. Практическая реализация таких систем важна.

Термоядерный синтез вышел на новый уровень: подробности

Институт Ядерной Физики (ИЯФ). Все самое интересное и актуальное по теме "Ядерная физика". все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала.

Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики

На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс. Хорошие новости продолжают поступать в области исследований ядерного синтеза. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Физик объяснил важность создания прототипа российского термоядерного реактора.

Российский инженер рассказала о значении термоядерного прорыва американских ученых

Физик объяснил важность создания прототипа российского термоядерного реактора. Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Хорошие новости продолжают поступать в области исследований ядерного синтеза. Китайский термоядерный реактор поставил рекорд в ядерной энергетике. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые.

Прорыв в термоядерном синтезе

Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF. Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия.

Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды

— Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Российские учёные разработали новый материал для термоядерного реактора.

˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜

FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить.
Физики США вторично добились положительного термоядерного синтеза Зачем на самом деле строится самый большой термоядерный реактор.

Похожие новости:

Оцените статью
Добавить комментарий