Новости нервные импульсы поступают непосредственно к железам по

е импульсы поступают непосредственно к железам по. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо. Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь. Нервные импульсы поступают непосредственно. Нервный Импульс по аксону. По аксонам нервные импульсы поступают к. Взаимосвязь нейронов.

Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных

К железам нервные импульсы поступают по нервным нитям. К железам нервные импульсы поступают по нервным нитям. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов. Найди верный ответ на вопрос«Нервные импульсы поступают к мышцам, железам и другим рабочим органам по 1) белому веществу спинного мозга 2) вставочным нейронам 3) » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся. Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель.

Нервные импульсы поступают непосредственно к мышцам и железам по

Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксонам вставочных нейронов 3) серому веществу спинного мозга 4) белому веществу спинного мозга. Created by 12kote. biologiya-ru. 2. Нервные импульсы поступают непосредственно к железам по. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам вставочных нейронов 3)серому веществу спинного морга 4)белому веществу спинного мозга. длинный отросток нервных клеток, по которым и выполняется эта работа. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. В нейроне нервные импульсы по дендритам проходят к соме клетки.

Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных

Рефлексы делятся на условные и безусловные имеются с рождения в течение жизни не изменяются и не исчезают одинаковые у всех организмов одного вида приспосабливают организм к постоянным условиям пример: выделение слюны при попадании лимона в рот. Тесты 34-01. Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге?

Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык. На вопросы могут отвечать также любые пользователи, в том числе и педагоги.

Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.

Bogdanshport 28 апр. Для организмов с клеточной стенкой вегетативным размножением считается такой процесс, в ходе которог Adelinaibraeva8 28 апр.

Alena287 28 апр. Лизунчик13 28 апр. Перечислите виды растений и животных которые охраняются на местных придоохранных территориях Украин Tsvetkova2005 27 апр.

При полном или частичном использовании материалов ссылка обязательна.

Один электрод служит для пропускания тока, другой — для измерения разности потенциалов на мембране. Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет. Ток, направленный наружу, также не вызывает возбуждения.

Однако, генератор срабатывает каждый раз, когда напряжение на мембране уменьшается ниже определенной величины, которую принято называть порогом возбуждения. Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы. В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания — места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ.

Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса. Сама же мембрана является непроницаемой для АХ. При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот.

Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП. Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны.

В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора — АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса. Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках.

При изучении возникновения постсинаптического потенциала концевой пластинки ПКП многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП.

Нервная система. Общие сведения

Так, инсулин влияет на проницаемость мембран клеток для глюкозы. Механизм действия гормонов на активность ферментов - гормон взаимодействует с определенным участком клеточной мембраны - рецептором. Сигнал об этом передается внутрь клетки и приводит к образованию органического соединения, производного АТФ, выполняющего роль вторичного посредника, который вызывает активацию ферментов. У каждого гормона есть свои клетки, находящиеся в органах и тканях, к которым они стремятся. Другие гормоны могут растворяться в воде, поэтому для них нет надобности присоединяться к белкам-носителям. Эти вещества оказывают воздействие на клетки и тела в момент соединения с нейронами, находящимся внутри клеточного ядра, а также в цитоплазме и на плоскости мембраны. Для их работы необходимо посредническое звено, которое обеспечивает ответную реакцию от клетки. Они представлены ионами кальция. Поэтому недостаток кальция в организме оказывает неблагоприятное воздействие на гормоны в организме человека.

После того, как гормон передал сигнал, он расщепляется. Расщепляться он может в клетке, к которой перемещался; в крови; в печени. Либо может выводиться из организма вместе с мочой. Химический состав гормонов 1. Половые классифицируются на: эстроген — женский и андрогенов — мужской. Разновидность андрогенов представлена их видами: тестостерон, андростендион и другие. В состав стероидов входят гормоны: кортизол, кортикостерон и альдостерон. Соматотропин - разновидность белкового гормона.

В их состав можно отнести: тироксин, адреналин и норадреналин. Пептидные гормоны сложнее остальных по своему составу. Вазопрессин — это гормон, сформировавшийся в гипофизе. Глюкагон, находящийся в поджелудочной железе. Гормоны вырабатываются не только клетками желез внутренней секреции, но и специализированными клетками, расположенными в органах, формально не относящихся к гормонам и эндокринной системе. Тканевые гормоны — имеют «местное» значение, оказывая влияние не на весь организм в целом, а на процессы регуляции деятельности органа или клетки где они образуются, рассеяны по органам, располагаются поодиночке или группами. Обладают действием на собственные клетки паракринное , из которых эти вещества секретируются и оказывают действие на соседние клетки дистанционное в данном органе. Эндокринные клетки встречаются в дыхательной, мочеполовой, ССС, слюнных железах, органах чувств и тд.

Эти клетки имеют широкое основание и более узкую верхушечную часть, которая в одних случаях доходит до просвета органа, а в других - с ним не контактирует. Общее количество эндокринных клеток превышает в несколько раз число клеток эндокринных органов. Тканевые гормоны пищеварительного тракта. Эндокринных клеток особенно много в стенках желудка и кишечника — энтероэндокринные клетки. Энтероэндокринная система регулирует множество функций пищеварительной системы: гастрин — стимулирует секрецию соляной кислоты, секретин - стимулирует выделение бикарбоната и воды из секреторных клеток 12пёрстной кишки и поджелудочной железы, холецистокинин — панкреозимин — стимулирует сокращения желчного пузыря и усиливает желчеотделение в печени и выделение пищеварительных ферментов поджелудочной железой. Эндокриноциты стенки пищеварительного тракта образуют гастро-энтеропанкреатическую систему эндокринных клеток, оказывающую регулирующее влияние на секрецию пищеварительных желёз, моторику стенок тонкой и толстой кишок. Они синтезируют и выделяют ряд пептидов и биоаминов, играющих роль нейромедиаторов и гормонов, влияющих на моторику гладкомышечных органов, секрецию экзо- и эндокринных желёз. Тканевые гормоны, влияющие на сосудистую систему.

Кроме адреналина, норадреналина, вазопрессина, АД может измениться при действии ряда биоактивных веществ. К ним относится ренин, вырабатываемый юкстагломерулярным аппаратом почки, который стимулирует сокращение гладких мышц артериол. Из подчелюстной слюнной железы, легких и поджелудочной железы выделено активное вещество — калликреин, который вызывает расщепление одной из фракций глобулина плазмы крови, вследствие чего образуется гормон каллидин - вызывает расслабление гладкой мускулатуры артериол, понижает АД. Сосудорасширяющим действием обладает полипептид брадикинин. Брадикинин появляется в коже при действии тепла и является одним из факторов, обусловливающих расширение сосудов при согревании. Кроме расширения сосудов, вызывает ощущение боли, являясь раздражителем болевых рецепторов. Сходным действием обладает и гистамин, возникающий в коже при различных, в том числе и болевых, ее раздражениях, в желудке во время пищеварения, в мышцах при их работе. Появление гистамина является одной из причин расширения артериол и капилляров в работающих мышцах, которое обеспечивает усиленное их кровоснабжение.

Гистамин при действии на болевые рецепторы, так же, как и брадикинин, участвует в возникновении чувства боли и зуда. Гистамин увеличивает проницаемость капиллярной стенки и способствует выходу транссудации воды и белков плазмы в ткани. К числу веществ, суживающих артериолы и повышающих артериальное давление, принадлежит серотонин. Он образуется в нервной ткани, в кишечнике, эпифизе, в клетках ретикуло-эндотелия, в кровяных пластинках. Серотонин обладает широким спектром действия, принимает участие в передаче нервных импульсов в центральной нервной системе. Другие биологически активные вещества. Имеется еще ряд тканевых гормонов, принимающих участие в регуляции различных физиологических процессов. В экстрактах подчелюстных желез -паротин — вещество, стимулирующее трофику питание хрящевой ткани, развитие дентина зубов и костной ткани.

До наступления половой зрелости зобная железа выделяет вещество, тормозящее деятельность щитовидной и половых желез. Эндокринные железы и их гормоны тесно связаны с нервной системой, образуя общий механизм регуляции. Регулирующее влияние ЦНС на физиологическую активность желёз внутренней секреции осуществляется через гипоталамус. Часть промежуточного мозга — гипоталамус — и отходящий от его основания гипофиз анатомически и функционально составляют единое целое — гипоталамо-гипофизарную эндокринную систему. Клетки гипоталамуса обладают двойной функцией. Во-первых, они выполняют те же функции, что и любая другая нервная клетка, а во-вторых, обладают способностью секретировать и выделять биологически активные вещества — нейрогормоны. Гипоталамус и передняя доля гипофиза связаны общей сосудистой системой, имеющей двойную капиллярную сеть. Первая располагается в районе срединного возвышения гипоталамуса, а вторая — в передней доле гипофиза.

Ее называют воротной системой гипофиза. Гипоталамус связан через афферентные пути с другими отделами ЦНС: со спинным, продолговатым и средним мозгом, таламусом, базальными ганглиям, полями коры больших полушарий и др. Благодаря этим связям в гипоталамус поступает информация со всех отделов организма: сигналы от экстеро- и интерорецепторов идут в ЦНС через гипоталамус и передаются эндокринным органам. Так, нейросекреторные клетки гипоталамуса превращают афферентные стимулы в гуморальные факторы с физиологической активностью рилизинг-гормоны, или либерины , стимулирующие синтез и высвобождение гормонов гипофиза. А гормоны, тормозящие эти процессы, называются ингибирующими гормонами, или сатинами. Гипоталамические рилизинг-гормоны влияют на функцию клеток гипофиза, которые вырабатывают ряд гормонов, влияющих на синтез и секрецию гормонов периферических эндокринных желёз. А те уже — на органы или ткани-мишени. Все уровни этой системы тесно связаны между собой системой обратной связи.

Разные гормоны оказывают воздействие и на функции отделов ЦНС. Важную роль в регуляции функции эндокринных желёз играют медиаторы симпатических и парасимпатических нервных волокон. Однако, имеются железы внутренней секреции паращитовидная, поджелудочная железы , которые регулируются за счёт влияния уровня гормонов-антагонистов, а также в результате изменения концентрации тех метаболитов веществ , уровень которых регулируется этими гормонами. Часть гормонов, вырабатываемых в гипоталамусе антидиуретический гормон, окситоцин , гормоны гипофиза, непосредственно влияют на органы и ткани-мишени. Железы внутренней секреции — это железы, не имеющие выводных протоков и выделяющие вырабатываемые ими гормоны непосредственно в кровь, лимфу и межтканевую жидкость. Имеют общие анатомо-физиологические особенности: - основная ткань почти всех эндокринных желез - железистый эпителий; - железы окружены густой сетью лимфатических и кровеносных капилляров; - гормоны, вырабатываемые в клетках желез, образуются в малых количествах и обладают повышенной биологической активностью; - иннервируются большим количеством нервных волокон, преимущественно вегетативной нервной системы. К железам внутренней секреции относятся: гипофиз, гипоталамус, эпифиз, щитовидная железа, паращитовидные железы, зобная железа, поджелудочная железа, надпочечники и половые железы. Гипоталамус и отходящий от его основания гипофиз анатомически и функционально составляют единое целое — гипоталамо-гипофизарную эндокринную систему.

Гипоталамус образует нижние отделы промежуточного мозга и участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, серый бугор с воронкой, а также сосцевидные тела. Кзади от зрительного перекреста находится серый бугор, позади которого лежат сосцевидные тела, а по бокам - зрительные тракты. Книзу серый бугор переходит в воронку, которая соединяется с гипофизом. Стенки серого бугра образованы тонкой пластинкой серого вещества, содержащего серобугорные ядра. Co стороны полости III желудочка в область серого бугра и далее в воронку вдается суживающееся углубление воронки. В гипоталамусе различают три основные гипоталамические области - скопления различных по форме и размерам групп нервных клеток: переднюю, промежуточную и заднюю. Скопления нервных клеток в этих областях образуют более 30 пар ядер гипоталамуса.

Нервные клетки ядер гипоталамуса обладают способностью вырабатывать секрет нейросекрет , который по отросткам этих же клеток может транспортироваться в гипофиз. Такие ядра получили название нейросекреторных ядер гипоталамуса. В передней области гипоталамуса находятся супраоптическое надзрительное ядро и паравентрикулярные ядра. Отростки клеток этих ядер образуют гипоталамо-гипофизарный пучок, заканчивающийся в задней доле гипофиза, где изакнчиваются на стенках капилляров. Ядра гипоталамуса связаны сложно устроенной системой афферентных и эфферентных путей. Гипоталамус оказывает регулирующее воздействие на многочисленные вегетативные функции организма. Нейросекрет ядер гипоталамуса способен влиять на функции железистых клеток гипофиза, усиливая или тормозя секрецию ряда гормонов, которые в свою очередь регулируют деятельность других желез внутренней секреции. Секреция ядер гипоталамуса регулируется ЦНС и осуществляется лимбической системой миндалевидные ядра и гиппокамп и ретикулярной формацией среднего мозга.

Также на его деятельность оказывают влияние импульсы, поступающие от шейных узлов симпатических стволов, и гормоны шишковидной железы. Наличие нервных и гуморальных связей гипоталамических ядер и гипофиза позволило объединить их в гипоталамо-гипофизарную систему. Гипоталамус - важная часть лимбической и ретикулярной систем мозга, однако, он сохраняет свои специфические «входы» в виде особой чувствительности к сдвигам внутренней среды. Гормоны, секретируемые гипоталамусом 1. Кортикотропин-рилизинг-гормон: CRH отвечает за регулирование метаболических и иммунных реакций организма. Стимулирует высвобождение адренокортикотропного гормона АКТГ из гипофиза, который стимулирует надпочечники к высвобождению кортизола, гормона стресса. Участвует в реакции организма на стресс и играет роль в воспалении и иммунной функции. ТТГ стимулирует щитовидную железу вырабатывать и высвобождать гормоны щитовидной железы, которые необходимы для регуляции обмена веществ и правильного функционирования органов: сердце, мышцы и мозг.

Гонадотропин-рилизинг-гормон: стимулирует гипофиз к высвобождению гонадотропинов, в том числе лютеинизирующего гормона ЛГ и фолликулостимулирующего гормона ФСГ. ЛГ и ФСГ имеют решающее значение для регуляции репродуктивных функций, включая созревание яйцеклеток у женщин и выработку тестостерона у мужчин. Окситоцин - играет ключевую роль в облегчении родов, стимулируя сокращения матки. Важен для лактации - стимулирует сокращение клеток, окружающих молочные железы в груди, способствуя притоку молока. Участвует в социальных связях, материнском поведении, регулировании циклов сна и температуры тела. Соматостатин - гормон, ингибирующий гормон роста, регулирует эндокринную систему. Ингибирует высвобождение гормона роста из гипофиза, модулируя рост и развитие организма. Средняя область гипоталамуса стимулирует высвобождение гормона роста.

Гормон играет важную роль в стимулировании секреции гормона роста гипофизом. Гормон роста необходим для роста, развития и поддержания различных тканей и органов в организме. Гипоталамические расстройства Гипоталамические расстройства могут возникать при наличии нарушений или дисфункций в гипоталамусе, приводящих к дисбалансу секреции гормонов и различных физиологических процессов. Вот некоторые распространенные причины и симптомы нарушений гипоталамуса: Причины гипоталамических расстройств: Травмы головы: черепно-мозговые травмы, поражающие гипоталамус, могут нарушить его нормальное функционирование. Генетические нарушения: определенные генетические состояния могут привести к аномалиям развития или функции гипоталамуса. Опухоли в гипоталамусе. Доброкачественные или злокачественные опухоли, развивающиеся в гипоталамусе, могут нарушать выработку и регуляцию гормонов. Расстройства пищевого поведения.

Расстройства пищевого поведения, такие как нервная анорексия или булимия, могут воздействовать на гипоталамус из-за резких изменений в рационе питания. Операции на головном мозге. Хирургические вмешательства на головном мозге, особенно в области гипоталамуса, потенциально могут привести к повреждению или нарушению его функции. Аутоиммунные расстройства: некоторые аутоиммунные состояния могут привести к воспалению или повреждению гипоталамуса. Симптомы гипоталамических расстройств: Колебания температуры тела: нарушения гипоталамуса могут приводить к трудностям регулирования температуры тела, что приводит к эпизодам чрезмерного потоотделения, ознобу или колебаниям температуры тела. Бесплодие: Гормональный дисбаланс, вызванный нарушениями гипоталамуса, может влиять на репродуктивную функцию, приводя к трудностям с фертильностью и нерегулярным менструальным циклам у женщин. Необычно высокое или низкое кровяное давление: Нарушение регуляции артериального давления может происходить при нарушениях гипоталамуса, вызывая эпизоды гипертонии высокое кровяное давление или гипотонии низкое кровяное давление. Бессонница: нарушения сна, в том числе трудности с засыпанием или продолжительным сном, могут быть симптомом дисфункции гипоталамуса.

Изменение аппетита. Гипоталамические расстройства могут нарушать регуляцию аппетита, что приводит к изменениям в потреблении пищи и аппетите - к усилению или уменьшению чувства голода. Частое мочеиспускание. Заболевания гипоталамуса могут влиять на баланс жидкости в организме и приводить к увеличению выработки мочи и частому мочеиспусканию. Задержка полового созревания: Гормональные нарушения в гипоталамусе могут задерживать начало полового созревания, что приводит к задержке полового развития у подростков. Является центральным органом эндокринной системы; тесно связан и взаимодействует с гипоталамусом. Гипофиз располагается в основании головного мозга нижней поверхности в гипофизарной ямке турецкого седла клиновидной кости черепа. Турецкое седло прикрыто отростком твёрдой оболочки головного мозга — диафрагмой седла, с отверстием в центре, через которое гипофиз соединён с воронкой гипоталамуса промежуточного мозга; посредством её гипофиз связан с серым бугром, расположенным на нижней стенке III желудочка.

По бокам гипофиз окружён пещеристыми венозными синусами. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз. Передняя доля гипофиза, состоит из железистых эндокринных клеток различных типов, каждый из которых, как правило, секретирует один из гормонов. Выделяют дистальную, промежуточную и бугорную часть передней доли. Гормоны передней доли гипофиза: 1. Тропные, их органами-мишенями являются эндокринные железы.

Калий преобладает в клетках нейрона над натрием и свободно выходит из наружу. Когда на клетку действует раздражитель, возбуждение вызывает возрастание проницаемости мембраны клеток нервов. Ионы получают возможность перемещаться по градиенту концентрации. После чего, поток ионов натрия становится выше, чем калия. Это действие обуславливает потенциал действия. Нервы проводят через себя электрический ток. Ток проходит через тело нейрона к периферическому концу. Так происходит изменение проницаемости. Центральная нервная система Состоит из головного и спинного мозга. Является ведущим центром в организме человека, отвечающим за мышление, координацию движений, психическое состояние и взаимодействие с окружающим миром. Спинной мозг расположен в позвоночном столбе, имеет вид длинного тяжа. Он разделен на две симметричные половины: переднюю и заднюю борозды. По центру проходит спинномозговой канал, заполненный жидкостью — ликвором.

Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс - это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями - рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др. Простейшая рефлекторная дуга состоит из трех нейронов - чувствительного, вставочного и двигательного или секреторного. Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва. Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру. В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона.

Функции вставочного нейрона рефлекторной дуги. Рефлекс вставочные Нейроны. Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Путь рефлекторной дуги. Рефлекторная и проводниковая функции спинного мозга. Рефлекторная и проводниковая функции. Рефлекторная функция спинного мозга. Строение нейрона. Строение тела нейрона. Отросток нервной клетки. Строение отростков нейрона. Передача импульса с нейрона на Нейрон. Передача нервного импульса в клетке. Этапы и механизмы синаптической передачи. Синаптическая передача нервного импульса механизм. Синапс этапы синаптической передачи. Структурные компоненты и функциональные участки нейрона. Структурно-функциональной единицей нервной ткани является. Схема строения двигательного нейрона. Нейрон основная структурно-функциональная единица нервной системы. Путь нейрона по рефлекторной дуге. Путь нервного импульса по рефлекторной дуге. Рефлекторная дуга по порядку нервного импульса. Порядок элементов рефлекторной дуги. Чувствительный вставочный и двигательный Нейроны. Чувствительный Нейрон вставочный Нейрон двигательный Нейрон. Дыигалетные, чувствительные вставочнвставочные Нейроны. Чувствительный вставочный и двигательный Нейроны функции. Мембрана нервной клетки схема. Схема передачи импульса нейрона. Распределение зарядов и ионов на мембране нервной клетки. Схема проведения импульса в нейроне. Рефлекторная дуга чувствительный Нейрон. Рецепторная рефлекторная дуга. Рефлекторная дуга вставочный Нейрон чувствительный Нейрон. Коленный рефлекс вставочный Нейрон. Строение рефлекторной дуги кратко. Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Схема сложной рефлекторной дуги соматического рефлекса. Рефлекторная дуга сгибательного рефлекса схема. Структура и функции рефлекторной дуги. Схема рефлекторной дуги соматического рефлекса. Нейрон структурная и функциональная единица нервной системы. Нейроны центральной нервной системы. Нервная клетка Нейрон. Строение рефлекторной дуги строение. Рефлекс ЕГЭ рефлекторная дуга. Строение двухнейронной рефлекторной дуги. Соматическая рефлекторная дуга схема. Нейроны спинного мозга схема. Строение спинного мозга Нейроны. Двигательный Нейрон в заднем корешке спинного мозга. Спинной мозг строение рефлекторная. Схема сложной рефлекторной дуги спинномозгового рефлекса. Схема рефлекторной дуги головного мозга. Схема дуги соматического спинального рефлекса. Строение рефлекторной дуги схема. Двигательные ядра переднего рога спинного мозга. Функция нейронов боковых Рогов спинного мозга. Рефлекторная функция отделов спинного мозга. Рефлекторная дуга ЦНС. Центральная и периферическая рефлекторные дуги. Нервно-рефлекторный метод. Рефлекторная дуга периферической нервной системы. Строение рефлекторной дуги анализатора. Двигательный анализатор рефлекторная дуга. Аксон двигательного нейрона в рефлекторной дуге. Общая схема строения рефлекторных дуг анализаторов.. Чувствительные Нейроны спинного мозга расположены.

Нервные импульсы поступают непосредственно к железам по 1) аксонам…

В ЦНС совсем другое положение: масса волокон и нейронов, "упакованных" глиальными клетками, кровоснабжение которых точно установить невозможно, а также "центры", имеющие много различных входов и локализуемые различно разными физиологами и анатомами. Обычными методами, ставшими почти классическими, было показано, что в ЦНС имеются ацетилхолин, катехоламины и холинэстеразы. Эта трудоёмкая работа дала возможность нарисовать своего рода химическую карту головного мозга. Ацетилхолин обнаруживается почти везде, но в особенно значительных количествах он содержится в коре головного мозга; с помощью высокоспецифичных и чувствительных тестов обнаружили присутствие ацетилхолинэстеразы в некоторых синапсах, но показали также, что её очень мало в других. Во многих центрах был обнаружен норадреналин, но его непосредственный предшественник — дофамин был найден в значительных количествах только в определённых областях. В различных центрах был идентифицирован также серотонин. Нейронная теория, разработанная Рамон-и-Кахалом, знаменитым испанским гистологом, подтверждена биохимически. Нейрон, его аксон и окончания синтезируют медиатор, который хранится в особых пузырьках, видимых с помощью электронного микроскопа. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель.

Пузырьки образуются в теле нейрона, заполняются молекулами медиатора и транспортируются вдоль аксона к нервному окончанию. Химическими посредниками в процессе передачи нервного импульса являются биологически активные вещества, выделяемые нервными окончаниями. Эти вещества называются нейромедиаторы синоним — нейротрансмиттер. Для краткости можно употреблять термин медиаторы. Медиаторы были открыты австрийским ученым Лёви в результате достаточно простого опыта. В физиологический раствор он поместил два изолированных сердца лягушек и соединил их между собой тонкой трубочкой. Раствор Рингера, перфузируемый в одно сердце, переходил во второе. При раздражении симпатического нерва первого сердца, второе также начинало сокращаться.

Возникла гипотеза о том, что раздражение нервов влечёт появление в перфузате некоторых веществ, которые оказывают действие на другое сердце, подобное эффекту раздражения симпатического нерва. Сначала были открыты адреналин и ацетилхолин. В настоящее время открыто более 30 медиаторов, среди которых норадреналин, серотонин, мелатонин, гистамин, дофамин, октопамин, АТФ, ГАМК, глицин, глутамат, аспартат, эндорфины, энкефалины, вазопрессин, окситоцин, вещество P. По химическому составу и механизму действия медиаторы сходны с гормонами. Подробнее медиаторы будут рассмотрены ниже. Нейроны имеют биохимический аппарат, общий со всеми остальными живыми клетками, в том числе способность генерировать химическую энергию путём окисления пищеварительных веществ, а также восстанавливать и сохранять свою целостность. Нейроны обладают кроме того специфическими свойствами, которых лишены другие клетки и которые связаны с особой функцией нейронов как передатчиков нервных импульсов: необходимость в поддержании ионных градиентов, что требует большой затраты энергии, и свойства, связанные со способностью нейронов производить и выделять набор химических передатчиков — нейромедиаторов. В синапсах — микроскопических участках где тесно соприкасаются окончание одного нейрона и воспринимающая поверхность другого, приход импульса вызывает внезапное выделение молекул медиатора из окончания.

Затем эти молекулы диффундируют через заполненную жидкостью щель между двумя клетками и воздействуют на специфические рецепторы постсинаптической мембраны, изменяя при этом электрическую активность воспринимающего нейрона. За последние годы достигнуты значительные успехи в познании различных медиаторных веществ, в составлении карт, их распределении по мозгу и в выяснении молекулярных процессов синаптической передачи.

Для того, чтобы более подробно познакомиться с тем, как этот процесс совершается в условиях естественной деятельности организма, необходимо остановиться на некоторых особенностях иннервации скелетной мышцы двигательным нервом. Каждое моторное нервное волокно, являющееся отростком двигательной клетки передних рогов спинного мозга альфа-мотонейрона , в мышце ветвиться и иннервирует целую группу мышечных волокон. Такая группа называется моторной единицей мышцы. Количество мышечных волокон, входящих в состав моторной единицы, вариирует в широких пределах, но их свойства одинаковы возбудимость, проводимость и др. Вследствие того, что скорость распространения возбуждения в нервных волокнах, иннервирующих скелетные мышцы, очень велика, мышечные волокна, составляющие моторную единицу, приходят в состояние возбуждения практически одновременно. Электрическая активность моторной единицы имеет вид частокола, в котором каждому пику соответствует суммарный потенциал действия многих одновременно возбужденных мышечных волокон. Следует сказать, что возбудимость различных скелетных мышечных волокон и состоящих из них моторных единиц значительно вариирует.

Она больше в т. При этом возбудимость обоих ниже возбудимости нервных волокон, их иннервирующих. Это зависит от того, что в мышцах разница Е0-Е к больше, и, значит, реобаза выше. ПД достигает 110-130 мв, длительность его 3-6 мсек. Максимальная частота быстрых волокон - около 500 в сек. Длительность ПД в медленных волокнах примерно в 2 раза больше, продолжительность волны сокращения - в 5 раз больше, а скорость ее проведения в 2 раза медленнее. Кроме того, быстрые волокна делятся в зависимости от скорости сокращения и лабильности на фазные и тонические. Скелетные мышцы в большинстве случаев являются смешанными: они состоят как из быстрых, так и медленных волокон. Но в пределах одной моторной единицы все волокна всегда одинаковы.

Поэтому и моторные единицы делят на быстрые и медленные, фазные и тонические. Смешанный тип мышцы позволяет нервным центрам использовать одну и ту же мышцу как для осуществления быстрых, фазных движений, так и для поддержания тонического напряжения. Существуют, однако, мышцы, состоящие преимущественно из быстрых или из медленных моторных единиц. Такие мышцы часто тоже называются быстрыми белыми и медленными красными. Длительность волны сокращения наиболее быстрой мышцы - внутренней прямой мышцы глаза - составляет всего 7,5 мсек. Функциональное значение указанных различий становится очевидным при рассмотрении их ответов на ритмические стимулы. Для получения гладкого тетануса медленной мышцы достаточно раздражать ее с частотой 13 стимулов в сек. В тонических моторных единицах длительность сокращения на одиночный стимул может достигать 1 секунды. Суммация сокращений моторных единиц в целой мышце.

В отличие от мышечных волокон в моторной единице, которые синхронно, одновременно возбуждаются в ответ на приходящий импульс, мышечные волокна различных моторных единиц в целой мышце работают асинхронно. Объясняется это тем, что разные моторные единицы иннервируются различными двигательными нейронами, которые посылают импульсы с различной частотой и разновременно. Несмотря на это суммарное сокращение мышцы в целом имеет в условиях нормальной деятельности слитный характер. Это происходит потому, что соседняя моторная единица или единицы всегда успевают сократиться раньше, чем успевают расслабиться те, которые уже возбуждены. Сила мышечного сокращения зависит от числа моторных единиц, вовлеченных одновременно в реакцию, и от частоты возбуждения каждой из них. Тонус скелетных мышц. В покое, вне работы, мышцы в организме не являются полностью расслабленными, а сохраняют некоторое напряжение, называемое тонусом. Внешним выражением тонуса является определенная упругость мышц. Электрофизиологические исследования показывают, что тонус связан с поступлением к мышце редких нервных импульсов, возбуждающих попеременно различные мышечные волокна.

Эти импульсы возникают в мотонейронах спинного мозга, активность которых, в свою очередь поддерживается импульсами, исходящими из как из вышестоящих центров, так и из проприорецепторов мышечных веретен и др. О рефлекторной природе тонуса скелетных мышц свидетельствует тот факт, что перерезка задних корешков, по которым чувствительные импульсы от мышечных веретен поступают в спинной мозг, приводит к полному расслаблению мышцы. Работа и сила мышц. Величина сокращения степень укорочения мышцы при данной силе раздражения зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном растяжении сокращенные мышцы расслабляются. Если в результате длительной работы развивается утомление мышцы, то величина ее сокращения падает. Для измерения силы мышцы определяют либо тот максимальный груз, который она в состоянии поднять, либо максимальное напряжение, которое она может развить в условиях изометрического сокращения. Эта сила может быть очень велика.

Так, установлено, что собака мышцами челюсти может поднять груз, превышающий вес ее тела в 8,3 раза. Одиночное мышечное волокно может развивать напряжение, достигающее 100-200 мг. Учитывая, что общее число мышечных волокон в теле человека равно приблизительно 15-30 млн. Сила мышц при прочих равных условиях зависит от ее поперечного сечения. Чем больше сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. При этом имеется ввиду т. Сила мышц с косыми волокнами больше, чем с прямыми, так как физиологическое ее сечение больше при одинаковом геометрическом. Таким образом вычисляют удельную абсолютную силу мышцы. Работа мышц измеряется произведением поднятого груза на величину укорочения мышцы.

Между грузом, который поднимает мышца, и выполняемой ею работой существует следующая закономерность. Внешняя работа мышцы равна нулю, если мышца сокращается без нагрузки. По мере увеличения груза работа сначала увеличивается, а затем постепенно падает. Наибольшую работу мышца совершает при некоторых средних нагрузках. Поэтому зависимость работы и мощности от нагрузки получила название правила закона средних нагрузок. Работа мышц, при которой происходит перемещение груза и движение костей в суставах, называется динамической. Работа мышцы, при которой мышечные волокна развивают напряжение, но почти не укорачиваются - статической. Пример - вис на шесте. Статическая работа более утомительна, чем динамическая.

Утомление мышцы. Утомлением называется временное понижение работоспособ- ности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха. Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает, пока не сойдет до нуля. Регистрируется кривая утомления. Наряду с изменением амплитуды сокращений при утомлении нарастает латентный период сокращения, удлиняется период расслабления мышцы и увеличивается порог раздражения, то есть понижается возбудимость. Все эти изменения возникают не сразу после начала работы, существует некоторый период, в течение которого наблюдается увеличение амплитуды сокращений и небольшое повышение возбудимости мышцы. При этом она становится легко растяжимой. В таких случаях говорят, что мышца "врабатывается", то есть приспосабливается к работе в заданном ритме и силе раздражения. После периода врабатываемости наступает период устойчивой работоспособности.

При дальнейшем длительном раздражении наступает утомление мышечных волокон. Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Часть этих продуктов, а также ионы Са диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее действие на способность возбудимой мембраны генерировать ПД.

Крыс кормили углеводистой пищей и определяли концентрацию глюкозы в крови. Как изменилась концентрация глюкозы в крови крыс А первой группы, Б второй группы, В третьей группы. Для каждой величины определите соответствующий характер её изменения: 1 увеличится, 2 уменьшится, 3 не изменится.

Ответ 113 3. Экспериментатор внес в первую пробирку раствор глюкозы, во вторую — раствор сахарозы, в третью — раствор гликогена. Во все пробирки он добавил инсулин.

Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка.

Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость ликвор. Астроглию образуют астроциты. Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе. Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром.

Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя изолируя их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности. Олигодендроглию образуют олигодендроциты. Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов.

В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов. Микроглия образуют микроглиоциты, которые представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки возможно, из премоноцитов красного костного мозга. Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной ветвистой, или покоящейся микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.

В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты — филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию. Реактивная микроглия появляется после травмы в любой области мозга.

Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы. Рассмотренные выше глиальные элементы относятся к центральной нервной системе. Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты или шванновские клетки и глиоциты ганглиев или мантийные глиоциты. Нейролеммоциты и шванновские клетки формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.

В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни. Тема 4. Нервные узлы. Нервные волокна. Нервные стволы нервы Нервные узлы ганглии. Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы. Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы.

Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов. Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными. Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды. Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Клетки располагаются группами, преимущественно по периферии органа. Центр спинномозгового узла состоит главным образом из отростков нейронов и тонких прослоек эндоневрия, несущих сосуды.

Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг. Дендриты и аксоны клеток в узле и за его пределами покрыты миелиновыми оболочками из нейролеммоцитов. Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами. Они расположены вокруг тела нейрона и имеют мелкие округлые ядра. Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер. Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота.

Автономные вегетативные узлы. Вегетативные нервные узлы располагаются следующим образом: вдоль позвоночника, впереди от позвоночника, в стенке органов - сердца, бронхов, пищеварительного тракта, вблизи поверхности этих органов. К вегетативным узлам подходят миелиновые преганглионарные волокна, содержащие отростки нейронов центральной нервной системы. По функциональному признаку и локализации вегетативные нервные узлы разделяют на симпатические и парасимпатические. Большинство внутренних органов имеет двойную вегетативную иннервацию, то есть получает постганглионарные волокна от клеток, расположенных как в симпатических, так и в парасимпатических узлах. Реакции, опосредуемые их нейронами, часто имеют противоположную направленность так, например, симпатическая стимуляция усиливает сердечную деятельность, а парасимпатическая ее тормозит. Общий план строения вегетативных узлов сходен. Снаружи узел покрыт тонкой соединительнотканной капсулой.

Вегетативные узлы содержат мультиполярные нейроны, которые характеризуются неправильной формой, эксцентрично расположенным ядром. Часто встречаются многоядерные и полиплоидные нейроны. Каждый нейрон и его отростки окружены оболочкой из глиальных клеток-сателлитов - мантийных глиоцитов. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка. Нейроны вегетативных нервных ганглиев, как и спинномозговых узлов, имеют эктодермальное происхождение и развиваются из клеток нервного гребня. Тела нейронов образуют серое вещество головного и спинного мозга, а также нервные ганглии беспозвоночных и позвоночных животных. Связь ЦНС и ганглиев с органами осуществляется при помощи проводящих элементов — нервов, основу которых составляют нервные волокна. Нервы, или нервные стволы, связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами, или же с нервными узлами.

Отростки нервных клеток, окруженные плазмалеммой олигодендроцитов или шванновских клеток, называются нервными волокнами рис. Отросток нервной клетки в составе нервного волокна называются осевым цилиндром, а глиальные клетки, формирующие оболочку волокна, называются леммоцитами, или шванновскими клетками. Нервные волокна образуют в головном и спинном мозге проводящие пути, а на периферии — нервы. В пределах ЦНС нервные волокна входят в состав белого вещества мозга. По нервным волокнам осуществляется проведение нервных импульсов. Толщина соматических нервных волокон равна 12-14 мкм, автономных - 5-7 мкм. В зависимости от строения покрывающих оболочек нервные волокна подразделяются на два вида: безмякотные немиелиновые и мякотные миелиновые рис. Безмякотные немиелиновые нервные волокна входят в состав периферических нервов, идущих к внутренним органам, но многие сенсорные волокна также являются безмякотными.

Они имеют несколько осевых цилиндров 3-5, иногда до 12 , окруженных шванновскими клетками. В электронных микрофотографиях видно, что каждый осевой цилиндр погружен в леммоцит, ее клеточная мембрана смыкается и образует мезаксон — сдвоенные мембраны шванновской клетки. Каждая шванновская клетка подобным образом окружает несколько осевых цилиндров, погруженных в леммоцит, может быть в разное количество мезаксонов в нервном волокне. Миелин отсутствует. Шванновские клетки на всем протяжении окутывают безмякотное волокно, препятствуя его соприкосновению с окружающей средой. Строение нерва А и нервного волокна Б. Поперечное строение нерва а , нервного волокна б. Поскольку отростки нервных клеток покрыты плазмалеммой шванновских клеток только один раз, то нервный импульс при прохождении рассеивается.

Он проходит по безмякотным нервным волокнам в 10 раз медленнее, по сравнению с мякотными. Мякотные нервные волокна составляют белое вещество головного и спинного мозга и входят в периферические нервы. Мякотное нервное волокно состоит из одного осевого цилиндра, вокруг которого шванновские клетки образуют миелиновую оболочку. Нервное волокно, состоящее из одного осевого цилиндра и расположенных вокруг него шванновских клеток, называют мякотным, или миелиновым. Характерная особенность шванновских клеток — наличие в них липоидного вещества миелина, который образует вокруг осевого цилиндра мякотную миелиновую оболочку. Каждая шванновская клетка миелинизирует небольшой сегмент только одного аксона. Мякотная, или миелиновая, оболочка примыкает к осевому цилиндру и окружает его чехлом. Она выполняет роль изолятора.

Этим объясняется большая скорость проведения нервных импульсов мякотными нервными волокнами, т. Миелин регулярно прерывается через определенные промежутки. Фактически эти участки, лишенные миелина, являются границами между двумя соседними клетками, где они соединяются при помощи коротких отростков и называются узлами нервного волокна перехват Ранвье. В перехвате Ранвье аксолемма осевого цилиндра не покрыта миелиновой оболочкой. По этой же причине в миелиновых волокнах в отличие от не имеющих перехватов немиелиновых волокон скорость проведения нервных импульсов выше. Участок между узлами называется межузловым сегментом. Они называются «насечками миелина» Шмидтлантермановскими насечками. Шмидтлантермановские насечки — это участки расслоения миелина, образовавшиеся при миелинизации.

Функция насечек неясна. В зависимости от длины миелинового сегмента количество насечек миелина бывает различным. Они отсутствуют в пределах ЦНС. Осевой цилиндр содержит митохондрии, элементы гладкой ЭПС, элементы цитоскелета — микротрубочки, нейрофиламенты и микрофиламенты. Скорость проведения нервного импульса зависит от диаметра аксона, а сам диаметр определяется количеством содержащихся в нем нейрофиламентов. В нормальных и патологических условиях количество нейрофиламентов и диаметр аксона тесно коррелируют. Аксонный транспорт обеспечивает кинезии микротрубочек. Основной материал антероградного транспорта — белки, синтезированные в перикарионе например, белки ионных каналов, ферменты синтеза нейромедиаторов.

Внешняя плазмалемма шванновских клеток окружена базальной мембраной. Выше изложено особенности строения мякотного периферического нервного волокна. Мякотные нервные волокна ЦНС построены сходным образом. Однако оболочка их образована не леммоцитами, а олигодендроцитами. Насечки и перехваты в них отсутствуют, нет и базальных мембран. Нервные стволы нервы образованы пучками мякотных и безмякотных нервных волокон, которые объединяются соединительной тканью, образующей соединительнотканные оболочки. В нерве может быть множество волокон только мякотных только или безмякотных. Есть нервы, в которых встречаются и те и другие.

Наружная оболочка нерва — эпиневрий - состоит из волокнистой соединительной ткани, объединяющей все пучки в составе нерва. Периневрий — соединительнотканная оболочка, окружающая каждый отдельный пучок нервных волокон. Эндоневрий — рыхлая соединительная ткань между отдельными нервными волокнами. Эта ткань связывает отдельные нервные волокна в пучки, соединяясь с их базальной мембраной. Нервы образованы пучками нервных волокон, которые объединены соединительнотканными оболочками. Большинство нервов - смешанные, то есть включают афферентные и эфферентные нервные волокна. Периневриальный барьер необходим для поддержания гомеостаза в эндоневрии. Барьер контролирует транспорт молекул через Периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов.

Периферический нерв содержит разветвленную сеть кровеносных сосудов. В эпиневрии и в наружной части периневрия содержатся артериолы и венулы, а также лимфатические сосуды. В эндоневрии проходят кровеносные капилляры. Периферический нерв иннервирован — имеет специальные нервные волокна. Тема 5. Нервные сети. Соединение нервов между собой синапсы. Нейроны, как отдельные единицы нервной системы, функционируют не изолированно.

Они соединены между собой и образуют единую сеть, которая передает возбуждение от рецепторов в ЦНС и от нее в различные органы рис.

Задание №9 ОГЭ по Биологии

21 октября, 16:35. Нервные импульсы поступают непосредственно к железам по. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. 2280 ответов - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. В эти центры поступают все нервные импульсы и протягиваются все афферентные чувствительные пути, которые (за немногими исключе-ниями) предварительно проходят через один общий центр – таламус. Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга.

Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных

Нервные импульсы, поступающие из мозга, преобразуется гипоталамусом в эндокринные стимулы. Вариант Часть Нервные импульсы поступают непосредственно к железам по. Найди верный ответ на вопрос«Нервные импульсы поступают к мышцам, железам и другим рабочим органам по 1) белому веществу спинного мозга 2) вставочным нейронам 3) » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов. Нервные импульсы поступают непосредственно. Нервный Импульс по аксону. По аксонам нервные импульсы поступают к. Взаимосвязь нейронов. Вариант Часть Нервные импульсы поступают непосредственно к железам по.

ГДЗ по биологии 8 класс Драгомилов | Страница 47

Механизм такого выделения остаётся????? Взаимодействие с рецептором. Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погружённые в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам. Выходящий на поверхность участок рецепторного блока и молекула медиатора имеют одинаковые очертания, они соответствуют друг другу как ключ и замок. Существует 2 основных типа медиаторных рецепторов: быстро действующие — осуществляют передачу, регулируя проницаемость ионной поры, и медленно действующие, которые вызывают образование второго посредника, который в свою очередь опосредует эффекты, производимые медиатором в постсинаптическом нейроне. Окончательное действие Взаимодействие медиатора с его рецептором меняет трёхмерную форму рецепторного белка, инициируя этим определённую последовательность событий. Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение миоцита, а также образование и выделение гормона клеткой железы. Во всех этих случаях рецептор "переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию. Как только молекула медиатора свяжется со своим рецептором, она должна быть инактивированна во избежание слишком длительного её действия и нарушения точного контроля передачи.

Существуют разнообразные механизмы рецепции на молекулярном уровне. Ацетилхолин взаимодействует с рецепторным белком в постсинаптической мембране. АХ является лигандом, когда имеют ввиду, что он связывается с определенным участком белка. И это вызывает изменение проницаемости мембраны. Реакция мембраны может быть либо быстрая либо медленная. ГАМК может связываться с 2 типами мембранных рецепторов — с высоким и низким сродством. Бензодиазепиновые препараты вызывают угнетение ГАМК-эргических синапсов и, благодаря этому, используются для лечения тревожных состояний и страха. ГАМК удаляется из щели путем захвата пресинаптическим окончанием, а также клетками глии. Глия играет важную роль как в захвате так и в метаболизме ГАМК. Однако последующая реакция в постсинаптическом окончании более сложна.

Рецепторный белок аденилатциклаза активирует внутренний рецептор — протеинкиназу, что приводит к фосфорилированию белка. Завершается этот процесс изменением ионной проводимости мембраны. Этот механизм участвует в опосредовании реакций на такие разные вещества как, например, биогенные амины. Любое взаимодействие между 2 нервными клетками имеет 3 составляющие. Одна из них — клетка или её отросток, которые посылают сигналы, — пресинаптический компонент. Другая — клетка или ее отросток, которая принимает — постсинаптический компонент.

Объясните, почему возникший вначале рефлекс затормозился. При ответе надо учесть, что наряду с прямыми связями, по которым идут «приказы» мозга к органам, существуют и обратные, несущие информацию от органов в мозг.

Были ли опасны для глаза наносимые вами раздражения? Очевидно, нет.

Формировать и отправлять эти импульсы может не только головной мозг, так как в головной мозг часто приходят сигналы. Нервный импульс может быть сформирован раздражением нерва или действием некоторых специфичных факторов на рецептор организма. К железам нервные импульсы поступают по нервным нитям.

К железам нервные импульсы поступают по нервным нитям. Например: мы видим опасность, мозг анализирует, что это действительно опасность и отправляет импульс в надпочечники, где выделяется адреналин. Знаешь ответ?

Человек и его здоровье (стр.51-75)

По аксонам нервные импульсы поступают к. Нервный Импульс в нейронах. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам. В эти центры поступают все нервные импульсы и протягиваются все афферентные чувствительные пути, которые (за немногими исключе-ниями) предварительно проходят через один общий центр – таламус.

Нервные импульсы поступают непосредственно к железам по...?

Они обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, бароцептивной, вибрационной сигнализации. Аполяры — нейроны, у которых отсутствуют отростки. Условно к ним относятся не зрелые нервные клетки - нейробласты. По соотношению размера ядра и окружающей его цитоплазмы различают кариохромные и соматохромные нейроны. Кариохромные нейроны характеризуются тем, что обладают крупным ядром, окруженным узким ободком цитоплазмы. У соматохромного нейрона слой цитоплазмы, окружающий ядро, хорошо выражен. По позиции в нейронной цепочке, а также функционально нейроны подразделяются на 3 группы: - афферентные рецепторные, чувствительные , передающие информацию от органов чувств в центральные отделы нервной системы. Тела афферентных нейронов обычно лежат вне ЦНС, в вынесенных на периферию сенсорных органах, узлах ганглиях черепно-мозговых или спинномозговых нервов. У афферентного нейрона дендриты соединены с рецепторным аппаратом, а аксон с другим нейроном.

Эфферентные двигательные, моторные , посылающие импульсы к различным органам и тканям. Они находятся главным образом в передних рогах спинного мозга и в специализированных центрах головного мозга. У эфферентного нейрона дендриты соединены с другими нейронами, а аксон - с рабочим органом мышцей или железой. Вставочные замыкательные, кондукторные, промежуточные , служащие для переработки и переключения импульсов. Один или несколько вставочных нейронов могут находиться между афферентным и эфферентным нейронами. Вставочные нейроны наиболее многочисленны и расположены во всех отделах спинного и головного мозга. Существует также классификация по признаку положения в сети нейронов относительно места действия: первичные, вторичные, третичные и т. Нейроны различаются между собой и размерами отростков.

Нейроны с длинными аксонами — это клетки Гольджи 1-го типа, а нейроны с короткими аксонами — клетки Гольджи 2-го типа. В рамках данной классификации короткими считаются такие аксоны, ветви которых находятся в непосредственной близости от тела клетки. Клетки Гольджи 1-го типа эфферентные — нейроны с длинным аксоном, продолжающимся в белом веществе мозга. Кроме того, в зависимости от локализации различают следующие виды нервных окончаний — рецепторов: экстерорецепторы, интерорецепторы и проприорецепторы. Первые воспринимают раздражения, идущие из внешней среды при контакте или на расстоянии. Интерорецепторы воспринимают раздражения из внутренних органов. Среди них различают терморецепторы, механорецепторы, хеморецепторы, барорецепторы, ноцирецепторы болевые. Нейроны способны синтезировать особые химические вещества, называемые медиаторами.

Медиаторы - посредники, которые обеспечивают передачу нервного импульса с одного клетки на другую от нейрона к нейрону или с нейрона на эффектор. Химия нейромедиатора. Синтез, накопление в синаптических пузырьках и экскреция в синаптическую щель конкретного нейромедиатора - критерий классификации. При этом к названию нейромедиатора добавляют эргический. По этой классификации различают нейроны: а холинэргические. Нейромедиатор — ацетилхолин. К ним относятся двигательные нейроны передних рогов спинного мозга, иннервирующие скелетные мышечные волокна; парасимпатические нейроны блуждающего нерва, иннервирующие сердце, ГМК, железы желудка; б адренэргические. Нейромедиатор — норадреналин.

К ним относятся постганглионарные нейроны симпатического отдела вегетативной нервной системы, иннервирующие сердце, ГМК сосудов и внутренних органов. Форма нервной клетки зависит от числа, места отхождения отростков и их толщины. По этим признакам различают три основных типа нейронов в головном мозге: веретеновидные, звездчатые и пирамидные рис. Веретеновидные нейроны в основном характерны для VI — VII слоев коры головного мозга, редко эти нейроны встречаются и в V ом слое. Характерная особенность этих нейронов — наличие двух дендритов, направленных в противоположные стороны. Наряду с ними отходит еще и боковой дендрит, идущий в горизонтальном направлении. А — веретеновидный нейрон; Б — пирамидальный нейрон; В — клетка Пуркинье; Г — звездчатый нейрон. Классификация нейронов по форме тела и ветвлению отростков Звездчатые нейроны отличаются чрезвычайным разнообразием.

Система звездчатых нейронов с сильно разветвленными дендритами в фило - и онтогенезе прогрессивно возрастает и усложняется в корковых концах анализаторов. Нервные клетки данного типа составляют значительную часть от всех видов клеточных элементов коры больших полушарий. Дендритные и нейритные окончания особенно сильно разветвляются в верхних слоях коры. Аксоны звездчатых нейронов обычно не выходят за пределы коры больших полушарий, а иногда и за пределы своего слоя. Пирамидные нервные клетки встречаются во всех слоях коры больших полушарий. Они сильно варьируют по своим размерам. Наиболее крупные нейроны, известные как клетки Беца В. В местах деления III на три подслоя гигантопирамидные нейроны залегают в третьем подслое.

По чувствительности к действию раздражителей нейроны делятся на моно -, би -, полисенсорные. Моносенсорные нейроны. Располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на световое раздражение сетчатки глаза. Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры большого мозга могут реагировать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более - полимодальными.

Модальность — характер воспринимаемого и передаваемого сигнала например, механорецепторные, зрительные, обонятельные нейроны и т. Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем. Специфические образования нервной клетки. К специфическим образованиям относятся тигроидное вещество и нейрофибриллы.

Тигроидное вещество тигроид, вещество Ниссля находится в перикарионе и дендритах, он отсутствует в аксоне. Под световым микроскопом тигроид выявляется как скопление базофильного вещества в виде глыбок или зерен. Крупные глыбки придают цитоплазме пятнистый вид шкуры тигра. С помощью электронного микроскопа установлено, что тигроид представляет мощно развитый гранулярный ЭПР. Ретикулум состоит из системы мембран с большим количеством рибосом. Высокое содержание РНК обуславливает базофилию тигроида. В нем содержится и белок. Тигроид — обязательный компонент нервной клетки, легко меняющийся в зависимости от функционального состояния.

Тигролиз — распыление тигроидного вещества, отражает глубокие дистрофические изменения при нарушении целостности нейронов. При сильном возбуждении нейрона тигроид может исчезнуть вообще. Уменьшение тигроида и изменение его положения в нейронах наблюдается также в результате патологических процессов: воспаления, дегенерации, интоксикации. Все это дает основание рассматривать количество тигроида, форму его глыбок, характер их расположения как показатели физиологического состояния нейрона. В цитоплазме нейронов обнаруживаются нейрофибриллы — нитчатые структуры. В теле нейрона и дендритах они образуют густую сеть. В аксоне они вытягиваются по длине. Открытие нейрофибрилл привело к возникновению нейрофибриллярной теории проведения нервного возбуждения.

Сторонники этой теории считали, что нейрофибриллы являются беспрерывным проводящим элементом нервной системы, с чем связана ее главная функция. В дальнейшем было установлено, что нейрофибриллы не принимают участие в процессе проведения нервного и возбуждения и прерываются в области контакта нервных клеток. По современным представлениям, в соответствии с нейронной теорией в проведении нервного возбуждения основная роль принадлежит плазмалемме нейрона. Вопрос о значении фибрилл остается неясным. По слипанию нейрофибрилл определяют патологическое состояние нервной клетки. Показано, что при старческом слабоумии наблюдается слипание и огрубление нейрофибриллярной сети. Обмен веществ в нейроне. Нейроны при участии клеток глии обеспечивают себя всем «необходимым» для нормального функционирования, так как синтезируют белки, углеводы и липиды, которые используются самой нервной клеткой в процессе е жизнедеятельности.

Необходимые питательные вещества, кислород и соли доставляются в нервную клетку кровью. Продукты метаболизма также удаляются из нейрона в кровь. Белки нейронов служат для пластических и информационных целей. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых структурах нервной системы выше, чем в более старых. Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше - в мозжечке, наименьшая - в спинном мозге.

Липиды нейронов служат энергетическим и пластическим материалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается. Углеводы нейронов являются основным источником энергии для них. Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того, что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит и глюкоза крови. Расщепление глюкозы идет преимущественно аэробным путем, чем объясняется высокая чувствительность нервных клеток к недостатку кислорода.

Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. Кроме того, в нейроне имеются различные микроэлементы. Благодаря высокой биологической активности они активируют ферменты. Количество микроэлементов в нейроне зависит от его функционального состояния. Так, при рефлекторном или кофеиновом возбуждении содержание меди и марганца в нейроне резко снижается. Обмен энергии в нейроне в состоянии покоя и возбуждения различен. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз. Собственные энергетические процессы нейрона его сомы тесно связаны с трофическими влияниями нейронов, что сказывается, прежде всего, на аксонах и дендритах.

В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон. Тема 3. Нейросекреторные клетки. Регенерация нейронов. Нейросекреторные нервные клетки. В определенных отделах мозга беспозвоночных и позвоночных животных имеются нейроны, содержащие гранулы секрета. Такие секретирующие нейроны называются нейросекреторными.

Они имеют физиологические признаки нейрона, но обладают выраженными признаками железистых клеток. Нейросекрет синтезируются в связи с тигроидной субстанцией гранулярной ЭПС, оформляется в виде секрета в системе аппарата Гольджи. Секрет продвигается по аксону и выделяется из клеток в области их концевых разветвлений. В отличие от обычных нейронов секрет высвобождается не в области синапса, а в кровь или ликвор мозговую жидкость. Аксоны нейросекреторных клеток направляется в нейрогипофиз и промежуточную долю аденогипофиза, образуя с ними единую систему. Выделяемый нейросекреторными клетками продукт рассматривают как гормон, регулирующий деятельность некоторых желез внутренней секреции и гонад, где нервная регуляция оказывается редуцированной. Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни.

Такая гибель клеток генетически запрограммирована. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются? Этот факт часто приводится в популярной и даже научной литературе. Однако такое мнение научно не обосновано и потому не может считаться достоверным. На самом же деле любая клетка одновременно и живет и "работает". В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому целесообразным будет обратить внимание к одному из свойств нервной системы, а именно - к ее исключительной пластичности. Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых нервные клетки, которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции.

Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Значит, одна живая нервная клетка может заменить девять погибших. Но пластичность нервной системы - не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант - возникновение новых нервных клеток в головном мозге взрослых млекопитающих и человека, или нейрогенез. Первое сообщение о нейрогенезе появилось в 1962 году в статье "Формируются ли новые нейроны в мозге взрослых млекопитающих? Ее автор, профессор Ж. Он с помощью электрического тока разрушал латеральное коленчатое тело крысы и вводил туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе и коре головного мозга.

В дальнейшем аналогичное явление было установлено и другими исследователями в головном мозге птиц. В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии.

Как изменятся у животных: А концентрация глюкозы в крови, Б содержание гликогена в мышцах, В диаметр артериол в мышцах? Для каждой величины определите соответствующий характер её изменения: 1 увеличилась, 2 уменьшилась, 3 не изменилась. Цифры в ответе могут повторяться. Ответ 213 2. Экспериментатор использовал три группы лабораторных крыс для изучения нарушений углеводного обмена.

Первой группе животных была проведена операция по тотальному удалению поджелудочной железы; второй группе — операция по резекции поджелудочной железы удалению части органа ; третьей группе — операция по перевязке протоков поджелудочной железы.

Может быть один этап ферментативного катализа ацетилхолин или до трёх этапов адреналин. Аминокислоты синтезируются из глюкозы.

Многие этапы синтеза можно блокировать фармакологическими агентами, что лежит в основе действия многих лекарств, влияющих на нервную систему. После выработки молекул медиатора они накапливаются и хранятся в окончании аксона в маленьких мешочках, связанных с мембраной. В одном окончании могут быть тысячи синаптических пузырьков, каждый из которых содержит от 10 тыс.

Высвобождение Приход нервного импульса в окончание аксона вызывает высвобождение множества молекул медиатора из окончания в синаптическую щель. Механизм такого выделения остаётся????? Взаимодействие с рецептором.

Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погружённые в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам.

Выходящий на поверхность участок рецепторного блока и молекула медиатора имеют одинаковые очертания, они соответствуют друг другу как ключ и замок. Существует 2 основных типа медиаторных рецепторов: быстро действующие — осуществляют передачу, регулируя проницаемость ионной поры, и медленно действующие, которые вызывают образование второго посредника, который в свою очередь опосредует эффекты, производимые медиатором в постсинаптическом нейроне. Окончательное действие Взаимодействие медиатора с его рецептором меняет трёхмерную форму рецепторного белка, инициируя этим определённую последовательность событий.

Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение миоцита, а также образование и выделение гормона клеткой железы. Во всех этих случаях рецептор "переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию. Как только молекула медиатора свяжется со своим рецептором, она должна быть инактивированна во избежание слишком длительного её действия и нарушения точного контроля передачи.

Существуют разнообразные механизмы рецепции на молекулярном уровне. Ацетилхолин взаимодействует с рецепторным белком в постсинаптической мембране. АХ является лигандом, когда имеют ввиду, что он связывается с определенным участком белка.

И это вызывает изменение проницаемости мембраны. Реакция мембраны может быть либо быстрая либо медленная. ГАМК может связываться с 2 типами мембранных рецепторов — с высоким и низким сродством.

Бензодиазепиновые препараты вызывают угнетение ГАМК-эргических синапсов и, благодаря этому, используются для лечения тревожных состояний и страха. ГАМК удаляется из щели путем захвата пресинаптическим окончанием, а также клетками глии. Глия играет важную роль как в захвате так и в метаболизме ГАМК.

Однако последующая реакция в постсинаптическом окончании более сложна.

К мышце нервный Импульс поступает по. К мышце нервный Импульс поступает по 1 дендритам вставочного нейрона.

К мышце или внутреннему органу нервный Импульс поступает по. Нервный Импульс поступает к мышце по нейрону. Части зрительного нерва.

Зрительный нерв образован аксонами. Волокна зрительного нерва части. Аксон зрительного нерва.

К телу нейрона Импульс поступает по дендритам. Нервный Импульс. Аксоны двигательных нейронов нейронов.

Нервный Импульс в нейронах. Чувствительные Нейроны передают. Вставочные Нейроны передают нервные импульсы от.

Вставочный Нейрон Аксон чувствительного нейрона. Выставочные Нейроны передают импульсы. Нервный Импульс по аксону :.

Поступление нервных импульсов в мозг. Нервные импульсы в головной мозг передаются. Длинный Центральный отросток нервной клетки.

Отросток нервной клетки передающий сигнал. Нервные импульсы от тела нейрона передаются по. Зрительный нерв иннервирует.

Импульс по зрительному нерву. Нервные импульсы поступают. Глазной нерв ход импульса.

Основное свойство нервной ткани. Основные свойства нервной ткани это возбудимость и проводимость. Верны ли следующие суждения о нервной ткани человека.

Основные свойства нервной ткани это возбудимость и. Корковый обонятельный центр. Корковый анализатор обоняния.

Корковый центр обоняния мозга. Нервный центр обонятельного анализатора. Как происходит возбуждение нейрона.

Строение нервного импульса. Передача импульса по нервной клетке. Нервные импульсы от рецепторов поступают в.

Возникают нервные импульсы в глазу. Импульсы зрительного нерва. Сетчатка нервный Импульс.

Болевая сенсорная система схема. Болевая сенсорная система физиология. Болевая сенсорная система Ноцицептивная система схема.

Строение рецепторов болевой сенсорной системы. Нейромедиатор это гормон. Синапс нейромедиатор.

Нейромедиаторы представители. Нейромедиаторы мозга. Длина аксона.

Направлении проведения нервного импульса аксоном и дендритами. Аксон , проводящий нервный Импульс. Телодендрии аксона.

Продолговатый мозг центры регуляции. Рефлекторная функция продолговатого мозга. Нервные центры продолговатого мозга.

Продолговатый мозг нервная система. Нейрон структурно-функциональная единица нервной системы. Структурно-функциональная характеристика нейронов.

Функциональное строение нервной системы. Структурная организация нейрона. Передача нервного импульса в ЦНС.

Путь передачи нервного импульса в центральную нервную систему. Сигналы нейронов. Нервная система строение нейрона.

Похожие новости:

Оцените статью
Добавить комментарий