Учёные МИСиС разработали микроволновый микроскоп, который поможет в развитии квантовых технологий. Специалисты Лыткаринского завода оптического стекла (ЛЗОС) холдинга оснастили микроскоп МБС-10М программно-аппаратным комплексом стереоскопического документирования и. Команда из Первого МГМУ создает цифровую альтернативу обычному микроскопу: онлайн платформа увеличивает изображение клетки до размера экрана компьютера или смартфона. В британском Институте имени Розалинд Франклин установили уникальный электронный микроскоп, способный снимать видео движения биологических образцов с частотой миллион.
В России создали роботизированный медицинский микроскоп
Цифровой микроскоп. Группа учёных из университета Лозанны изобрела новый тип прибора позволяющий видеть живые клетки с неуловимыми прежде деталями. В британском Институте имени Розалинд Франклин установили уникальный электронный микроскоп, способный снимать видео движения биологических образцов с частотой миллион. В НГУ создали нейросеть, умеющую определять и считать объекты под микроскопом. Специалисты Лыткаринского завода оптического стекла (ЛЗОС) холдинга оснастили микроскоп МБС-10М программно-аппаратным комплексом стереоскопического документирования и. В НГУ создали нейросеть, умеющую определять и считать объекты под микроскопом.
Микроскопы цифровые
В первую очередь это правильное определение типов клеток, предварительная интерпретация результатов и передача данных медицинскому специалисту, в чьи компетенции уже входит постановка диагноза и дальнейшее лечение пациента. Умная технология от Celly. AI, в основе которой лежит компьютерное зрение и машинное обучение, решает эти задачи. За врачом остается только контроль и решение неординарных задач, связанных с аномалиями. Дело в том, что обучить ИИ-системы для выявления всех аномалий пока сложно. Тем не менее, сделать это все же можно — алгоритм просто добавит необычный случай в свой датасет для обучения и будет в дальнейшем учитывать этот кейс. Разметку первичных данных проводит как раз медик-человек. С помощью анализа изображений с применением сверточных нейронных сетей система автоматически определяет типы клеток ткани, их количество и фактически выполняет за микроскописта все его повседневные задачи. Чтобы упростить внедрение инноваций в такую консервативную отрасль, как медицина, компания предложила достаточно элегантное решение - к окуляру микроскопа, при помощи линзы-адаптера, подключается iPhone.
Результаты исследования автоматически загружаются в облачный сервис, что позволяет моментально поделиться данными с коллегами, запросить их консультацию и обеспечить доступность медицинских услуг для удаленных географических локаций. Принцип работы Celly. AI - iOS приложение анализирует нейросетью видеопоток на самом устройстве. Врач лишь подтверждает результат на веб портале. Есть и другие полезные разработки в этой сфере. Так, исследователи из Японии разработали автоматизированную компьютерную программу, которая может точно и воспроизводимо подсчитывать количество микроядер клеток тканей на окрашенных изображениях. Микроядра — это небольшие ядерные структуры, которые являются маркерами таких патологий, как, например, рак. Модель, которую назвали CAMDi Calculating Automatic Micronuclei Distinction , способна подсчитывать микроядра, несмотря на их относительно маленький размер.
Используя эту технологию и совместив ее с электронным микроскопом, ученым удалось запечатлеть участок в 0,039 нанометров — это меньше, чем размер атомов, который, как правило, составляет 0,1-0,2 нанометра. По заявлению одного из авторов работы, профессора Корнеллского Университета Сола Грунера, «По сути, это самая маленькая линейка в мире. Разрешение микроскопа было настолько хорошим даже на низких мощностях, что команда сумела обнаружить отсутствие одного атома серы в слоях дисульфида молибдена.
Молекулярный дефект! Это поразительно!
Благодаря такому способу можно получать более подробные данные о структуре изучаемых объектов, наблюдая их в трехмерной плоскости. Данный комплекс более полно раскрывает возможности микроскопов серии МБС в медицине , биологии, геологии, минералогии, археологии и других отраслях. За счет высококачественной оптики и электроники пользователь может документировать и анализировать изображения как в стандартном формате плоского поля, так и в цифровом стереоскопическом режиме, — отметил заместитель генерального директора «Швабе» Лев Борисов.
Они используют сверхтонкие иглы, испускающие микроволновые сигналы, чтобы исследовать материалы на малом расстоянии от их поверхности.
Эти сигналы, отражаясь от образца, позволяют измерять различные характеристики материала и выявлять его структуру и состав. Однако часто возникают помехи от паразитных сигналов, что затрудняет проведение точных измерений, поэтому учёным важно разрабатывать методы их минимизации.
Создан новый высокоскоростной двухфотонный микроскоп для сверхточных биологических изображений
Это гарантирует отсутствие задержек или искажений в отображаемых изображениях. Документирование результатов контроля очень важно Документация имеет решающее значение при проверке контроля качества в электронной промышленности. Цифровой микроскоп позволяет захватывать изображения образца и хранить его для различных целей. Независимо от того, хотите ли вы сохранить свое изображение внутри устройства или на USB-накопителе, различные типы форматов, с графикой или без нее, микроскопы TAGARNO дают вам возможность сохранять изображения несколькими способами. Качество изображений в HD качестве.
Наличие правильной документации имеет большое значение, поэтому с помощью микроскопов визуального контроля TAGARNO вы можете сохранять изображения в формате full HD, а также использовать различные программные приложения и аксессуары, которые повышают качество вашей документации. Мультивидение Возможность проводить контроль качества печатной платы вместе со своими коллегами, глядя на монитор, подключенный к цифровому микроскопу. Это делает процесс проще и с меньшим количеством ошибок, так как вы можете обсуждать изображение образца или различных его частей в режиме реального времени, избегая субъективность проверки. Эргономика Наличие правильной рабочей позы при пайке или ремонте печатной платы очень важно, так как операторы могут испытывать боли в шее, спине и многие другие проблемы, связанные со здоровьем.
При контроле печатной платы с помощью оптического микроскопа оператор может провести весь рабочий день 8 часов в неудобном положении, что затрудняет его работу, снижает коэффициент полезного действия и вызывает профессиональные болезни. Цифровой микроскоп решает эту проблему, позволяя оператору смотреть на монитор в нормальном положении, в отличие от оптического микроскопа или увеличительной лампы. После использования цифрового микроскопа TAGARNO некоторый заказчики фиксируют меньшее количество больничных листов у своих сотрудников. Цифровой микроскоп можно усовершенствовать, добавляя в его работу программное обеспечение Улучшите контроль с помощью программных продуктов, которые вы можете добавить в свой цифровой микроскоп.
За счет высококачественной оптики и электроники пользователь может документировать и анализировать изображения как в стандартном формате плоского поля, так и в цифровом стереоскопическом режиме, — отметил заместитель генерального директора «Швабе» Лев Борисов. Для проведения исследования интересующий образец кладут на предметный столик, затем осуществляют съемку и обработку изображений. После этого объемные данные доступны для наблюдения в VR-очках.
Разработан квантовый микроскоп, позволяющий разглядеть ранее невидимые структуры 10. Команда австралийских и немецких исследователей создала квантовый микроскоп, который не вредит биологическим образцам. Таким образом, он позволяет наблюдать те биологические структуры, которые иначе было бы невозможно увидеть. Исследование опубликовано в журнале Nature , коротко о нем рассказывает The Conversation. Микроскопы имеют долгую историю. Возможно, он использовал их для подделки монет. Это неоднозначное начало привело к открытию бактерий, клеток и, в конце концов, практически всей микробиологии.
Их видит только камера, невооруженным глазом никаких полос не рассмотреть — обычное изображение на вполне нормальном экране. Настраивать можно достаточно большой набор опций — разрешение видео от VGA до FHD, длительность видео роликов, активировать или отключать HDR, менять уровень экспозиции и устанавливать штамп даты. И в том, и в другом экземпляре не совсем точно обозвали пункт Яркость экрана. На деле это задержка перед выключением экрана сам микроскоп работает. Пункт таймеров отключения микроскопа откл. Для удобства ориентирования на экране можно включить направляющие оси. Оценил при работе — удобно. Прямо на микроскопе можно отформатировать карту памяти. Можно сбросить настройки до заводских и перенастроить заново при необходимости. В последнем пункте меню обнаружилась разница между Mustool G1200 из прошлого обзора и G1200 из текущего — при одинаковой версии прошивки изменили шрифт и дату прошивки т. В меню настроек фото все так же есть непереведенный пункт — Capture Mode. Здесь устанавливается задержка перед тем, как сделать снимок. Разрешение и в том, и в другом экземплярах устанавливается в большом диапазоне, хотя на качестве картинки это отражается незначительно. Кроме разрешения доступна регулировка качества и резкости снимка. Можно настроить ISO и для чего-то установить цветность снимка — цветной, черно-белый и сепия, как на старых фотографиях. Регулировка экспозиции особо ничего не меняет, зато активация защиты от сотрясения дает возможность сделать нормальный снимок. Сравнение изображения на двух экранах без подсветки дает одинаковый результат. Но использование дополнительной подсветки проявляет дополнительные детали. В данном случае лучше можно рассмотреть пайку и уже хорошо видна маркировка чипа. Так, что допподсветка тут не зря. Еще примеры, в том числе режущие кромки бокорезов LAOA после испытаний. Относительно фото и видеосъемки нужно сказать, что качество их хуже, чем изображение на экране микроскопа. Кроме того, все-таки видимо из-за какой-то разницы то ли в прошивке, то ли в комплектующих, но качество снимков у Mustool G1200 из прошлого обзора мне показались лучше, чем у G1200 из нынешнего.
Современные цифровые микроскопы − продолжатели устоявшихся традиций оптических микроскопов.
Электронные микроскопы с встроенным цифровым фотоаппаратом позволяют делать фотографии наблюдаемых микрообъектов, а затем переносить их в компьютер. Разрешение микроскопа было настолько хорошим даже на низких мощностях, что команда сумела обнаружить отсутствие одного атома серы в слоях дисульфида молибдена. Цифровой микроскоп Keyence VHX5000.
Вы точно человек?
Микроскоп Levenhuk Discovery Atto Polar комплектуется 5-мегапиксельной цифровой камерой, которая значительно расширяет его возможности. Цифровой микроскоп МИС-463. Прибор предназначен для контроля и фото-видеофиксации качества поверхности, монтажа электрорадиоавтоматики. Цифровой микроскоп, как и любой другой, предназначен для увеличения объектов, которые трудно разглядеть невооруженным глазом.
Задать вопрос
- Добро пожаловать в будущее цифровой микроскопии!
- Использование цифрового микроскопа в электронной промышленности
- Просвечивающий электронный микроскоп научили голографии
- Попроще — увлечь ребенка и себя
Микроскопы и цифровая патология
Главное его отличие от всех микроскопов в том, что он может определять частицы не только в воздушной среде, но и в жидкой. Подписаться. Заказать цифровой микроскоп можно на сайте. Главное его отличие от всех микроскопов в том, что он может определять частицы не только в воздушной среде, но и в жидкой.
Разработан квантовый микроскоп, позволяющий разглядеть ранее невидимые структуры
На этих предприятиях, как правило, производятся микроскопы таких известных компаний, как Nikon, Olympus и др. На всю продукцию предоставляется гарантия. Гарантийное и постгарантийное обслуживание осуществляется сервисным центром компании в Санкт-Петербурге.
Исследователи запатентовали технологию цифровой голографической микроскопии и основали собственную компанию для производства и продвижения на рынок этой техники. Большинство деталей в живой клетке являются почти прозрачными и обеспечивают слабый контраст, если говорить об обычном свете и спектре отражённого излучения. К счастью для учёных, биологические образцы обладают способностью изменять фазу падающей на них световой волны, и именно это свойство "эксплуатируется" в DHM.
Система фотовидеофиксации позволяет протоколировать весь процесс исследования и передает данные на компьютер. Наряду с высокими техническими характеристиками микроскопы обеспечивают пользователю максимально комфортные условия эксплуатации: возможность выбора угла наблюдения до 45 градусов в каждую сторону, энергоэффективные верхнюю и нижнюю подсветки рабочей поверхности и другие. Приборы позволяют проводить измерения линейных размеров, углов и площадей объектов, контроль качества поверхности и монтажа электрорадиоизделий, в том числе электронных модулей, проверку микросварки выводов кристаллов, фотошаблонов печатных плат и других деталей.
Также они могут применяться в научно-исследовательских лабораториях, судебно-медицинской экспертизе, ювелирном и часовом производствах.
Низкая частота сканирования также влияет на общий FPS системы, поскольку определяет, насколько быстро лазер перемещается в другом направлении, т. Вместе они создают компромисс между временным разрешением микроскопа и размером кадра наблюдения.
Чтобы решить эту проблему, международная группа исследователей из Китая и Германии разработала мощную установку TPM с беспрецедентно высокой частотой линейного сканирования. Согласно отчету, опубликованному в журнале Neurophotonics, эта система микроскопии была разработана для визуализации быстрых биологических процессов с высоким временным и пространственным разрешением. Одним из ключевых факторов, отличающих предлагаемые TPM от традиционных, является использование акустооптических дефлекторов acousto-optic deflectors, AOD для управления сканированием возбуждающего лазера.
AOD — это особый тип кристалла, показатель преломления которого можно точно контролировать с помощью акустических волн, перенаправляя через него лазерный луч. Также они обеспечивают более быстрое лазерное управление, чем это достигается с помощью гальванометров, используемых в обычных TPM.
Цифровой микроскоп МИС-463
- ДЛЯ ЧЕГО НУЖЕН ЦИФРОВОЙ МИКРОСКОП?
- Цифровые микроскопы | «СМТ технологии»
- Контроль отверстий и краев пластин
- Российские учёные разработали микроскоп для изучения квантовых битов
- Новый электронный микроскоп позволяет увидеть атомы живых клеток
- Оставьте заявку
Микроскопы цифровые
Для проведения исследования интересующий образец кладут на предметный столик, затем осуществляют съемку и обработку изображений. После этого объемные данные доступны для наблюдения в VR-очках. Благодаря технологии пользователь также получает возможность сохранять стереоскопические изображения исследуемого образца.
Оптические микроскопы, обычно считающиеся альтернативой увеличительным лампам, имеют недостаток - маленькое поле зрения, которое ограничивает вашу рабочую зону и тем самым затрудняет работу оператора под микроскопом. Цифровые микроскопы — это отличная альтернатива, которая приносит много больших преимуществ не только для конкретного пользователя, но и для компании в целом. Ниже остановимся подробнее на некоторых из них. Контроль качества поступающих изделий и готовой продукции Одним из основных процессов при приемке поступающих для производства электронных компонентов или печатных плат - визуальный контроль продукции. С помощью цифрового микроскопа, в процессе контроля качества, можно проверить и зафиксировать на цифровом носителе результаты проверки, это помогает обеспечить предприятие только качественными комплектующими и упрощает ведение рекламационной работы, в случае необходимости. При отправке готовой продукции или при передачи ее из цеха в цех, проводится контроль качества сборки, в этом процессе так же не заменим цифровой микроскоп, результаты контроля видны на мониторе и это дает однозначную картину и решает спорные моменты, зачастую возникающие, между технологами предприятия и сотрудниками контроля качества. Сотрудникам отдела контроля качества должны быть предоставлены перечни и описания неприемлемых визуальных дефектов продукции, таких как трещины, сколы, отсутствия маркировки или дефекты поверхности. Использование цифрового микроскопа позволяет инспектору быстрее обнаруживать дефекты продукта, проверяя увеличенные изделия используя при этом изображение качества FULL HD.
Предотвращение ошибок или дефектов в производимых продуктах и предотвращение проблем при предоставлении услуг Заказчикам являются обычными проблемами для поставщиков услуг по контрактной сборке электроники. Цифровые микроскопы, интегрированные в систему обеспечения качества в производственных и научно-исследовательских отделах, часто могут сыграть важную роль в устранении этих проблем. Обеспечение качества с помощью цифрового микроскопа также может быть использовано инженерами-исследователями, которым необходимо проверить прототип платы вручную, поскольку в настоящее время нет процедуры автоматического контроля. Этот процесс также называется инспекцией первого продукта и имеет решающее значение для предотвращения проблем с качеством позже, когда продукт попадает в серийное производство, и поэтому ущерб, возможный на этом этапе, гораздо менее значительный. Визуальный осмотр печатной платы При проведении визуального контроля печатных плат, собранных печатных плат, разъемов или других электронных компонентов цифровые микроскопы позволяют оператору увеличить изображение продукта либо для подтверждения качества, либо для обнаружения ошибок и дефектов и, таким образом, изменить производственный процесс, предотвращая дальнейшие ошибки.
Развитие современных технологий отображения цифровой информации создаёт возможности для использования виртуальной или дополненной реальности при визуальном контроле, а также для конструирования виртуальных объектов. Часть человеческих действий может быть перенесена на цифровой уровень. Так, виртуальные объекты не изнашиваются, не требуют затрат на производство, быстро передаются на любые расстояния, копируются, практически бесследно уничтожаются. Так как природа виртуального объекта исключительно цифровая, к 3D-модели может быть легко добавлено любое свойство, записанное цифровым же образом. Например, в виртуальной модели любой детали, применяя возможности программных модулей моделирования и визуализации, можно выполнить разрез в любой плоскости, посмотреть срез в сечении, быстро собрать и разобрать узел детали, применить различные варианты масштабирования и цветовые режимы отображения и т. Развитие технологии 3D-модулирования было впервые реализовано в Hirox — примером может служить цифровой исследовательский видеомикроскоп высокого разрешения Hirox RH8800, имеющий широкий измерительный и аналитический функционал. Это оптимальный прибор при использовании в микроэлектронике, исследовании фотошаблонов благодаря модульности конфигурации и широкому спектру решаемых задач совмещает порядка 10 различных оптических приборов. В нем использованы самые последние отраслевые технологии, система является продуктом HiEnd в своём классе. Имеет полную моторизацию и оптический предел — увеличение до 10 000х. Латеральное разрешение оптики порядка 0,4 мкм, дискретность по оси Z — 0,25 мкм шаг двигателя 0,05 мкм. Обладает современным программно-аппаратным комплексом с метрологическим программным обеспечением для 3D-реконструкции микрорельефа в системе точных координат, для выполнения плоскостных измерений, плоской и объёмной сшивки изображений, видео- и фотоархивирования данных. Комплекс оснащён всеми современными функциями процессинга изображений и автоматизацией ключевых параметров рис 2. Используемое программное обеспечение позволяет соединять оборудование в одну единую сеть. ПО сводит и систематизирует данные, сигнализирует о различных событиях, также создается цифровая копия продукта, которая наделена всеми характеристиками физического объекта, что позволяет более точно осуществлять анализ конструкции. Вся информация хранится как на жестком диске, так и в едином цифровом пространстве облаке промышленного предприятия. Один из важных элементов четвёртой промышленной революции — беспроводная передача данных через сеть Интернет для удаленного контроля и оперативного доступа к информации из любой точки мира. И следующим этапом развития технологий микроскопии стало объединение возможностей оптического и цифрового микроскопов. Специалисты компании Vision Engineering Великобритания создали новейший микроскоп, сочетающий в себе безокулярную оптическую технологию и цифровой 3D-микроскоп для реализации технологий Индустрии 4. Новейшая оптико-электронная разработка — передовая цифровая система презентации стереоизображений и визуального контроля, разработана для полностью интерактивной естественной 3D-визуализации в реальном времени с выдающимся восприятием глубины.
Когда студенты получат доступ к нашему сервису, им больше не нужно будет стоять в очереди в лаборантскую, брать потускневшие от времени гистологические стекла и изучать их через обычный микроскоп. Им будет достаточно зайти на платформу и изучать гистологию в хорошем качестве, в ультравысоком разрешении", - рассказала Арчакова. Разработчики веб-сервиса полагают, что он будет востребован медвузами России и стран СНГ и поможет высшему медицинскому образованию пройти этап цифровизации.
Ученые Сеченовского университета разработали отечественный роботизированный микроскоп RoboScope
По заявлению одного из авторов работы, профессора Корнеллского Университета Сола Грунера, «По сути, это самая маленькая линейка в мире. Разрешение микроскопа было настолько хорошим даже на низких мощностях, что команда сумела обнаружить отсутствие одного атома серы в слоях дисульфида молибдена. Молекулярный дефект! Это поразительно! Созданные приборы были использованы на разных мощностях.
Благодаря этому, если осветить такую структуру светом, то по отбрасываемым ею теням можно получить представление не только об очертаниях клеток, но и об их внутренних структурах. Как объясняют авторы, после проекции теней на матрицу оптоэлектронных датчиков и анализа полученных данных можно сконструировать результирующее изображение без использования линз. Исследователи предлагают применять их разработку в качестве компонента лаборатории на кристалле.
Это позволило сразу определить, из каких атомов состоит молекула, которую они исследуют. На рисунке это показано маленькими цветными стрелками. Но почему это интересно? Квантовые компьютеры хранят и обрабатывают информацию, которая закодирована в квантовом состоянии. Чтобы произвести вычисления, квантовым компьютерам необходимо манипулировать квантовым состоянием, не теряя информацию в результате так называемой декогеренции. Здесь стоит отметить, что декогеренция — это процесс нарушения, собственно, когерентности связи между двумя квантово запутанными частицами , вызываемый взаимодействием квантово-механической системы с окружающей средой посредством необратимого с точки зрения термодинамики процесса. Исследователи из Регенсбурга показали, что с помощью своей новой техники они могут управлять квантовым состоянием спина в одной молекуле много раз, прежде чем это состояние распадётся. Поскольку метод микроскопии позволяет получить изображение отдельных окрестностей молекулы, новая методика может помочь понять, как декогеренция в квантовом компьютере зависит от атомного окружения, и — в конечном итоге — как её избежать.
Как сообщили в пресс-службе АлтГТУ, в новинке реализована технология дистанционного управления прибором и анализа данных через Интернет.
Это позволяет ученым проводить полномасштабные исследования с любого компьютера, подключенного к локальной сети или сети Интернет. При этом количество пользователей неограниченно.