Новости черная дыра стрелец а

сверхмассивной черной дыры в самом центре нашей галактики, Млечного Пути. Это первое изображение Стрельца А*, сверхмассивной черной дыры в центре нашей галактики.

В центре нашей Галактики произошла странная вспышка

Но это, согласитесь, не менее интересно. Системы, приносящие столь удивительные результаты, называются интерферометрами. Разберемся, как они работают. Разрешение на любопытство Посмотрите в ночное небо. Насколько тусклые звезды вы можете заметить? Теперь переведите взгляд на Луну. Насколько тонкие детали вы различаете? Вот вы и познакомились с двумя главными характеристиками астрономического инструмента: чувствительностью и разрешением. Первая — про способность выделять из фона слабые объекты. Вторая — про возможность разглядеть мелкие подробности объектов ярких. Понятно, что астрономов интересует «и то, и другое и можно без хлеба», но в этой статье мы поговорим о разрешении.

Как оно измеряется? Когда мы смотрим на далекий предмет, наш глаз оказывается в вершине треугольника, основание которого — этот самый предмет. Это проиллюстрировано ниже масштаб искажен с особой жестокостью. Разрешение, или угловое разрешение, — это минимальный угол, при котором предмет все еще различим. Угловое разрешение человеческого глаза — около одной угловой минуты. Это значит, что человек с идеальным зрением может с километрового расстояния разглядеть предмет размером 30 сантиметров. Чем он меньше, тем более тонкие детали мы различаем. Будь этот угол меньше в десять раз, с километровой дистанции мы разглядели бы и монету. От чего зависит разрешение радиотелескопа? Ответ дает простая приближенная формула будем надеяться, что она не уменьшит число читателей этой статьи вдвое, чем издатели традиционно пугают популяризаторов.

Радиоастрономы, дай им волю, превратили бы в антенну всю Вселенную, после чего им стало бы нечего наблюдать. Однако реальность жестока: слишком большие конструкции технически нежизнеспособны. Самый большой действующий радиотелескоп — китайский 500-метровый FAST, но и он использует не всю свою площадь. Какое же разрешение обеспечивает этот великан? Легко вычислить, что при минимальной для него длине волны 10 сантиметров разрешение составляет… порядка угловой минуты. Полукилометровый гигант, чудо инженерной мысли, различает детали не лучше, чем невооруженный человеческий глаз! Разумеется, это лукавое сравнение. Оптическая и радиоастрономия дополняют друг друга, но не могут друг друга заменить. Это так хотя бы потому, что не все космические радиоисточники излучают еще и свет, и наоборот. А поскольку глаз вообще не воспринимает радиоизлучение, то и незачем ему задирать нос перед честными антеннами хотя минуточку, где у глаза нос?

Черные дыры очаровывают ученых и астрономов на протяжении многих веков. Эти загадочные космические образования образуются из остатков массивных звезд, подвергшихся гравитационному коллапсу. Их огромное гравитационное притяжение настолько сильно, что ничто, даже свет, не может вырваться из их хватки, как только пересечет горизонт событий.

Это ключ к нашему пониманию того, как Млечный Путь сформировался и будет развиваться в будущем. Наши результаты являются самым убедительным доказательством того, что черная дыра находится в центре нашей галактики. Черные дыры с небольшой звездной массой, образуются коллапсом огромных звезд в конце их жизненного цикла, а также черные дыры так называемой промежуточной массы. Сверхмассивные черные дыры, которые находятся в центр большинства галактик известной вселенной. Наша галактика Млечный Путь является спиральной и содержит не менее 100 миллиардов звезд.

На большом изображении рентгеновское излучение обсерватории «Чандра» выделено синим цветом, а инфракрасное излучение космического телескопа «Хаббл» — красным и желтым. Рассеянное рентгеновское излучение исходит от горячего газа, захваченного черной дырой и втянутого внутрь. Этот горячий газ образуется из ветров, создаваемых дискообразным распределением молодых массивных звезд, наблюдаемых в инфракрасном диапазоне. Поэтому для получения его изображения требуется невероятно высокое разрешение. Первое изображение черной дыры было получено EHT в 2019 году. Это была сверхмассивная черная дыра в центре галактики Мессье 87. EHT смог разрешить этот объект благодаря системе синхронизации нескольких телескопов, разбросанных по всей поверхности Земли. В частности, астрономы использовали Very-Long-Baseline-Interferometry VLBI — метод, который объединяет наблюдательную мощность и данные телескопов по всему миру для создания гигантского виртуального радиотелескопа. Наличие нескольких телескопов на разных широтах Земли в сочетании с вращением Земли приводит к созданию телескопа размером с Землю.

Получена фотография центральной черной дыры Млечного Пути

Самые четкие изображения области вокруг сверхмассивной черной дыры Стрелец А* в центре Млечного Пути получили астрономы. На днях научный мир облетела новость: ученые впервые получили изображение центральной черной дыры Млечного Пути. Эта черная дыра угнездилась в центре объекта под названием Стрелец A*. Стрелец A* состоит из самой черной дыры и облака падающего на нее вещества. Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики. «Первичная черная дыра субсолнечной массы, проходящая через нейтронную звезду, может потерять достаточно энергии из-за взаимодействия с плотной звездной средой, чтобы стать гравитационно связанной со звездой. Изображение черной дыры (сверху) получилось путем комбинации снимков с разных телескопов (снизу).

Космический прорыв ученых. Впервые получен снимок черной дыры в центре Млечного Пути (фото)

Чёрные дыры как и темная материя остаются самыми неизученными и не уловимыми элементами нашей Вселенной. Астрофизики давно пытаются ответить на вопрос: "Может ли существовать связь между первичными чёрными дырами, образовавшимися сразу после Большого Взрыва, и загадочной темной материей"?. Об этом исследовании можно узнать из данной статьи.

Главная мысль проста: для построения полного изображения нужны все сепульки, которых много. А интерферометр из двух неподвижных антенн и, значит, с единственной базой дает лишь одну. Пусть и точно такую же, какую в числе прочих! Иногда этого хватает. Например, если наблюдаемый объект — крошечная точка, и задача интерферометра лишь как можно точнее определить ее положение на небе.

Но чаще — нет. Чтобы разобраться, как выглядит сложно устроенный объект, астрономам нужно больше информации, и значит, больше баз. Это можно устроить. Во-первых, кто сказал, что телескопов может быть только два? В нее, кстати, входит и российская сеть «Квазар» с антеннами в Ленинградской области, Карачаево-Черкесии и Бурятии. И каждый отрезок, соединяющий какие-нибудь два телескопа, — база интерферометра. Во-вторых, антенны могут двигаться друг относительно друга, меняя длину и ориентацию базы. Так устроена американская система VLA.

Двадцать восемь «тарелок» стоят на рельсах, и при необходимости их перемещает специальный тягач. Российский исполин Можно совместить два подхода, сделав несколько неподвижных антенн и одну подвижную. Особенно заманчиво запустить подвижный телескоп в космос на вытянутую орбиту. На максимальном расстоянии от Земли в апогее спутник обеспечит интерферометру огромную базу. По мере его движения вокруг планеты база будет меняться как по длине, так и по ориентации. Именно так и работал самый зоркий телескоп в мире — российский «Радиоастрон». Его космической частью был искусственный спутник Земли «Спектр-Р» с десятиметровой антенной на борту. Запущенный в космос в 2011 году, он прекратил функционировать в 2019 году, проработав намного дольше положенного срока.

За это время «Радиоастрон» пронаблюдал около 250 космических объектов и накопил четыре петабайта данных. Их обрабатывают и интерпретируют до сих пор. К слову, запуск десятиметрового радиотелескопа в космос стал рекордным и сам по себе. Но «Спектр-Р» работал не в одиночку. В качестве наземного плеча хотя бы раз выступили практически все действующие радиотелескопы, подходящие по длине волны почти 60 штук. Максимальная база составила 350 тысяч километров, что почти равно расстоянию от Земли до Луны. Неудивительно, что этот инструмент попал в книгу рекордов Гиннесса как самый большой телескоп в истории. Разрешение на этой базе составляло 8 угловых микросекунд — абсолютный рекорд не только в радио-, но и вообще в астрономии.

Кстати, а почему рекорд? Что мешает нам получить еще большую базу?

Изображение черной дыры сверху получилось путем комбинации снимков с разных телескопов снизу Как отмечают ученые, хоть мы и не можем видеть саму черную дыру, поскольку она совершенно темная, светящийся газ вокруг нее обрамляет центральную темную область, называемую тенью.

На опубликованном изображении представлен свет, искривленный мощной гравитацией черной дыры, которая в 4 млн раз массивнее Солнца. Центр Млечного Пути находится в 27 тыс. Для наблюдателя на Земле обнаруженная черная дыра занимает на небе пространство размером с пончик на Луне.

Космос 13 мая 2022 852 Астрономы впервые показали фото чёрной дыры в центре Млечного Пути Изображение доказывает, что сверхмассивное тело в центре Млечного Пути — действительно чёрная дыра. Фото: eventhorizontelescope. Об этом сообщается на сайте проекта.

Прорыв года: астрономы представили первое изображение черной дыры в центре нашей галактики

Притом в диаметр орбиты Меркурия она входит вместе с ярким диском "падающего" в неё вещества — аккреционным диском. То есть сама чёрная дыра даже гораздо меньше. Как широко известно, это уже не первый снимок нашей "местной" сверхмассивной чёрной дыры. Первый был вот такой. И упорядочено оно самой чёрной дырой. Это картина того, как работает её магнитное поле.

Ранее такую же картину получили на основе наблюдений за чёрной дырой в центре гораздо более крупной галактики, чем наша, — галактики М87.

Саму черную дыру снять невозможно, поэтому мы видим газ и пыль, которые ускоряются и нагреваются под действием мощной гравитации и начинают светиться. Это открытие позволило астрономам окончательно доказать существование чёрной дыры в центре нашей галактики. Последние записи:.

Как я уже отметил, планетарный интерферометр коллаборации EHT в апреле 2017 года провел многочасовые наблюдения обеих черных дыр. При этом мониторинг черной дыры в центре Млечного Пути оказался куда более трудоемким, хотя она и расположена примерно в две тысячи раз ближе к Земле, чем дыра в галактике М87. Это объясняется различиями в динамике плазменных потоков в окрестностях этих дыр. Диаметр горизонта событий дыры в галактике М87 в полторы тысячи раз превышает диаметр горизонта нашей «домашней» дыры. Хотя и там, и там частицы плазмы движутся с субсветовыми скоростями, их периоды обращения вокруг дыры различаются примерно в той же пропорции.

Для дыры в центре Млечного Пути они измеряются несколькими минутами, а для дыры в ядре М87 — сутками и даже неделями. Поэтому фотонные потоки, достигаюшие Земли от дыры в центре Галактики, за время наблюдений сильно варьировали по структуре и яркости, в то время как излучение от дыры в М87 оставалось достаточно стабильным. Из-за этого обработка данных из центра Галактики потребовала создания новых алгоритмов и компьютерных программ и заняла намного больше времени. Сравнение размеров черных дыр, расположенных в центре галактики M87 и в центре Млечного Пути. Черная дыра в ядре Млечного Пути куда скромнее, ее масса не превышает четырех миллионов солнечных масс. Эти оценки полностью согласуются с оценками масс этих дыр, которые были ранее получены другими методами, на чем я еще остановлюсь в конце статьи. Новые результаты дали возможность сравнить данные по фотонному окружению двух черных дыр с весьма различными массами, что позволит лучше понять тонкие детали движения плазменных струй в их окрестности. Результаты такого сравнения, в свою очередь, приблизят разработку общей теории аккреционных дисков сверхмассивных черных дыр в гравитационных полях различной силы. Конечно, «портреты» всего лишь пары дыр — это не так уж много.

Однако коллаборация EHT продолжает работать. В марте она осуществила новую серию наблюдений с участием еще трех телескопов — гренландского GLT , суперсовременной антенной решетки NOEMA во французских Альпах и радиотелескопа с двенадцатиметровой антенной из аризонской обсерватории Китт-Пик. Вероятно, в будущем к коллаборации подключатся и другие установки. В общем, всё только начинается. Как я отметил, обе черные дыры были открыты довольно давно. Многолетнее наблюдение звездных орбит в его окрестности позволило убедительно доказать наличие там вращающейся черной дыры с гравитационным полем, соответствующим метрике Керра. Ученые также смогли определить ее массу, которую они оценили приблизительно в четыре миллиона солнечных масс. За это достижение немецкий астрофизик Райнхард Генцель и профессор Калифорнийского университета Андреа Гез получили Нобелевскую премию по физике 2020 года. На наше счастье, эта дыра сейчас пребывает в спокойном состоянии.

Это означает, что она в миллион раз уступает светимости дыры-миллиардника в галактике М87 и всего на два порядка превышает светимость Солнца. Находись такая дыра в другой галактике, коллаборации EHT вряд ли удалось бы ее обнаружить.

Грандиозный инструмент получил изображение с разрешением 20 угловых микросекунд. Оптический телескоп, имеющий такое разрешение, мог бы с Земли различить на Луне спичечный коробок, не то что отпечаток ботинка астронавта. Жаль, что таких оптических телескопов не существует. Зато существуют такие радиотелескопы и даже более зоркие. Правда, они изучают не следы астронавтов на Луне, а черные дыры, далекие галактики и природные космические лазеры точнее, мазеры. Но это, согласитесь, не менее интересно. Системы, приносящие столь удивительные результаты, называются интерферометрами.

Разберемся, как они работают. Разрешение на любопытство Посмотрите в ночное небо. Насколько тусклые звезды вы можете заметить? Теперь переведите взгляд на Луну. Насколько тонкие детали вы различаете? Вот вы и познакомились с двумя главными характеристиками астрономического инструмента: чувствительностью и разрешением. Первая — про способность выделять из фона слабые объекты. Вторая — про возможность разглядеть мелкие подробности объектов ярких. Понятно, что астрономов интересует «и то, и другое и можно без хлеба», но в этой статье мы поговорим о разрешении.

Как оно измеряется? Когда мы смотрим на далекий предмет, наш глаз оказывается в вершине треугольника, основание которого — этот самый предмет. Это проиллюстрировано ниже масштаб искажен с особой жестокостью. Разрешение, или угловое разрешение, — это минимальный угол, при котором предмет все еще различим. Угловое разрешение человеческого глаза — около одной угловой минуты. Это значит, что человек с идеальным зрением может с километрового расстояния разглядеть предмет размером 30 сантиметров. Чем он меньше, тем более тонкие детали мы различаем. Будь этот угол меньше в десять раз, с километровой дистанции мы разглядели бы и монету. От чего зависит разрешение радиотелескопа?

Ответ дает простая приближенная формула будем надеяться, что она не уменьшит число читателей этой статьи вдвое, чем издатели традиционно пугают популяризаторов. Радиоастрономы, дай им волю, превратили бы в антенну всю Вселенную, после чего им стало бы нечего наблюдать. Однако реальность жестока: слишком большие конструкции технически нежизнеспособны. Самый большой действующий радиотелескоп — китайский 500-метровый FAST, но и он использует не всю свою площадь. Какое же разрешение обеспечивает этот великан? Легко вычислить, что при минимальной для него длине волны 10 сантиметров разрешение составляет… порядка угловой минуты.

Звёзды могут поглощать чёрные дыры — нестандартная гипотеза

Первое фото черной дыры Стрелец А* в центре нашей Галактики. Большую часть времени черная дыра ведет себя сдержанно, проявляя минимальные колебания в яркости. Изображение Стрельца А* — это второй случай, когда ученым удалось увидеть черную дыру.

На новом изображении черной дыры Стрелец А* видны сгустки энергии

Это первое изображение Стрельца А*, сверхмассивной черной дыры в центре нашей галактики – Самые лучшие и интересные новости по теме: Астрономия, космос, млечный путь на развлекательном портале Мексиканские ученые из Национального автономного университета выяснили, что рядом с черной дырой Стрелец А* (компактным радиоисточником) возникли загадочные вспышки. Снимок черной дыры в созвездии Девы стал первым в истории человечества реальным изображением этого объекта.

Опубликован первый в истории снимок черной дыры

В центре Млечного Пути находится очень компактный и яркий источник радиоволн. Это небесное тело, вокруг которого совершают свое вращательное движение все звезды Млечного Пути, включая нашу собственную. Этот результат дает неопровержимые доказательства того, что объект действительно является черной дырой, и ценные подсказки о том, как она работает. Это изображение — долгожданный взгляд на огромный объект в центре нашей галактики. Хотя мы не можем увидеть саму черную дыру, поскольку она абсолютно темная, светящийся газ вокруг нее оставляет заметные следы. Темная центральная область, известная как тень, черной дыры окружена яркой кольцевой структурой. На снимке запечатлен свет, искривленный мощной гравитацией черной дыры, которая в четыре миллиона раз массивнее нашего Солнца.

Наблюдения говорят нам об активной сверхмассивной черной дыре, которая притягивает к себе материал и заставляет его погружаться в свою пасть. Изучив ее орбиту, были оценены масса и радиус сверхмассивной черной дыры.

По словам астрономов, полученное изображение даёт неопровержимые доказательства того, что объект в центре нашей галактики действительно является чёрной дырой, а не сгустком тёмной материи или иным сверхмассивным образованием. Оно получено международной исследовательской группой EHT Collaboration с использованием наблюдений сети радиотелескопов, развёрнутой по всему миру. Саму чёрную дыру запечатлеть невозможно, но пойманное астрономами излучение вокруг неё показывает характерную для чёрных дыр сигнатуру.

На изображении зафиксирован свет, искажённый мощной гравитацией чёрной дыры, в четыре миллиона раз массивнее нашего Солнца.

В апреле 2017 года участники коллаборации EHT произвели мониторинг пары компактных космических источников электромагнитного излучения, расположенных в ядрах двух сильно непохожих друг на друга галактик. Все собранные к тому времени астрофизические данные говорили за то, что он представляет собой потоки высокотемпературной плазмы, вращающиеся вокруг черной дыры с массой в 3—4 миллиона солнечных масс и порождающие радиоволны посредством синхротронного излучения. Второй источник пребывает в ядре гигантской эллиптической галактики М87 из созвездия Девы, удаленной от Солнца на 53—55 миллионов световых лет. Аналогичные соображения позволяли предполагать, что там находится черная дыра с массой в несколько миллиардов масс Солнца, тоже окруженная облаком горячего ионизированнного газа. Весной 2019 года члены коллаборации обнародовали результаты мониторинга радиопотока от галактики М87, которые полностью подтвердили изначальные соображения о его природе. На их основе ученые сконструировали прогремевшее на весь мир изображение черной дыры в его центре см. Черная дыра галактики M87: портрет в интерьере , «Элементы», 14. Обработка наблюдений дыры в центре нашей Галактики заняла куда больше времени, и поэтому ее итоги только сейчас стали достоянием гласности.

Полностью они представлены в десяти статьях шесть основных и четыре дополнительных , опубликованных в специальном выпуске журнала The Astrophysical Journal Letters. Центр нашей Галактики скрыт от нас плотной завесой облаков межзвездной пыли, блокирующей видимый свет. На этой анимации, подготовленной специалистами ESO, показаны траектории звезд вблизи черной дыры. Положение звезд отслеживалось при помощи инфракрасной камеры NACO, установленной на VLT Новые результаты, как и их предшественников, можно с полным основанием считать триумфальным достижением не только новейших методов радиоастрономических наблюдений и их компьютерного анализа, но и социальной и информационной организации крупномасштабных исследовательских проектов в области астрономии и астрофизики. Надо отметить, что их суть отнюдь не в демонстрации существования черных дыр, которое давно не подвергается сомнению. Члены коллаборации EHT оба раза получили именно то, что и намеревались получить с самого начала вернее, то, что было предсказано на основе общей теорией относительности и теории динамики релятивистской плазмы в сильных гравитационных полях. Участники пресс-конференции в штаб-квартире Южной Европейской обсерватории , расположенной в мюнхенском пригороде Гархинге, особо отмечали, что если бы Альберту Эйнштейну довелось ознакомиться сих заключениями, он бы с радостью улыбался, поскольку они, как и раньше, полностью подтвердили его великую теорию тяготения. Это обстоятельство, конечно, ни в коей мере не снижает значения данных, опубликованный сейчас и три года назад. Можно с уверенностью сказать, что в близком будущем реализация проекта EHT обещает великое множество ценнейших результатов — возможно, совершенно неожиданных.

Простите за напоминание общеизвестной истины — новые эффективные исследовательские технологии всегда расширяют возможности научных исследований. Теперь немного углубимся в физику. Черные дыры не подают никаких электромагнитных сигналов и выдают свое присутствие в космосе только собственным тяготением. Точнее, речь идет о сигналах, которые можно зарегистрировать с помощью радиотелескопов. Горизонт событий черной дыры в силу чисто квантовых эффектов должен служить источником излучения элементарных частиц , преимущественно фотонов, предсказанного в 1974 году Стивеном Хокингом и носящего его имя. Однако для черных дыр космических масштабов это излучение настолько слабо, что его нельзя детектировать не только современными, но и мыслимыми в обозримом будущем методами. Сказанное относится только к черным дырам, окруженным пустотой космического вакуума. Однако многие дыры, расположенные в галактических ядрах, окружены кольцами горячей плазмы — так называемыми аккреционными дисками.

Почему снимок такой нечеткий? То, что их края почти одинаковы, говорит о том, что общая теория относительности управляет объектами вблизи.

Любые различия, которые ученые обнаружат позднее, должны быть связаны с различиями в материале, окружающем черные дыры, — газе. Из-за этого снимок кажется заблюренным, поскольку астрономы предприняли что-то вроде попытки сделать четкое фото щенка, который быстро гоняется за своим хвостом. Но именно эта фотография впервые показала гиганта, скрывающегося в центре нашей галактики. Это изображение служит свидетельством того, чего мы можем достичь, когда глобальное исследовательское сообщество объединяет самые яркие умы и делает невозможное возможным.

Больше на эту тему

  • Получено первое фото черной дыры в сердце нашей Галактики - Телеканал "Наука"
  • Ближайшая к нам черная дыра
  • Опасно ли? Ученые встревожены поведением черной дыры в центре Млечного Пути
  • Виды Черных дыр

Подписка на дайджест

  • Фото черной дыры в центре Млечного Пути: почему это важно - Мнения ТАСС
  • Мир наблюдает за вспышкой: в Галактике обнаружили новую черную дыру - МК
  • Новости по теме
  • Звёзды могут поглощать чёрные дыры — нестандартная гипотеза
  • Впервые получено изображение тени черной дыры в центре Млечного Пути
  • Навигация по записям

Учёные заметили вращение раскалённых точек на краю чёрной дыры в центре Млечного пути

  • Учёные показали снимки чёрной дыры из центра Млечного Пути
  • Первая фотография Стрельца А*, сверхмассивной черной дыры в центре Млечного Пути - WebUnions
  • Первое изображение черной дыры в центре нашей галактики
  • Первый в истории снимок черной дыры // Новости НТВ

Опубликован первый в истории снимок черной дыры

Чаще всего его описывают как точку невозврата, своего рода космическую тюрьму, вырваться из которой не способны даже кванты самого света. Недавно команда исследователей проекта Event Horizon Telescope EHT опубликовала результаты наблюдений за черной дырой в нашей Галактике. Но вот что особенно интересно — объект на новом изображении сильно отличается от того, что был на предыдущих снимках. В самом сердце Млечного Пути обитает сверхмассивная черная дыра, которая время от времени ведет себя странно Охота на космических монстров Самый первый снимок черной дыры в галактике Messier 87 M87 был опубликован в 2019 году и окончательно доказал существование этих космических монстров. Команда ученых из проекта Event Horizon Telescope EHT cвязала 11 радиотелескопов на четырех континентах в один огромный радиоинтерферометр, колоссальные возможности которого изменили наше понимание космоса и небесных объектов. Только представьте сколько нового мы узнаем о Вселенной в ближайшие годы!

Недавно команда EHT напомнила о себе опубликовав новый снимок черной дыры в центре нашей Галактики. И это — настоящий прорыв, ведь многие астрономы полагали, что многочисленные попытки запечатлеть этот таинственный объект обречены на провал. Дело в том, что наблюдателю с Земли намного проще разглядывать центр ближайших галактик, чем годами наблюдать за объектом, частично скрытым от телескопов. В 2019 году впервые в истории науки астрономы смогли разглядеть черную дыру в галактике М87 в обрамлении диска падающего на нее вещества Больше по теме: Опубликована первая в истории настоящая фотография тени черной дыры Над получением изображения работали более 300 исследователей из 80 научных центров, однако новое изображение выглядит знакомо — объект на снимке похож на изображение черной дыры в сердце галактики М87 опубликовано в 2019 году той же коллаборацией.

Мы были ошеломлены тем, насколько хорошо размер кольца согласуется с предсказаниями Общей теории относительности Эйнштейна. Эти беспрецедентные наблюдения значительно улучшили наше понимание того, что происходит в самом центре нашей галактики, и предлагают новое понимание того, как эти гигантские черные дыры взаимодействуют со своим окружением — сообщил Джеффри Бауэр Ученые и астрофизики уже начали называть новую открытую черную дыру Стрельца A в центре нашей галактики — своеобразным космическим клеем.

Эта черная дыра — клей, который удерживает галактику вместе. Это ключ к нашему пониманию того, как Млечный Путь сформировался и будет развиваться в будущем. Наши результаты являются самым убедительным доказательством того, что черная дыра находится в центре нашей галактики.

Центр Млечного Пути находится в 27 тыс. К слову, в 2019 году та же команда сфотографировала чёрную дыру в центре Галактики M87. Снимки столь разных по размеру чёрных дыр позволят ученым сравнить их и найти различия.

Полученная информация поможет учёным интерпретировать физические события, происходящие у границ сверхмассивной чёрной дыры. Как отметил один из авторов исследования Иван Марти-Видаль из Университета Валенсии, в будущем астрономы будут отслеживать горячие пятна в разных диапазонах. Это может стать настоящим прорывом в понимании физики вспышек в центре Галактики, добавил учёный. Ошибка в тексте?

Впервые получено изображение тени черной дыры в центре Млечного Пути

Стрелец А* значительно меньше чёрной дыры галактики M87. Из-за того что Стрелец A* гораздо меньше чёрной дыры, находящейся в центре M87, о её существовании знали лишь теоретически — она слишком тусклая для наблюдения. Астрофизики обнаружили, что молодой звёздный кластер IRS13 вблизи сверхмассивной чёрной дыры Стрелец А* значительно моложе, чем ожидалось.

Похожие новости:

Оцените статью
Добавить комментарий