Новости фрактал в природе

Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! Деревья, как и многие другие объекты в природе, имеют фрактальное строение.

Открытие первой фрактальной молекулы в природе — математическое чудо

Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского». Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала. нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Фракталы часто встречаются в природе.

Загадочный беспорядок: история фракталов и области их применения

Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. А разнообразие видов фракталов в природе значительно больше того, что могут дать результаты компьютерных вычислений. Это и есть яркое проявление фрактальной геометрии в природе. Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Любопытные фото природы, которые успокоят

Фракталом в трейдинге принято называть локальный экстремум, состоящий из нескольких баров. Стрелками на графике показаны фракталы, которые являются экстремумами — то есть, локальными минимумами или максимумами на текущем графике. Билл Уильямс определяет, что: для образования верхнего фрактала бар должен иметь самый высокий максимум по сравнению с 2-мя барами слева и 2-мя барами справа; для образования нижнего фрактала бар должен иметь самый низкий минимум по сравнению с 2-мя барами слева и 2-мя барами справа. Как следствие, фракталы не могут появиться на самом правом краю графика.

Для его образования, нужно, как минимум, 5 баров. С целью построения стратегии торговли, основанной на фракталах, Билл Уильямс вводит также правила сигнального и стартового фракталов. По классике Билла Уильямса, фракталы предлагается торговать на пробой идея отображена на картинке ниже.

Своей карьерой трейдера, и многочисленными примерами успехов последователей, Билл Уильямс подтвердил состоятельность подхода, основанного на фрактальности и подобию окружающему миру. Можно улучшить ли торговлю по фракталам, используя современные программные решения для анализа рынков? Прибыльная торговля по фракталам с помощью анализа объемов Основная проблема торговли по фракталам — это многочисленные пробои фракталов-экстремумов.

По классической теории, трейдерам рекомендуется располагать стоп-лоссы за максимумы и минимумы на текущем графике.

В целом, бинарный поиск напоминает принцип Кантора, где на каждой итерации получается вдвое больше разветвлений отрезков. Всё это — ещё одна иллюстрация самоподобия, о котором мы говорили ранее. Алгебраические фракталы Алгебраические фракталы, в отличие от геометрических, основываются на формуле, а не на фигурах, но также рекурсивно итерируются. Выглядят они ещё более причудливо, чем те, что мы рассмотрели выше. Остановимся на комплексных числах. Вы наверняка знаете, что извлекать квадратный корень из отрицательных чисел нельзя — это следует из того, что любое отрицательное число в квадрате является положительным. Логика железная и справедливая, но лишь для действительных чисел.

Вот здесь-то и ломается привычная арифметика. Нас ведь с пятого класса учили, что из отрицательных чисел квадратный корень не извлечь», — скажете вы и будете правы! Да, такая запись на первый взгляд кажется парадоксальной, и многие математики на первых порах с подозрением относились к подобной «магии». Но именно она в XVI веке помогла решить некоторые проблемные кубические уравнения. А потом комплексные числа нашли применение и в других областях, например в тригонометрии. Возвращаемся к нашему Мандельброту. Небольшая шпаргалка, чтобы напомнить, о чём шла речь: Изображение: Лев Сергеев для Skillbox Media Суть фрактала Мандельброта та же, что и у предыдущих: на каждой новой итерации мы используем значение функции из предыдущего шага. В результате получаются невероятные картины!

Приближаясь к любым координатам множества Мандельброта, вы увидите всё новые и новые бесконечные узоры, которые напоминают изначальный вариант. Рассматривать и изучать такие фракталы можно бесконечно. Поэтому при разных значениях C, фрактал Жюлиа можно визуализировать по разному, например так: Изображение: Лев Сергеев для Skillbox Media Стохастические фракталы Если в геометрических и алгебраических фракталах формула постоянна, то в стохастических она меняется — и не один раз. Изменение может проходить как по конкретному закону, так и произвольно, но в обоих случаях это приводит к фантастическому визуальному эффекту! Следующее изображение основано на нескольких фрактальных формулах: Изображение: Лев Сергеев для Skillbox Media С помощью сложных стохастических законов учёные могут воспроизводить структуры объектов живой природы. Добавляя отклонения на различных итерациях к таким фракталам, как дерево Пифагора, или снежинка Коха, мы можем получить изображение наклонившейся листвы или сгенерировать сколько угодно неповторимых снежинок.

Вот здесь-то и ломается привычная арифметика. Нас ведь с пятого класса учили, что из отрицательных чисел квадратный корень не извлечь», — скажете вы и будете правы! Да, такая запись на первый взгляд кажется парадоксальной, и многие математики на первых порах с подозрением относились к подобной «магии». Но именно она в XVI веке помогла решить некоторые проблемные кубические уравнения. А потом комплексные числа нашли применение и в других областях, например в тригонометрии. Возвращаемся к нашему Мандельброту. Небольшая шпаргалка, чтобы напомнить, о чём шла речь: Изображение: Лев Сергеев для Skillbox Media Суть фрактала Мандельброта та же, что и у предыдущих: на каждой новой итерации мы используем значение функции из предыдущего шага. В результате получаются невероятные картины! Приближаясь к любым координатам множества Мандельброта, вы увидите всё новые и новые бесконечные узоры, которые напоминают изначальный вариант. Рассматривать и изучать такие фракталы можно бесконечно. Поэтому при разных значениях C, фрактал Жюлиа можно визуализировать по разному, например так: Изображение: Лев Сергеев для Skillbox Media Стохастические фракталы Если в геометрических и алгебраических фракталах формула постоянна, то в стохастических она меняется — и не один раз. Изменение может проходить как по конкретному закону, так и произвольно, но в обоих случаях это приводит к фантастическому визуальному эффекту! Следующее изображение основано на нескольких фрактальных формулах: Изображение: Лев Сергеев для Skillbox Media С помощью сложных стохастических законов учёные могут воспроизводить структуры объектов живой природы. Добавляя отклонения на различных итерациях к таким фракталам, как дерево Пифагора, или снежинка Коха, мы можем получить изображение наклонившейся листвы или сгенерировать сколько угодно неповторимых снежинок. Фрактальная графика На принципе самоподобия основано целое направление в компьютерной графике. При таком подходе компьютер хранит не готовый объект, а лишь формулу его отрисовки, что значительно экономит память. Таким образом, появляется возможность рисовать конкретные объекты и абстрактные 3D-модели, описывая лишь часть итогового изображения. Например, можно сгенерировать известный папоротник Барнсли, указав формулу для построения одной ветви, количество итераций и добавив хаотичные изменения на последующих итерациях: Закон, описывающий папоротник Барнсли Изображение: Лев Сергеев для Skillbox Media Изображение, сгенерированное по формуле Барнсли Изображение: Лев Сергеев для Skillbox Media Фракталы в физике Принципы построения фракталов используются в физике, в таких разделах, как гидродинамика, физика плазмы, электродинамика и радиоэлектроника. Одно из самых заметных изобретений в этой области — фрактальная антенна, которая была разработана американским инженером Натаном Коэном в 1995 году. Главное преимущество такой антенны заключается в её широком диапазоне рабочих частот. А ещё она занимает намного меньший размер, чем аналоги классической формы, и может выступать в качестве основы для подводных антенн.

Тем более что так называемые "регулярные", в которых структуры повторяются почти в точности на всех масштабах, очень сложны с геометрической точки зрения. Это микробный фермент, отвечающий за клеточный метаболизм в цианобактериях Synechococcus elongatus, фотосинтезирующих бактериях, которые живут как в воде, так и на суше. Самостоятельная сборка треугольников Серпинского Исследователи объясняют, что фермент, точную форму которого им удалось обнаружить, спонтанно образует треугольники Серпинского. Это фрактальный объект, состоящий из основного треугольника, состоящего из более мелких треугольников Серпинского, каждый из которых сам делится на еще более мелкие варианты, и так далее. По словам ученых, по мере развития фрактальной структуры треугольные пустоты становятся все больше и больше. Они утверждают, что никогда раньше не наблюдали подобной сборки белков. Сборка белков, как правило, очень симметрична, поскольку белковая цепочка копирует положение своих соседей. В случае с изученным ферментом сборка демонстрирует асимметрию, которая и лежит в основе фрактальной структуры.

Фракталы в природе

Однако на микроскопическом уровне фрактальные узоры никогда ранее не наблюдались. Тем более что так называемые "регулярные", в которых структуры повторяются почти в точности на всех масштабах, очень сложны с геометрической точки зрения. Это микробный фермент, отвечающий за клеточный метаболизм в цианобактериях Synechococcus elongatus, фотосинтезирующих бактериях, которые живут как в воде, так и на суше. Самостоятельная сборка треугольников Серпинского Исследователи объясняют, что фермент, точную форму которого им удалось обнаружить, спонтанно образует треугольники Серпинского. Это фрактальный объект, состоящий из основного треугольника, состоящего из более мелких треугольников Серпинского, каждый из которых сам делится на еще более мелкие варианты, и так далее. По словам ученых, по мере развития фрактальной структуры треугольные пустоты становятся все больше и больше.

Они утверждают, что никогда раньше не наблюдали подобной сборки белков. Сборка белков, как правило, очень симметрична, поскольку белковая цепочка копирует положение своих соседей.

Ветви деревьев имеют сложную структуру, которая может быть разделена на множество более мелких ветвей, каждая из которых является копией всего дерева. Эта структура позволяет деревьям эффективно собирать солнечный свет и питательные вещества из почвы. Еще одним примером фракталов в природе является грозовая туча. Грозовые тучи имеют сложную структуру, которая может быть разделена на множество более мелких туч, каждая из которых является копией всей тучи. Эта структура позволяет грозовым тучам эффективно переносить воду из одного места в другое. Фракталы - это не просто геометрические фигуры, они имеют множество интересных свойств и приложений в науке и технологии.

Например, фракталы используются в компьютерной графике и анимации для создания реалистичных текстур и эффектов. Они также используются в медицине для анализа сложных структур, таких как легкие или кровеносные сосуды. Фракталы имеют свойство самоподобия, что означает, что они выглядят одинаково на разных масштабах.

Есть много примеров фракталов, с которыми мы сталкиваемся в повседневной жизни. Ананасы растут по фрактальным законам, а кристаллы льда образуют похожие фрактальные формы. Фракталы позволяют растениям максимизировать воздействие солнечного света. Они позволяют сердечно-сосудистым системам эффективно доставлять кислород ко всем частям тела.

Здесь мы приводим 9 удивительных и красивых примеров фракталов в природе. Склонность этого овоща к ускоренному образованию бутонов обуславливает спиралевидный рисунок и коническую форму. Верхушка становится все выше и выше по мере роста Романеско. Другие золотые спирали в природе — это спиральные галактики и раковины наутилусов. Вы, несомненно, заметили приятную спираль их чешуи, за которой прячутся семена. Они плотно закрываются, когда сыро или холодно, а затем раскрываются, когда наступает оптимальная погода для распространения семян по ветру.

А если мы уменьшим масштаб? Выяснится, что притоков этих намного больше. Не только у самой Волги, но и у Оки и Камы. А у них есть и свои притоки, только более мелкие.

А у тех — свои. Возникает структура, удивительно похожая на кровеносную систему человека. И опять возникает вопрос. Какова протяженность всей этой водной системы? Если измерять протяженность только основного русла — все понятно. В любом учебнике можно прочитать. А если все измерять? Опять в пределе бесконечность получается. Наша Вселенная Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно. Но давайте посмотрим на нее поближе.

И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики звездные скопления , где-то — пустота. Почему распределение материи подчиняется иррегулярным иерархическим законам. А что происходит внутри галактик еще одно уменьшение масштаба. Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то — нет. Не проявляется ли здесь фрактальная сущность мира? Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами.

К практическим делам Подобных примеров можно приводить много. Но давайте вернемся к более прозаическим вещам. Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем. Пример тому — фондовые рынки. Практика показывает, что экономические процессы носят зачастую хаотичный, непредсказуемый характер. Существовавшие до сегодняшнего дня математические модели, которые пытались эти процессы описывать, не учитывали одного очень важного фактора — способность рынка к самоорганизации. Вот тут на помощь и приходит теория фракталов, которые имеют свойства «самоорганизации», воспроизводя себя на уровне разных масштабов. Конечно, фрактал является чисто математическим объектом.

И в природе, да и в экономике, их не существует. Но есть понятие фрактальных явлений. Они являются фракталами только в статистическом смысле. Тем не менее симбиоз фрактальной математики и статистики позволяет получить достаточно точные и адекватные прогнозы. Особенно эффективным этот подход оказывается при анализе фондовых рынков. И это не «придумки» математиков. Экспертные данные показывают, что многие участники фондовых рынков тратят немалые деньги на оплату специалистов в области фрактальной математики. Что же дает теория фракталов? Она постулирует общую, глобальную зависимость ценообразования от того, что было в прошлом. Конечно, локально процесс ценообразования случаен.

Что такое фрактал? Фракталы в природе

Одно из самых ранних применений фракталов появилось задолго до того, как этот термин был введен. Льюис Фрай Ричардсон — английский математик начала XX века прославился тем, что изучал протяженность береговой линии Англии. Он рассудил , что длина береговой линии зависит от длины инструмента измерения. Чем меньше размер инструмента, который вы используете, тем длиннее получается линия. Все из-за того, что при уменьшении масштаба вы начинаете учитывать все больше неровностей. Доведите это до логического завершения, и в итоге вы получите бесконечно длинную береговую линию, содержащую конечное пространство. Это похоже на парадокс, выдвинутый Хельге фон Кохом и формулированный в Снежинке Коха. Напомним, чтобы построить Снежинку Коха, нужно взять треугольник и превратить центральную треть каждого сегмента в треугольную выпуклость таким образом, чтобы фрактал был симметричным. Каждый выступ, конечно, длиннее исходного сегмента, но все же содержит конечное пространство внутри. Математик Бенуа Мандельброт увидел использовал этот пример для изучения концепции фрактальной размерности.

Попутно он доказал, что длина береговой линии напрямую зависит от того, как сильно вы будете приближать ее. Виды фракталов Абстрактное самоподобное множество представить сложно. Наверняка вы задались вопросом: «А какими они вообще бывают, эти фракталы? Геометрические Здесь все начинается с простой детали — строится такой фрактал от обычной геометрической фигуры. Прямо на этой основе чертится фрагмент, затем снова, и снова... И каждый раз уменьшается масштаб. На самом деле этот вид бесконечных множеств весьма прост для понимания и воплощения: любой школьник может удивить своего учителя по математике, нарисовав в тетради геометрический фрактал. И даже те, кто далёк от точных наук, смогут найти что-то для себя — в изобразительном искусстве геометрические фракталы использовали Джексон Поллок, Луис Уэйн, Мауриц Корнелис Эшер и другие художники. Весьма простые алгоритмы могут стать почвой для самого причудливого и ветвистого «дерева», которое вы когда-либо видели.

Нужно только начертить график. Типовым примером алгебраического фрактала считается множество Мандельброта. Для его построения используют комплексные числа. Если в процессе итерации это повторение каких-либо действий, не приводящее к вызовам самих себя случайным образом менять любые параметры, получится такой фрактал. Именно поэтому такой тип множества не визуализируется вручную — только в программе.

Так было, пока за них не взялся Бенуа Мандельброт - отец современной фрактальной геометрии и слова «фрактал». Постепенно сопоставив факты, он пришёл к открытию нового направления в математике - фрактальной геометрии. Рисунок 1. Создатель фракталов - Бенуа Мандельброт. Что же такое фрактал? Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый поделенный на части. И одно из определений фрактала - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого по крайней мере, приблизительно. Фракталы — это нечто гораздо большее, чем математический курьёз. Они дают чрезвычайно компактный способ описания объектов и процессов. Если рассматривать эти объекты в различном масштабе, то постоянно обнаруживаются одни и те же фундаментальные элементы. Эти повторяющиеся закономерности определяют дробную, или фрактальную, размерность структуры. Фрактальная геометрия описывает природные формы изящнее и точнее, чем Еклидова геометрия. Рисунок 2. Книга Мальдеброта. Фракталы — это прежде всего язык геометрии. Однако их главные элементы недоступны непосредственному наблюдению. В этом отношении они принципиально отличаются от привычных объектов евклидовой геометрии, таких как прямая линия или окружность. Фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур. Эти алгоритмы трансформируются в геометрические формы с помощью компьютера. Овладев языком фракталов, можно описать форму облака так же чётко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии. Язык — это очень подходящая метафора для концепции, лежащей в основе фрактальной геометрии. Буквы не несут в себе никакого смыслового значения до тех пор, пока они не соединены в слова. Точно так же евклидова геометрия состоит лишь из нескольких элементов прямая, окружность и т. Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б. Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки, мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра - мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно - длина берега Британии бесконечна. Оно может употребляться, когда рассматриваемая фигура обладающая какими-либо из перечисленных ниже свойств: - обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур таких, как окружность, эллипс, график гладкой функции : если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину; - является самоподобной или приближённо самоподобной; - обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке например, множество Кантора.

Математик-лингвист Ноам Хомский доказал, что грамматики всех языков универсальны имеют общие стратегические черты. Эти и другие факты позволили лингвистам создать универсальную математическую модель человеческих языков, которая оказалась похожей на дерево. Существует математическая модель генетических текстов кодов. Все они имеют общее происхождение и общие черты, которые можно изобразить в виде дерева. Интересно, что сравнение обнаруживает полное сходство деревьев языков и генетических текстов. Возможно, человек подобен памятной книге, в которой пишут отзывы все желающие, в том числе и он сам. Эти тексты не только формируют его личность, но и впечатываются в ДНК. Говоря о микроэволюции часто пользуются широко принятой аналогией между филетической группой и деревом. Филетическое видообразование можно сравнить с ростом ветвей. Время от времени побеги дерева постригаются, лишая их дальнейшего роста, по некоторым правилам: убираются ветви расположенные на максимальной высоте, нередко отсекаются побеги одной крупной ветви, включающей в себя множество мелких ветвей и веточек. Дерево научного знания в аксиоматической теории М. Эйдельмана - эквивалент библейского дерева познания добра и зла. Корни - первичные понятия и определения, аксиомы и постулаты, ветви - теоремы вторичных законов и их следствия, плоды - непротиворечивое описание языком природы множества объектов и явлений, включая техногенные. Как одно из наиболее древних, интуитивно найденных средств восстановления внешней фрактальности, может рассматриваться искусство. В частности, обнаружено, что вариации силы и высоты звучания классической и народной музыки демонстрируют отчетливо самоподобие. Можно убедиться, что этим свойством обладает и масштабная структура классических архитектурных сооружений. Прослушивание музыкальных произведений, начиная со средних веков, успешно используется в качестве особого метода терапии, получившего название "музыкопея". Как отмечено автором первого исследования фрактальных свойств музыки, причина ее красоты и гармоничности может состоять в том, что музыка "имитирует характерный способ изменения окружающего нас мира во времени". В развитие этой мысли можно добавить, что критерии эстетичности в искусстве, по-видимому, обусловлены и "фракталами внутри нас", создающими потребность в адекватном режиме взаимодействия живой системы с внешней средой. Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях. Она имеет место в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной. Фрактальным строением обладает огромное число объектов и процессов в окружающем нас мире. Несмотря на внешнее разнообразие встречающихся в природе самоподобных паттернов, все они обладают общей количественной мерой - фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается. Рост и формы крон деревьев. Геометрическая модель фрактального листа папоротника. Элементы разных масштабных уровней, заключенные в рамки, и лист как целое обладают взаимоподобной топологией. Наглядный пример фрактала - лист папоротника. Он имеет ветвящуюся многомасштабную структуру с отчетливо выраженным самоподобием: форма повторяется при увеличении масштаба, фрактальная размерность составляет примерно 1,5. Белый шум, вне зависимости от физической природы колебательного процесса, имеет чисто случайный характер. Спектр мощностей - прямая, параллельная оси частот, так как колебания любой частоты равновероятны. Огромное число объектов и процессов в Природе обладает фрактальным строением.

Мы с вами тоже. Бесконечное самоподобие. И если понять принцип фрактальности — открывается огромнейший горизонт для нового взгляда на мир и на место человека в нём. Мозг — одно из самых удивительных и уникальных творений природы. Оказывается, что внешне он имеет те же фрактальные признаки, что и атмосферная облачность или корневая система крапивы. Выраженной фрактальной структурой обладают дендриты — отростки от нейронов. При увеличении видно, что каждый из них имеет свои отростки, от которых, в свою очередь, отходят еще более мелкие… Космические фотографии земных ландшафтов часто дают отличные примеры фракталов.

Случайность как художник: учёные обнаружили первую фрактальную молекулу

В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Анимация фракталов, изменение фракталов в пространстве, медитация, фрактальная графика. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев.

Фрактальные закономерности в природе

Международная группа ученых обнаружила первую в природе молекулу, которая является регулярным фракталом. Парк онлайн весной 2021. Фракталы в природе. Автор Мануйленко Никита. Давай лучше рассмотрим дизайн фракталов в природе и науке, чтобы вернуть себе веру в волшебство. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Фото: Фракталы в природе молния.

Похожие новости:

Оцените статью
Добавить комментарий