Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград. В статье рассматривается альтернативное решение типовой задачи №26 ЕГЭ по информатике и ИКТ, отличающееся от предлагаемого разработчиками ЕГЭ. Задание 6 в 2023 году будет посвящено анализу алгоритма для конкретного исполнителя, определению возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов. Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград.
Задание 26 ЕГЭ-2019 по информатике: теория и практика
Задача 26. Во многих компьютерных системах текущее время хранится в формате «UNIX-время» – количестве секунд от начала суток 1 января 1970 года. В одной компьютерной системе проводили исследование загруженности. Рассмотрим ряд сложных задач типа 14 из ЕГЭ по информатике. Тип 14 это задачи на позиционные системы счисления. #разбор заданий егэ по информатике 2022. Предлагаем вашему вниманию разбор задания №26 ЕГЭ 2019 года по информатике и ИКТ. Этот материал содержит пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ. ЕГЭ по информатике в 2024 году будет проводиться в компьютерной форме. Способ решения задания №26 ЕГЭ по информатике (без использования программирования) с помощью MS Excel.
Задание 26 | ЕГЭ по информатике 2023
Разбор 26 задания ЕГЭ 2017 по информатике из демоверсии | Разбор Демоверсии ЕГЭ по информатике 2024 | Артем Flash (26 мероприятия Excel). |
Информатика ЕГЭ | Сегодняшний урок посвящн 26 заданию из егэ по информатике 2021. на нм мы будем тренировать умение обрабатывать целочисленную информацию с. |
Разбор задания № 26 ЕГЭ по информатике
Тематические тренировочные задания Пособие содержит задания, максимально приближенные к реальным, используемым на ЕГЭ, но распределенные по темам в порядке их изучения в 10-11-х классах старшей школы. Работая с книгой, можно последовательно отработать каждую тему, устранить пробелы в знаниях, а также систематизировать изучаемый материал. Такая структура книги поможет эффективнее подготовиться к ЕГЭ. Это значимо упрощает работу педагога и, конечно, уже выстроенный хочется на это рассчитывать план подготовки к экзамену обучающегося. Запишите сначала номер задания 24, 25 и т. Ответы записывайте чётко и разборчиво.
Далее не видим необходимости придумывать что-то отличное от официального содержания КИМ демоверсии. Документ уже несет в себе «содержание верного ответа и указания по оцениванию», а также «указания для оценивания» и некоторые «примечания для эксперта». Задание 26 Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя.
За один ход игрок может добавить в одну из куч по своему выбору один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать 10, 7. Тогда за один ход можно получить любую из четырёх позиций: 11, 7 , 30, 7 , 10, 8 , 10, 21. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 68.
Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 68 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Документ уже несет в себе «содержание верного ответа и указания по оцениванию», а также «указания для оценивания» и некоторые «примечания для эксперта». Задание 26 Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч по своему выбору один камень или увеличить количество камней в куче в три раза.
Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать 10, 7. Тогда за один ход можно получить любую из четырёх позиций: 11, 7 , 30, 7 , 10, 8 , 10, 21. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 68. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 68 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.
Выполните следующие задания. Задание 1 в Укажите все такие значения числа S, при которых Петя может выиграть за один ход. Укажите минимальное значение S, когда такая ситуация возможна. Задание 2 Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: Петя не может выиграть за один ход; Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанного значения S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором одновременно выполняются два условия: у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные. В первой строке входного файла находятся два числа: S — размер свободного места на диске натуральное число, не превышающее 10 000 и N — количество пользователей натуральное число, не превышающее 1000.
В следующих N строках находятся значения объёмов файлов каждого пользователя все числа натуральные, не превышающие 100 , каждое в отдельной строке.
В ответе запишите количество найденных троек чисел, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности. Алгоритм: 1. Найдем максимальный элемент последовательности, который оканчивается на 13. Оформим это отдельной подпрограммой.
Рубрика «Информатика варианты»
Задание 27. Во всех задачах этого типа необходимо выделить из всех данных те из них, которые лучше подходят для целей задачи и распределить их по остаткам. Информатика. ЕГЭ. Задания для подготовки. Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников. Задача 1. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. Примеры заданий ЕГЭ по информатике с решением на Паскале.
Задание 26. ЕГЭ. Исправление ошибок в программе
Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера: 2 50 2 файла, максимум 50 Пример взят с сайта РешуЕГЭ. Получим объём максимального файла, который можем добавить, ищем ближайший размер к нему из данных.
Демоверсия ЕГЭ 2018 информатика ФИПИ : Для какого наибольшего целого числа А формула тождественно истинна , то есть принимает значение 1 при любых целых неотрицательных x и y? Получив на вход число x , этот алгоритм печатает два числа: L и M. Укажите наименьшее число x , при вводе которого алгоритм печатает сначала 5 , а потом 7. У исполнителя есть три команды, которым присвоены номера: 1. Прибавить 1 2. Прибавить 2 3. Умножить на 3 Первая из них увеличивает число на экране на 1, вторая увеличивает его на 2, третья умножает на 3. Программа для исполнителя М17 — это последовательность команд.
Сколько существует таких программ, которые преобразуют исходное число 2 в число 12 и при этом траектория вычислений программы содержит числа 8 и 10? Траектория должна содержать оба указанных числа. Траектория вычислений программы — это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 8, 24, 26. Решение 23 задания ЕГЭ по информатике демоверсия 2018 года ФИПИ: Сколько существует различных наборов значений логических переменных x1 , x2 , … x7 , y1 , y2 , … y7 , которые удовлетворяют всем перечисленным ниже условиям? Нужно написать программу, которая выводит на экран максимальную цифру числа, кратную 5. Если в числе нет цифр, кратных 5 , требуется на экран вывести «NO». Программист написал программу неправильно.
Если покрутим таблицу вниз, то найдём такой файл размером 50. Это и будет наибольший файл при максимальном количестве файлов. Ответ получается 568 50. Второй способ с помощью Python. С помощью команды readline считываем первую строчку. С помощью команды split разбиваем строчку по пробелу на два числа. Переменная st — это список. В st[0] — будет подстрока с первым числом, в st[1] со вторым. Переменная s — это размер свободного пространства на диске, n — это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных. Заводим список b. В него будем класть элементы, которые записываем на диск. С помощью цикла пробегаемся по всем элементам. В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b. Таким образом, сможем найти максимальное количество.
Формальное решение Задания 1. Второй игрок имеет выигрышную стратегию. Докажем это и покажем эту стратегию. Для этого построим дерево партии для каждой из начальных позиции. В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке. При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33. Дерево партий для начальной позиции 8, 32. Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно. При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход. Задание 2 Формальное решение Рассмотрим начальную позицию 6,32. Заметим, что она близка к 6,33 из Задания 1. В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход. Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым. Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода. Докажем это. Таким образом, получается позиция 6,33. Как мы выяснили ранее, в позиции 6,33 тот, кто ходит, проигрывает. В нашем случае будет ход Вани. Поэтому Ваня проиграет в один ход. Аналогично в позиции 7, 32. В этой позиции согласно тем же рассуждениям, тот, кто ходит, проигрывает. Будет ход Вани, поэтому Ваня проиграет. Аналогично в позиции 8, 31. Задание 3 Обсуждение Заметим, что из ситуации 7, 31 очень легко попасть либо в ситуации 8, 31 и 7, 32 , в которых, согласно предыдущему Заданию, тот, кто ходит, выигрывает, либо в ситуации 14, 31 и 7, 62 , в которых тот, кто ходит, может выиграть в один ход, увеличив в два раза количество камней во второй кучке. Таким образом, получается, что у Вани должна быть выигрышная стратегия. При этом он может выиграть как в 2 хода первые два случая , так и в один ход вторые два случая. Формальное решение В начальной позиции 7, 31 выигрывает Ваня в один или два хода. Для этого построим дерево всех партий. Дерево всех партий для начальной позиции 7, 31. Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках. Таким образом, в начальной позиции 7, 31 у Вани имеется выигрышная стратегия, при этом Ваня выиграет в один или два хода. Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков? Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша один в два раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы.
Рубрика «Информатика варианты»
Ответ на задачу 20 : 31; 34. В задании 21 требуется найти минимальное значение S, при котором одновременно выполняются два условия: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Разбор 21 задания ЕГЭ по информатике. Также следует учесть, что иногда Ваня может вместо создания этой особой позиции просто сразу выиграть, получив 77 и более камней в кучках. Все варианты перебраны. Так как мы ищем значения s, при которых Ваня выигрывает независимо от действий Пети, то мы должны взять пересечение победных для Вани значений s из всех четырёх веток перебора. А именно взять пересечение четырёх найденных множеств: 1. Так как в условии требовалось найти минимальное подходящее s, то в ответ следует записать число 30.
Программа подходит для вводного курса алгоритмизации в 5-6 и даже более старших классах. У программы есть оффлайн-версия, которую можно использовать без доступа к Интернету. Вы можете создавать свои наборы задач, а не только использовать готовые.
Коллеги тащат то, что не приколочено... Мартынов Антон Иванович, председатель предметной комиссии по информатике Ульяновской области, опубликовал представленные здесь рекомендации по решению задач части C под своим именем в официальном аналитическом отчете Ульяновск, 2009. Актуальные публикации А.
Гильдин, С. Зайдуллина, Н.
Про русский я не знаю, были ли ровно те же тексты. Мой ребенок оба эти экзамена в 1 день сдавал Anonymous Тексты были разные 3 и 4, у нас дети сверяли. Хотя ребенок писал 3, если что сказал бы Anonymous Мой 4.
Повторов не было. У нас все 11 пополам поделили на 3 и 4. У всех экзаменов есть резервные дни для сдачи. Везде одинаковые варианты? Так что чушь не пишите Anonymous 25.
Дети рассказывают, что сегодня те же варианты. Которые они вчера узнали от сдававших вчера. А сама я и вчера не была, конечно, я не школьник Anonymous 25. Наши вчера писали, сказали, что сложно. Не смогли, не успели сделать все...
Каждая из следующих N строк содержит 2 целых числа: номер ряда и номер позиции в ряду. В ответе запишите два целых числа: сначала наибольшее количество светлых точек в чётных позициях одного ряда, затем — номер ряда, в котором это количество встречается.
Разбор задания № 26 ЕГЭ по информатике
ЕГЭ по ИНФОРМАТИКЕ 2022 | Lancman School | Разбор заданий с прошедшего ЕГЭ 2023. Задание 26 → Умение обрабатывать целочисленную информацию с использованием сортировки. |
Информатика ЕГЭ 2024 | Ишимов & Шастин – Telegram | В статье рассматривается альтернативное решение типовой задачи №26 ЕГЭ по информатике и ИКТ, отличающееся от предлагаемого разработчиками ЕГЭ. |
Задания 26. Обработка целочисленной информации — Студия Компьютерного Мастерства | Разобраны все актуальные виды заданий 26 (100+ задач) и 27 (170+ задач). Дана вся необходимая теория. |
Решение 26 задания егэ информатика. | Разбор 26 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.). |
Структура и изменения ЕГЭ — 2024 по информатике
Теперь аналогичные операции проводим с числом 30. Этому условию удовлетворяют 40 и 50. Однако максимальное заполнение архива будет при упаковки файлов 30 и 50. Максимальный из них 50.
Всё то же самое с 40, ему не хватает файла не более 60. Этому условию удовлетворяют 30 и 50. Однако максимальное заполнение архива будет при упаковки файлов 40 и 50.
Итого: наибольшее число пользователей, чьи файлы могут быть помещены в архив, равно 2, а максимальный размер имеющегося файла, который может быть сохранён в архиве, равен 50. Реализация Для начала отсортируем список files методом sort: Заведём переменные scur, отвечающую за текущую сумму, и i, которая будет одновременно хранить и кол-во пользователей, чьи файлы могут быть помещены в архив. Теперь создадим список cand, где будут храниться файлы, которые можно поместить в архив.
Просуммируем первые числа пока их сумма меньше общей суммы S и добавляем данные числа в cand. Если сумма превысит S, выходим из цикла. В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python.
Условие задания Организация купила для своих сотрудников все места в нескольких подряд идущих рядах на концертной площадке. Известно, какие места уже распределены между сотрудниками. Найдите ряд с наибольшим номером, в котором есть два соседних места, таких что слева и справа от них в том же ряду места уже распределены заняты.
Гарантируется, что есть хотя бы один ряд, удовлетворяющий условию. В ответе запишите два целых числа: номер рядя и наименьший номер места из найденных в этом ряду подходящих пар. Работа со списком.
Основы программирования. Входные данные задания 26 ЕГЭ В первой строке входного файла находится одно число: N — количество занятых мест натуральное число, не превышающее 10000.
Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Пример входного файла: 100 4 80 30 50 40 При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера: 2 50 2. Основы работы с файлами и извлечение данных Для начала научимся считывать файлы. В Python, чтобы считать файл, нужно открыть этот файл. S: Если текстовый файл лежит в одной директории с py-файлом, то достаточно указать только его имя.
В нашем случае это будет выглядеть так: Отлично, Вы открыли файл! Теперь перейдём к считыванию файла построчно! Считывание одной строки файла происходит функцией readline Замечу, что readline возвращает строку тип str! Давайте заведём переменные S сумма и N кол-во чисел Подробнее о map можно посмотреть тут Теперь давайте сделаем список размера N и заполним его содержимым из 26. Пожелание: после работы с файлом, закройте его вот так 3. Такого файла нет! Значит, мы учитываем 80 в ответ! Теперь аналогичные операции проводим с числом 30. Этому условию удовлетворяют 40 и 50.
Однако максимальное заполнение архива будет при упаковки файлов 30 и 50. Максимальный из них 50. Всё то же самое с 40, ему не хватает файла не более 60. Этому условию удовлетворяют 30 и 50. Однако максимальное заполнение архива будет при упаковки файлов 40 и 50.
Связанные страницы:.
Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз. Для случая 9 и 12 камней Вася использует стратегию, указанную в п.
Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше.
В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию.
Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней.
За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44.
Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом.
Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом. Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S.
Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19.
Везде следующим ходом выиграет Ваня, см. За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 31. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней. При меньших значениях S за один ход нельзя получить кучу, в которой больше 30 камней.
Паше достаточно увеличить количество камней на 10. При S 1. Тогда после первого хода Паши в куче будет 21 камень или 30 камней.
В обоих случаях Ваня увеличивает количество камней на 10 и выигрывает в один ход. Возможные значения S: 10, 19. В этих случаях Паша, очевидно, не может выиграть первым ходом.
В ней игрок, который будет ходить теперь это Вова , выиграть не может, а его противник то есть Паша следующим ходом выиграет. Возможное значение S: 18. После первого хода Паши в куче будет 19 или 28 камней.
Если в куче станет 28 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 19 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Вова , выигрывает своим вторым ходом.
Гость 26. Константин Лавров Да, 9 - тоже является правильным ответом. Достаточно указать хотя бы одно верное значение.
Два игрока, Паша и Вова, играют в следующую игру. Игра завершается в тот момент, когда количество камней в куче становится не менее 41. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 41 или больше камней.
Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы. Опишите выигрышную стратегию Вовы. Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова.
Для указанных значений S опишите выигрышную стратегию Паши. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы.
Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход, в узлах - количество камней в куче. При меньших значениях S за один ход нельзя получить кучу, в которой больше 40 камней.
Тогда после первого хода Паши в куче будет 31 камень или 40 камней. Возможные значения S: 20, 29. Возможное значение S: 28.
После первого хода Паши в куче будет 29 или 38 камней. Если в куче станет 38 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом.
Задание 26. Досрок 2023. ЕГЭ по информатике — Video
В решении этой задачи мы сначала записываем свободное место в переменную, а затем сортируем массив с файлами по возрастанию. Начинаем заполнять массив пока место не закончится (оно гарантированно закончится раньше). За это задание вы можете получить 2 балла на ЕГЭ в 2024 году. Задание 6 в 2023 году будет посвящено анализу алгоритма для конкретного исполнителя, определению возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов. Задание 6 в 2023 году будет посвящено анализу алгоритма для конкретного исполнителя, определению возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов.