Новости коэффициент джини показывает

Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500.

Коэффициент Джини: формула неравенства

Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. вы делаете те новости, которые происходят вокруг нас. Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе.

Ваш пароль

Чем он ближе к нулю, тем более равномерное распределение доходов; чем ближе коэффициент Джини к единице, тем больше доходы концентрируются самой богатой группой граждан. Страны европейского блока, такие как Чехия, Швеция, Норвегия, Дания, Словения, имеют более низкий коэффициент Джини, в пределах 0,2 до 0,3. Сложившаяся сегодня в России модель социальной стратификации характеризует в высшей степени дифференцированное общество. В 1991 году децильный коэффициент составлял 4,5 раза; в 1992 — уже 8,0 раз; в 1994 году наблюдалась его рекордная величина за всё время реформ — 15 раз, в последние годы — в среднем 14 раз. Мировая практика подтверждает, что опасность социальных конфликтов сводится к минимуму, если разрыв между доходами богатых и бедных не превышает 10 раз.

Верхний слой российского общества неоднороден, к нему относятся члены правительства, занимающиеся экономикой; министры и их заместители; руководители крупнейших государственных и полугосударственных компаний; руководители новых коммерческих структур; консультанты экономических общественных организаций; ведущие учёные и экономисты; лица, сотрудничающие или принадлежащие к криминальному миру, высококвалифицированные специалисты. Среди богатых людей более половины являются руководителями первого уровня. В дореформенный период высокое служебное положение обеспечивало возможность контроля над собственностью и право на привилегии, а на сегодняшний день — присвоение собственности и доходов. Элита от французского elite — «лучшая, отборная часть».

В теории элит выделяют экономическую, политическую и духовную элиты.

Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере.

Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy.

Чем меньше значение этого показателя, тем лучше работает прогнозная модель. Коэффициент используется в скоринговых моделях и машинном обучении в таких секторах, как банковское кредитование, страхование, маркетинг. Коэффициент Джини — статистический показатель меры расслоения доходов или богатства общества. Измеряется по шкале от 0 до 1, где ноль означает полное равенство, а единица — полное неравенство.

Например, в 2018 году в Гвинее индекс был 29,6, а в развитой Германии — 31,7; джини рассматривает распределение денежных доходов, в то время как иногда работникам могут выдавать зарплату продуктами, опционами на акции компании и так далее. Не говоря о том, что серая зарплата тоже остается за рамками расчета; статистические организации опираются на разные данные и используют разные подходы, в результате индекс Джини для одной страны может отличаться. Например, по данным Росстата, в 2017 году в России индекс был 41,3, а по расчетам Всемирного банка — 37,7; коэффициент Джини может работать некорректно для нерыночных экономик, где доходы концентрируются не у предпринимателей, а у государства, и могут возвращаться народу в виде социальных благ. Коэффициент Джини, который учитывает именно доходы граждан, в этом случае будет завышен. Индекс Джини обнажает проблемы неравенства. Из-за этого его иногда ошибочно трактуют как индикатор справедливости распределения богатства. Но равномерно не значит справедливо. В условиях рыночной экономики, когда доходы распределяются конкурентным путем, эталонного уровня индекса не существует. Джини и прочие методики лишь помогают отслеживать социальные диспропорции и оценивать эффективность действий властей в борьбе с неравенством. А вопрос справедливости лежит вне области статистики. Среди преимуществ коэффициента Джини выделяют: Простота интерпретации. Коэффициент Джини - простой и легко интерпретируемый показатель. Он предоставляет наглядное представление о степени неравенства в распределении доходов. Возможность сравнения. Он позволяет сравнивать уровень неравенства между разными странами, регионами и временными периодами, что облегчает анализ динамики и международных различий. Широкое применение. Используется в различных областях, включая экономику , социологию, исследования бедности и общественные науки. Устойчивость к масштабу. Коэффициент Джини устойчив к изменениям масштаба, что делает его применимым при сравнении обществ и групп людей различного размера.

Как рассчитать коэффициент Джини в Excel (с примером)

Книга Лакнера и Милановича показывает снижение неравенства примерно в начале 21 века, как и книга Бургиньона 2015 года: Источник: Всемирный банк. Экономический рост в Латинской Америке, Азии и Восточной Европе во многом стал причиной недавнего снижения неравенства доходов. В то время как неравенство между странами в последние десятилетия снизилось, неравенство внутри стран возросло. Коэффициент Джини для стран мира Ниже приведены коэффициенты Джини дохода для каждой страны, данные по которой представлены Всемирным Банком: Некоторые из беднейших стран мира Центральноафриканская Республика имеют одни из самых высоких в мире коэффициентов Джини 61,3 , в то время как многие из самых богатых Дания имеют одни из самых низких 28,8. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и эта взаимосвязь менялась с течением времени. Михаил Моатсос из Утрехтского университета и Джоэри Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения.

С 1950 по 1970 год неравенство имело тенденцию к снижению, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения , а затем резко сократилось. Три графика, показывающие поведение ВВП в три разных момента времени. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен.

Недостатки коэффициента Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране.

Ниже приведены некоторые из основных факторов, которые оказывают влияние на неравенство доходов в России: Различия в заработной плате Одним из основных факторов, влияющих на неравенство доходов, являются различия в заработной плате. В России существует значительное различие в заработной плате между разными профессиями и отраслями экономики. Некоторые профессии, такие как финансовые специалисты и менеджеры, получают значительно более высокую заработную плату, чем рабочие в сфере обслуживания или сельском хозяйстве. Образование и квалификация Уровень образования и квалификация также оказывают существенное влияние на неравенство доходов.

Люди с высшим образованием и специализированными навыками обычно имеют больше возможностей для получения высокооплачиваемой работы и, следовательно, зарабатывают больше. В то же время, люди с низким уровнем образования и ограниченными навыками часто оказываются на низкооплачиваемых работах и имеют меньше возможностей для повышения своего дохода. Региональные различия Россия — это огромная страна с различными регионами, и неравенство доходов может существенно различаться в разных частях страны. Некоторые регионы, такие как Москва и Санкт-Петербург, имеют более высокий уровень доходов и лучшие возможности для работы и развития, в то время как другие регионы, особенно сельская местность и отдаленные районы, могут страдать от низкого уровня доходов и ограниченных возможностей. Неравенство в собственности и бизнесе Неравенство доходов также связано с неравенством в собственности и бизнесе. Богатые люди и предприниматели имеют больше возможностей для создания и развития своего бизнеса, что позволяет им зарабатывать больше денег. В то же время, люди без собственности или с ограниченными возможностями для предпринимательства могут оказаться в более уязвимом положении и иметь меньше возможностей для улучшения своего дохода.

Социальные и политические факторы Социальные и политические факторы также могут оказывать влияние на неравенство доходов. Например, наличие социальных программ и государственной поддержки может помочь снизить неравенство доходов, предоставляя бедным и уязвимым группам населения доступ к основным услугам и возможностям. В то же время, политические реформы и изменения в экономической политике могут также влиять на неравенство доходов, создавая новые возможности или ограничивая доступ к ресурсам и возможностям. В целом, неравенство доходов в России является сложным и многогранным явлением, которое обусловлено различными факторами. Понимание этих факторов помогает нам лучше понять причины и последствия неравенства доходов и разработать эффективные меры для его снижения. Последствия неравенства доходов в России Неравенство доходов в России имеет серьезные последствия для общества и экономики. Вот некоторые из них: Социальные проблемы Неравенство доходов может привести к социальным проблемам, таким как бедность, безработица и социальное неравенство.

Люди с низкими доходами могут испытывать трудности в доступе к основным услугам, таким как образование, здравоохранение и жилье. Это может привести к ухудшению качества жизни и увеличению социального неравенства. Экономические последствия Неравенство доходов может оказывать негативное влияние на экономику. Когда большая часть доходов сосредоточена у небольшой группы людей, это может привести к снижению потребительского спроса и ограничению рынка для товаров и услуг. Это может замедлить экономический рост и развитие страны.

To have "not available" values in the database treated as zero within your formula, use the NA function. Later if you wish to see or change the formula for an indicator you have created, from the right side current selection panel click the Edit. Use the DEL key to delete the last entry and step backwards to edit the formula. Click the Clear button to erase the custom indicator formula. Note: Validation will verify a formula for proper syntax only. Derived indicators may yield inappropriate results and caution should be observed. These rules apply only to custom country groups you have created. They do not apply to official groups presented in your selected database. For each selected series, choose your Aggregation Rule and Weight Indicator if needed from the corresponding drop-down boxes. Check the Apply to all box if you wish to use the same methodology for all selected series.

Очевидно, что нет. Также очевидно, что без вмешательства государства здесь не обойтись. Ведь именно государство призвано сглаживать неравенство в доходах населения, чтобы не допустить чрезмерного социального расслоения и напряжённости в обществе. Однако чрезмерное вмешательство государства в перераспределение и выравнивание доходов заметно снижает эффективность производства, поскольку растущие налоги подавляют интерес бизнесменов к предпринимательской активности, а всевозрастающая социальная помощь бедным слоям населения снижает у них тягу к поиску работы и энергичному труду. На первый взгляд, равенство выглядит более справедливым и соблазнительным, но, как мы уже говорили, оно подрывает стимулы к труду как у «богатых», так и у «бедных», и позволяет приспосабливаться менее способным и менее трудолюбивым жить за счёт других. Рисунок 1 — Противоречие между равенством и эффективностью в рыночной экономике Сталкиваясь с этим противоречием, каждое общество должно решить для себя два главных вопроса. Разные ответы на эти вопросы раскрывают и одно из главных различий между капитализмом и социализмом. Тем не менее, проблему оптимальности размеров перераспределения доходов государством вынуждены решать многие общества. Необходимо помнить, что вмешательство государства должно быть осторожным и гибким. Что же касается неравенства доходов, то получается, что оно не только неизбежно, но даже необходимо. Для поощрения трудовой активности людей: чтобы расслабленные и ленивые хотели брать пример с усердных и волевых. Кривая Лоренца С целью оценки эффективности своего вмешательства государство должно иметь возможность объективно оценить степень неравенства в распределении доходов различных групп населения страны. На сегодняшний день для этого используют модель американского экономиста Макса Лоренца. Кривая Лоренца иногда её называют «лук Лоренца» иллюстрирует, насколько велико расслоение доходов в обществе.

Некоторые равнее: что такое коэффициент Джини и зачем он нужен

Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе.

Какие страны и почему отличаются высоким показателем джини география реферат

Построенные нами модели показывают группу риска и сумму требования всех полисов в них в предикации. В итоге мы создали три столбца: первый — рейтинг риска от 1 до 10, второй — сумма денег, которую претендовала группа полисов в одной модели, и второй столбец — то же самое, но результат второго модель. Итак, кадр данных выглядит так: Следующий код генерирует область, которая будет отображаться на кривой Лоренца для каждого результата модели. Теперь в DataFrame добавлены столбцы. Выводы: С точки зрения примера, индекс Джини показывает, что модель A лучше с точки зрения результатов, чем модель B. Вы также можете видеть на кривой Лоренца, что модель A предсказывает более высокую группу риска, больше денег, чем модель B. И, конечно же, коэффициент площади модели А больше коэффициента модели В, а значит, дисперсия фактический рейтинг модели при прогнозировании рискованной политики лучше.

Кривая Лоренца строится в прямоугольной системе координат. На оси абсцисс откладываются накопленные частоты объёма совокупности, а на оси ординат — накопленные частоты объёма признака. Полученная кривая и будет характеризовать степень концентрации.

Такое распределение отображается прямой, проходящей из нижнего левого угла графика к верхнему правому углу и являющейся линией равномерного распределения.

Чем выше значение индекса Джини — тем выше уровень социального неравенства в государстве. Коэффициент Джини показателен не только в абсолютном значении, но и в динамике: если он растет — уровень социального неравенства растет, если падает — соответственно, падает. Коэффициент Джини по странам мира и в России На следующей инфографике представлены значения индекса Джини, расчитанные аналитиками Всемирного банка по состоянию на 2023 год, а также десятка стран с наибольшим значением коэффициента.

Также, как и кривая абсолютного равенства, кривая абсолютного неравенства имеет сугубо теоретический смысл, пока что история не знает реальных примеров стран, где было бы абсолютное равенство или абсолютное неравенство. Эти линии мы построили только для того, чтобы ориентироваться, к какой из этих крайностей ближе кривая Лоренца для страны Казыстан. Теперь, когда у нас есть с чем сравнивать, становится понятно: чем дальше от красной линии или чем ближе к синей линии находится кривая Лоренца — тем более неравномерно распределены доходы. Возникает вполне логичный вопрос: а нет ли какого-то количественного показателя, который бы показывал уровень неравенства? Такой показатель есть, в 1912 году его вывел итальянский статистик Коррадо Джини 1884-1965 , в честь которого и назван коэффициент. Если мы представим себе, что площадь этого треугольника изображает совершенно неравномерное распределение доходов населения, то площадь фигуры между кривой Лоренца для Казыстана и кривой абсолютного равенства изображает неравенство в Казыстане. Тогда, если мы разделим неравенство Казыстана на абсолютное неравенство площадь треугольника АBC , то узнаем, какую долю неравенство в Казыстане составляет от абсолютного неравенства.

Среди населения России растет доходное неравенство: почему ускорился этот процесс?

Одни люди богаче, другие — беднее, поэтому доли дохода не соразмерны долям общества. Тогда кривая будет отклоняться в сторону оси Х. И чем больше неравенства в стране, тем более вогнутой будет кривая. Рис 1. Кривая Лоренца Рис 1.

Кривая Лоренца Государство часто пытается выровнять кривую за счёт прогрессивной ставки подоходного налога и развития социальных программ. Так оно перераспределяет доходы внутри общества, чтобы снизить экономическое неравенство. Чтобы получить коэффициент Джини, надо: Посчитать площадь фигуры Т , которая образована линией абсолютного равенства и кривой Лоренца. Посчитать площадь треугольника OFE.

Разделить площадь Т на площадь OFE. Если доходы распределены равномерно, то показатель будет равен 0, если всё принадлежит одному человеку, то — 1. В целом чем ниже коэффициент Джини, тем лучше, тем меньше в стране экономическое неравенство. В 1991 году коэффициент Джини равнялся 0,26, а в 1993 году после перехода к рыночному механизму регулирования экономики — уже 0,498.

Однако в реальности он, вероятно, был ещё выше, потому что в то время большую часть доходов не декларировали. За два года общество сильно расслоилось: появились богатые люди и бедные. Сейчас индекс Джини в России равен 0,417 последние данные на начало 2018 года. Данные Росстата, Всемирного банка и других организаций обычно отличаются.

Вот как он изменялся: 32 Источник данных. Всемирный банк посчитал индекс Джини в России по-другому: по его данным он снижается с 1996 года и составляет 0,377 последние данные на 2015 год. Динамика коэффициента Джини, 1996-2015 года. В других странах индекс Джини такой источник : Рис.

Индекс Джини в странах мира данные на 2016 год.

Итак, кадр данных выглядит так: Следующий код генерирует область, которая будет отображаться на кривой Лоренца для каждого результата модели. Теперь в DataFrame добавлены столбцы. Выводы: С точки зрения примера, индекс Джини показывает, что модель A лучше с точки зрения результатов, чем модель B. Вы также можете видеть на кривой Лоренца, что модель A предсказывает более высокую группу риска, больше денег, чем модель B. И, конечно же, коэффициент площади модели А больше коэффициента модели В, а значит, дисперсия фактический рейтинг модели при прогнозировании рискованной политики лучше. Индекс Джини с кривой Лоренца также может быть эффективен при сравнении результатов двух моделей. Если предположить, что вы хотите предсказать риск утверждение полиса , и в приведенном выше примере мы показываем сравнение между результатами прогнозирования политик, кривая Лоренца очень хорошо наглядно показывает преимущество результатов одной модели по сравнению с другими.

Чем ближе показатель к нулю, тем меньше доходное неравенство. Кандидат экономических наук, доцент кафедры корпоративных финансов и корпоративного управления Финансового университета при Правительстве РФ Ольга Борисова объяснила в беседе с «Новыми Известиями», что у усиления такого неравенства есть несколько причин. Кратковременное сокращение доходов персонала, работающего на начало 2023 г. Значительное их количество закрывало свои точки в России, отправляя персонал в отпуск или переводя на выплаты МРОТ на неопределенный срок, пока не находили фирму-покупателя в стране. Неравномерность роста заработка по отраслям.

Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами. Можно также встретить его другие названия, например, индекс Джини, индекс справедливости, индекс социального неравенства. Изначально данная модель оценки финансового неравенства между слоями населения была разработана и предложена итальянским статистиком и демографом Коррадо Джини в 1912 году в работе под названием «Вариативность и изменчивость признака» известна также как «Изменчивость и непостоянство» , в честь которого впоследствии и была названа. Данный коэффициент показывает отклонение фактического распределения доходов между разными социальными группами от абсолютно равного.

Индекс Джини и неравенство доходов

А именно, через кривую Лоренца. Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2]. И на её основании можно вывести коэффициент Джинни. Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини.

Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие.

Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом. Создадим искусственную бизнес-задачу из сферы free2play игр. У нас есть база данных пользователей когда-то игравших в нашу игру и по каким-то причинам отвалившихся.

Мы хотим их вернуть в наш игровой проект, для каждого пользователя у нас есть некое признаковое пространство время в проекте, сколько он потратил, до какого уровня дошел и т. Оцениваем модель коэффициентом Джини и строим Lift Curve: Предположим, что в рамках маркетинговой кампании мы тем или иным способом устанавливаем контакт с пользователем email, соцсети , цена контакта с одним пользователем — 2 рубля. Мы знаем, что Lifetime Value составляет 5 рублей. Необходимо оптимизировать эффективность маркетинговой кампании.

Предположим, что всего в выборке 100 пользователей, из которых 30 вернется. Это провал кампании. Рассмотрим график Lift Curve. Мы в плюсе.

Таким образом, Lift Curve позволяет нам наилучшим образом оптимизировать нашу маркетинговую компанию. Сортировка пузырьком Коэффициент Джини имеет довольно забавную, но весьма полезную интерпретацию, с помощью которой мы его также можем легко подсчитать. Оказывается, численно он равен: где, число перестановок, которые необходимо сделать в отранжированном списке для того, чтобы получить истинный список целевой переменной, — число перестановок для предсказаний случайного алгоритма. Напишем элементарную сортировку пузырьком и покажем это: Комбинаторно несложно подсчитать число перестановок для случайного алгоритма: Видим, что мы получили значение коэффициента, как и в рассматриваемом выше игрушечном примере.

Надеюсь, статья была полезна и развеяла некоторые мифы относительно этой метрики качества. ВВП на душу населения некоторым образом подобен средней температуре по больнице — в стране может быть и огромнейшее количество бедняков, и невероятно богатых людей, и небольшая прослойка среднего класса. То есть страна может иметь и сравнительно немалый ВВП, но тем не менее, и уровень образования, и средняя продолжительность жизни в ней будут иметь не радующие показатели. И в этой связи интересен Индекс человеческого развития.

Что такое коэффициент Джини? Коэффициент Джини варьируется между нулем и единицей. Какова ситуация с неравенством распределения доходов в мире Мы видим, что среди стран с высоким уровнем дохода есть страны с широким средним классом, например, Скандинавские страны, страны Западной Европы. В Швеции, Норвегии, Дании, Канаде относительно равномерное распределение доходов.

Большая часть обоих Америк, за исключением Канады, это страны с неравномерным распределением доходов, отмечает специальный советник генсека ООН по вопросам борьбы с бедностью, прощения долгов беднейшим странам и контроля за распространением болезней в развивающихся странах Джеффри Сакс. Также неравенство присутствует в странах Африки и большей части Юго-Восточной Азии, по сравнению, например, с Индией. Но стремительное развитие экономики, расширение разрыва между теми, кто живет в городских районах, и теми, кто живет в довольно бедной сельской местности, привело к тому, что неравенство в Китае выросло до уровня, аналогичного тому, что отмечен в Соединенных Штатах. Существуют различные пути развития.

Так, Северная Европа идет по пути сохранения социального равенства.

Таким образом, он показывает насколько неравномерно разделены доходы или совокупное богатство между членами общества. Считают его по специальной формуле, а отображают коэффициент графически, при помощи логарифмической кривой. Принято оценивать его с течением времени, наблюдая общую тенденцию. А в государствах с большой территорией — еще и в разных регионах страны, анализируя равномерность жизни населения на разных территориях.

Формула расчета Так как индекс Джини используется для оценки равномерности распределения доходов, этот показатель является важным для анализа темпов экономического развития. Дело в том, что чем более неравномерно распределены доходы, тем больше формируется дисбаланс и каждое поколение становится более бедным по отношению к предыдущему. Тогда, как богатые имеют тенденцию наращивать свои капиталы. Так образуется специфическая «ловушка бедности», которая не позволяет обществу полноценно развиваться.

В основе этой формулы лежит уже известная вам идея: чтобы посчитать площадь фигуры над кривой Лоренца: можно сперва посчитать площадь фигуры под кривой Лоренца а потом вычесть ее из площади диагонального треугольника, которая равна 0,5, и получим искомое. Саму же площадь под кривой будем считать по группам. Можно видеть, что над каждой группой образуется треугольник или четырехугольник — они выделены разными цветами. Рассмотрим, например, вторую группу зеленый четырехугольник.

Тогда сумма всех фигур под кривой Лоренца будет равна Эту сумму, как вы помните, нужно вычесть из 0,5, чтобы получить площадь фигуры над кривой И наконец, разделив все это на площадь диагонального треугольника то есть опять же на 0,5 , получим формулу коэффициента Джини: Есть и другие формулы, расчет по одной из них приведен, например, вот тут. Мне кажется, что в ней проще запутаться, а получается ровно то же самое.

Доверительный интервал коэффициента Джини. Что это?

В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. Рассмотрим, что из себя представляет кривая Лоренца и причем тут индекс Джини Телеграм-канал Группа Вконтакте: TikTok: #индексджини #доходы #неравенство Привет, в 2015 году я получил высшее экон. вы делаете те новости, которые происходят вокруг нас. Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Коэффициент Джини (индекс концентрации доходов).

Неравенство и бедность

Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы. Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. Страны ближнего востока и северной Африки: Коэффициент Джини. Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе. Коэффициент Джини (индекс концентрации доходов) — статистический показатель для оценки экономического равенства. вы делаете те новости, которые происходят вокруг нас.

Похожие новости:

Оцените статью
Добавить комментарий