Новости термоядерная физика

Китайский термоядерный реактор поставил рекорд в ядерной энергетике. В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. Зачем на самом деле строится самый большой термоядерный реактор. Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии.

˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜

Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха. Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке». Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF. Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен!

Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

Еще в 50-х годах прошлого века советские ученые придумали установку в форме тора, или бублика, где разогретую плазму удерживает магнитное поле. Тогда и родился термин «токамак» тороидальная камера с магнитной катушкой. Сегодня в работе с токамаками российские специалисты по-прежнему впереди планеты всей. В термоядерном синтезе множество задач, которые никому не удается решить уже десятки лет. Глава правительства Михаил Мишустин дал старт большому проекту класса «Мегасайенс», который должен помочь выйти за рамки современных научных догм. И, конечно, я сразу же хочу поздравить весь ваш дружный коллектив, который много лет работал над тем, чтобы продвинуться еще дальше. Появляется уникальная инфраструктура для научных исследований, для того, чтобы, как говорят ученые, управляемый термоядерный синтез все-таки создал неиссякаемый источник энергии», — сказал премьер Михаил Мишустин. На этой установке российские ученые будут проводить исследования, без которых невозможен запуск международного проекта ИТЭР. Самый большой в мире экспериментальный термоядерный реактор сейчас строится на юге Франции. На связь оттуда вышел генеральный директор проекта.

Ученые во второй раз добились чистого прироста энергии в реакции термоядерного синтеза. Об эксперименте сообщает Reuters со ссылкой на Ливерморскую национальную лабораторию Лоуренса. Читайте «Хайтек» в Физики из Ливерморской национальной лаборатории Лоуренса LLNL во второй раз добились термоядерного воспламенения зажигания во время эксперимента 30 июля.

Им удалось не только повторить успех декабря прошлого года первого случая превышения полученной энергии над затраченной , но и улучшить выход энергии.

Огромное площадью около 1 квадратного километра сооружение на окраине французского города Кадараш стоит почти 20 миллиардов долларов. Россия вносит 10 процентов от этой суммы, но не деньгами. Мы, к примеру, создаем устройства для нагрева плазмы, магнитную систему и прочие необходимые компоненты этого реактора. Несмотря на большие вложенные средства, самый большой проект, за который многие уже успели получить премии, до сих пор не реализован. Все чаще всплывают какие-то дополнительные проблемы и переносятся сроки запуска. Невольно возникает крамольная мысль: «А может, ученые сговорились и просто обманывают всех? Термоядерная гонка Для того чтобы понять степень сложности проблемы, мы обратились к специалисту — ведущему научному сотруднику Физико-технического института им.

В дальнейшем ученые постоянно совершенствовали конструкцию токамаков, улучшая параметры удерживаемой в них плазмы примерно на порядок каждое последующее десятилетие. При этом токамаки неизменно увеличивались в размерах. Наш Т-15, увы, так по-настоящему и не заработал. Погубили его... Не сами по себе — причина тут чисто экономическая: для охлаждения сверхпроводников нужно было много жидкого гелия, который в то сложное время оказался слишком дорог для российских ученых. Сегодня вместо Т-15 строится новый токамак, без сверхпроводников, который обещают запустить в ближайшее время. В Великобритании и США же тем временем получили плазму с рекордными параметрами и провели первые эксперименты с использованием дейтерия и трития. Американцы спустя несколько лет утилизировали свою установку, чтобы построить на ее месте новый токамак, — такая у них политика.

Но самым большим токамаком в мире на сегодняшний день пока по-прежнему остается JET. Почему так долго не удается запустить полноценную реакцию? Тем не менее до коммерческого реактора еще достаточно далеко. В числе причин — отсутствие ряда технологий, ресурс реактора, его размеры. Есть надежда, что в ИТЕРе нам все-таки удастся запустить самоподдерживающуюся реакцию. Кстати, в этом экспериментальном токамаке-реакторе будут использоваться те же сверхпроводники, которые когда-то стояли на нашем Т-15. Они позволят поддерживать поле в магнитных катушках без значительного расхода мощности. Реакция полностью контролируема.

Энергетические сферы Параллельно с классическими токамаками в конце 80-х стало развиваться еще одно направление — сферических токамаков, форма которых больше напоминала уже не бублики, а пончики или шарики. Первая экспериментальная установка, построенная в Оксфордшире, рядом с JET, показала, что в такой конфигурации лучше удерживается плазма более высокой плотности. После этого интерес к таким установкам проявили в исследовательских центрах во многих странах мира. Когда установки были запущены, почти у всех трех была выявлена одна общая проблема — плохо удерживались заряженные частицы с большой энергией.

Концепция «потеющей стенки»: российские учёные разработали новый материал для термоядерного реактора Российские учёные разработали новый материал для термоядерного реактора 28 апреля 2023, 10:00 Надежда Алексеева, Екатерина Кийко Российские учёные смогли объединить свойства двух металлов — вольфрама и меди — в одной конструкции методом газофазного осаждения. Это позволит решить одну из серьёзных проблем термоядерного синтеза — защитить стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, не допустив при этом попадания в неё ненужных примесей. По словам учёных, методика позволяет создавать покрытие из тугоплавкого вольфрама, лишённое пор. Оно наносится на медную подложку, которая позволяет отводить тепло от стенки реактора с участием лёгкого металла лития. Термоядерная установка «Глобус-М», сооружённая в Физико-техническом институте им.

Изобретение уже получило патент.

#термоядерный синтез

Когда установки были запущены, почти у всех трех была выявлена одна общая проблема — плохо удерживались заряженные частицы с большой энергией. Для исправления ситуации требовалось увеличить магнитное поле. В итоге все три «ушли» на модернизацию до 2016—2017 годов. Однако после перерыва, в 2018 году, запустить свой токамак удалось только ученым из Санкт-Петербурга. Их обновленный «Глобус» стал называться «Глобусом-М2». Конечно, это меньше, чем на большом торе у европейцев, но их показатели нельзя сравнивать из-за небольших размеров нашего «Глобуса», который имеет диаметр всего 36 сантиметров диаметр JET — около 3 метров.

На «Глобусе-М2» мы пытаемся проверить правильность выбора сферической формы для термоядерного реактора, понять, будет ли у него преимущество по удержанию плазмы, будет ли он превосходить классический тор по энергозатратам. Но у него будет ряд принципиальных отличий. Прежде всего из-за увеличенных размеров качественно изменятся параметры плазмы. Кроме того, будут впервые испытаны в таком масштабе сверхпроводящая магнитная система, новые системы дополнительного нагрева плазмы и многое другое. И есть подозрение, что у них это получится быстрее, чем у международного консорциума.

Кто в итоге выживет, это пока вопрос. Скорей всего, термоядерный реактор будет построен на базе классического токамака. Но для сферических токамаков может найтись своя ниша, а их коммерческое применение может начаться гораздо раньше. Гибридные технологии Как выяснилось, мало нашим физикам-ядерщикам сферической модернизации термоядерного реактора. Сейчас, по словам Минаева, в нашей стране параллельно запускается процесс разработки и создания гибридной электростанции, основанной на термоядерной и ядерной технологиях.

Это позволит эффективней удерживать плазму? Мы хотим за счет термоядерных технологий решить проблему с «замыканием» ядерного топливного цикла. Представляете, мы сможем нарабатывать искусственное топливо для атомных реакторов, получать в реакторе энергию, а после дожигать отработанное топливо до безопасного состояния, чего раньше никогда не было. До сих пор мы просто захоранивали ядерные отходы, накапливая их. В целом новая гибридная атомная станция будет значительно безопасней и экологичней.

Отсутствие большого количества опасных отходов также позволит повысить экспортный потенциал нашей атомной промышленности. Развивая эту технологию, мы оставим своим потомкам более чистую планету, без залежей ядерных отходов. Мы будем использовать термоядерный реактор как мощный источник нейтронов для получения ядерного топлива. При этом параметры плазмы в таком термоядерном источнике нейтронов могут быть существенно ниже, чем в чисто термоядерном энергетическом реакторе, а размеры — существенно меньше, чем у того же ИТЕРа. Следовательно, такой реактор-источник будет значительно дешевле.

Но самое главное: реализация гибридной концепции позволит существенно сократить время, требующееся для внедрения уже наработанных термоядерных технологий в коммерческий оборот.

На первый взгляд заголовки статей очень впечатляют: в NIF получен энергетический выход, превышающий поглощенную мишенью энергию. Эта фраза звучит словно объявление о том, что эффективный источник термоядерной энергии заработал и теперь дело переходит в индустриальную плоскость.

Увы, всё обстоит совсем не так. Настоящий энергетический выход — то есть сколько получено термоядерной энергии по сравнению с полной затраченной энергией — остается очень низким, не более одного процента. Поэтому ни о каком полезном применении для энергетики ни сейчас, ни в обозримом будущем речи пока не идет.

Исследования здесь находятся лишь в стадии доказательства принципиальной работоспособности технологии. Тем не менее полученный NIF результат пусть и не сенсационен, но тоже очень важен. Он на порядок лучше, чем всё то, что на NIF удавалось получить до сих пор, и к тому же заключает в себе первые серьезные намеки на принципиальную осуществимость проекта.

Управляемый термоядерный синтез Есть два основных типа ядерных реакций, которые идут с выделением энергии, — это расщепление тяжелых ядер например, урана или плутония и слияние легких ядер обычно дейтерия и трития — тяжелых изотопов водорода, рис. Энергия, получаемая при расщеплении — это то, что обычно называется ядерной энергией, именно на ней работают атомные электростанции. Энергия, получаемая при слиянии, называется термоядерной энергией, а сам процесс — термоядерным синтезом.

Энергетический выход термоядерной реакции существенно выше, чем у ядерного топлива, однако приручить этот тип энергии пока не удалось. Конечно, существуют атомные бомбы, работающие по обоим принципам, но их взрыв представляет собой неуправляемую реакцию, и для целей добычи энергии он не подойдет. Классическая реакция термоядерного синтеза: ядра дейтерия и трития сливаются друг с другом с образованием альфа-частицы и свободного нейтрона и с выделением энергии.

Рисунок из статьи M. Herrmann, 2014. Plasma physics: A promising advance in nuclear fusion Большинство специалистов связывают основные надежды по достижению управляемого термоядерного синтеза с магнитными ловушками , и прежде всего с международным проектом ITER для первого серьезного знакомства можно порекомендовать лекцию Кристофера Ллуэллин-Смита На пути к термоядерной энергетике.

Но параллельно с этим уже давно разрабатывается и другая схема для запуска управляемой термоядерной реакции — инерциальный термоядерный синтез. Она еще не так развита, как термояд с магнитным удержанием, но некоторые специалисты надеются, что именно на этом пути будет получен первый удобный источник термоядерной энергии. Принцип работы инерциального термоядерного синтеза звучит просто.

Берем маленькую капсулу с дейтериево-тритиевой смесью и резко сжимаем ее, например, с помощью сверхмощного лазерного импульса. Капсула от такого сжатия сильно нагревается, и в самом ее центре в условиях высоких температур и давлений зажигается термоядерная реакция. Выделяющаяся энергия разогревает остальную часть дейтериево-тритиевого горючего, и термоядерная реакция охватывает всю капсулу.

Подставляя всё новые и новые капсулы под лазерный луч, мы получаем постоянное производство энергии. К сожалению, техническая реализация этой простой идеи неимоверно сложна. Трудности здесь, в основном, технического характера прежде всего, неустойчивости при сжатии капсулы , но преодолеть их пока не получается.

Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не удавалось не только выйти на этот режим, но и даже приблизиться к нему. Главный результат новых публикаций NIF заключается как раз в том, что эмпирическим путем был подобран такой режим работы, при котором по крайней мере одна трудность была преодолена, и стали появляться первые намеки на настоящую термоядерную реакцию с хорошим энергетическим выходом. Работа установки NIF Чтобы зажечь термоядерную реакцию в капсуле с топливом, требуется создать в ее центре область очень высокой температуры порядка 100 млн градусов и большой плотности.

При меньшей температуре реакция термоядерного синтеза толком не начнется, а при низкой плотности центральная область быстро остынет, не сумев дать заметный энергетический выход. Но для полноценного термоядерного горения этого мало. Если мы хотим, чтобы центральная область не просто загорелась и потухла, а породила самоподдерживающийся термоядерный синтез во всей капсуле, нужно, чтобы топливо разогревало само себя.

Это происходит тоже при высоких плотностях, когда рождающиеся в термоядерном синтезе альфа-частицы поглощаются прямо внутри топливной капсулы, а не улетают прочь. Таким образом, можно сформулировать три ключевых задачи для установки NIF: 1 добиться существенного термоядерного синтеза — количество энергии, выделившейся при синтезе, должно превышать энергию, поглощенную топливом; 2 добиться устойчивого термоядерного горения всей топливной капсулы за счет саморазогрева альфа-частицами; 3 добиться полной эффективности выше единицы — то есть энергетический выход должен превышать всю энергию, затраченную на зажигание реакции, а не только ту часть, которая поглощается непосредственно топливом.

Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия. Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом. В ядре Солнца они подвергаются колоссальному давлению вкупе с огромной температурой. Создать такую гравитацию в лабораторных условиях невозможно, поэтому приходится разогревать среду еще сильнее. Так, если в центре нашего светила температура составляет около 15 млн градусов Цельсия, то в термоядерном реакторе — около 150 млн.

Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились. Насколько это опасно Эксперты Курчатовского института замечают , что термоядерный синтез не является цепной реакцией. То есть при нарушениях в работе установки процесс попросту остановится. Максимум, какая опасность поджидает обслуживающий персонал и окружающих — расплавление токамака установки удержания плазмы с помощью мощных магнитов. В этом плане УТС гораздо безопаснее классической атомной энергетики, где реакция как раз является цепной и угрожает загрязнением обширных площадей.

Мнения о том, что дорогостоящие исследования и разработки в области УТС бесперспективны, выбранные подходы неверны, а поставленные задачи нерешаемы и необоснованны регулярно появляются как в средствах массовой информации, так и в прогнозных оценках государственных и окологосударственных структур.

Эти мнения отнюдь не всегда исходят от дилетантов, их можно услышать и из уст профессионалов в области ядерной энергетики и физики плазмы [ 1 ]. При этом недооцениваются важнейший, как сегодня представляется, фактор технологического развития, необходимого для реализации термоядерных технологий, и существующие уже сейчас возможности их практического использования, а физические и технологические трудности, стоящие на пути реализации УТС, гиперболизируются. Этим и некоторым другим вопросам термоядерных исследований и посвящена настоящая статья. Предметом обсуждения будут исследования с использованием установок типа токамак — замкнутых систем магнитного удержания высокотемпературной плазмы, являющихся с 1970-х годов наиболее продвинутыми и эффективными. Наличие ряда предшествующих обзоров [ 2 — 4 ], описывающих состояние и перспективы УТС, оправдывает краткость изложения позиции авторов в настоящей статье. МЫ БЫЛИ ПЕРВЫМИ В условиях ограниченности ресурсов, выделяемых на научно-технологическое развитие, для крупных корпораций или целых стран неизбежна постановка вопроса о выборе приоритетов, решаемого зачастую волевым образом или посредством лоббирования.

Более подробно позиция авторов о роли и месте прикладной науки изложена в статье [ 5 ]; здесь же отметим, что термоядерные исследования в России с использованием токамаков вполне соответствуют вышеуказанным критериям. Не углубляясь в историю отечественных термоядерных исследований, неоднократно описанную с разной степенью детализации см. К этим экспериментально проверенным достижениям, впоследствии взятым на вооружение во всём мире, следует добавить широко признанные теоретические разработки, лёгшие в основу современной теоретической физики высокотемпературной плазмы. Прогресс, достигнутый в результате многолетних исследований на токамаках, не следует недооценивать. Достижение всех необходимых для реализации УТС значений параметров 2 сегодня продемонстрировано экспериментально, но, к сожалению, в разных экспериментах табл. Полученные значения тройного произведения более чем в 1000 раз превышают данные середины 70-х годов прошлого века, когда стартовали первые крупные токамаки с дополнительным нагревом плазмы 3 3.

И то, и другое сопряжено с существенным удорожанием установки. Именно на реализацию проекта ИТЭР в последнее десятилетие были направлены основные усилия мирового термоядерного сообщества. При этом большинство участников вполне плодотворно использовали добытые общими усилиями при проектировании ИТЭРа знания и технические решения в своих национальных программах. И наоборот, данные, получаемые в ходе исследований, выполняемых национальными командами, анализируются и учитываются в проекте ИТЭР. Отметим, что планируемые режимы работы ИТЭРа основаны на довольно консервативных представлениях и достаточно обоснованы предшествующими экспериментами [ 9 ]. Вместе с тем ИТЭР — это качественный скачок в токамакостроении.

Для примера: объём плазмы ИТЭРа равен 840 м3, что более чем в 10 раз превосходит объём плазмы самого крупного из действующих токамаков — токамака JET. Строительство и запуск ИТЭРа призваны продемонстрировать работоспособность идеологии, позволяющей создать на базе токамака термоядерный энергетический реактор. Основной задачей экспериментов на ИТЭРе будут отработка и испытание важнейших технологий и компонентов реактора. Принципиально важной станет проверка концепции использования вольфрама в качестве материала для диверторных пластин — как самого тугоплавкого металла — в условиях ожидаемых на ИТЭРе огромных потоков энергии.

Российские физики рассказали о приручении термоядерного синтеза

В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного. Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен!

Вестник РАН, 2021, T. 91, № 5, стр. 470-478

Для этого ученым необходимо обеспечить стабильное "зажигание", которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта "зажигания", команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча. В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности.

Одно из построенных решений представлено ИТЭР, ранее известным как Международный термоядерный экспериментальный реактор, который строится с 2010 года в Карадаше, Франция. Первые эксперименты, первоначально запланированные на 2018 год, были перенесены на 2025 год.

Им удалось не только повторить успех декабря прошлого года первого случая превышения полученной энергии над затраченной , но и улучшить выход энергии. В обоих экспериментах физики использовали 192-лучевой лазер для нагрева и сжатия атомов водорода. Окончательные результаты нового эксперимента еще не подведены, но физики сообщили, что выход энергии превысил результат прошлого года. Напомним, тогда, затратив 2,05 МДж на питание лазеров, ученые получили 3,15 МДж энергии.

Том Уилсон Tom Wilson Ученые американского правительства совершили прорыв в поисках безграничной энергии с нулевым выбросом углерода, впервые в истории добившись выработки в реакции термоядерного синтеза, сообщают трое людей, осведомленных с предварительными результатами недавнего эксперимента. Начиная с 1950-х годов физики пытаются использовать питающую Солнце реакцию синтеза, но ни один ученый коллектив так и не смог произвести в результате реакции энергии больше затраченной. Эта веха под названием чистый прирост возвестила бы о надежной и доступной альтернативе ископаемому топливу и традиционной ядерной энергетике. Федеральная Ливерморская национальная лаборатория имени Лоуренса в Калифорнии использует так называемый термоядерный синтез с инерционным удержанием — при этом крошечная частичка водородной плазмы бомбардируется крупнейшим в мире лазером. В ходе эксперимента за последние две недели удалось добиться чистого прироста энергии. Даже при том, что многие ученые считают, что создание термоядерных электростанций станет возможным лишь спустя десятилетия, потенциал этой технологии трудно переоценить. Реакции термоядерного синтеза не выделяют ни углерода, ни радиоактивных отходов с долгим периодом полураспада, а небольшая чашка водородного топлива теоретически может питать дом в течение сотен лет. Американский прорыв свершился в момент, когда мир столкнулся с высокими ценами на энергию и необходимостью скорейшего отказа от ископаемого топлива, чтобы не допустить опасного скачка средних мировых температур.

В соответствии с Законом о снижении инфляции администрация Байдена вложит в новые субсидии на низкоуглеродную энергетику почти 370 миллиардов долларов — это поможет сократить выбросы и выиграть глобальную гонку за чистые технологии следующего поколения.

Американские физики повторно добились термоядерного зажигания

Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии.

Преимущества и недостатки термоядерных реакторов

  • Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech
  • Подписка на дайджест
  • Академик В.П. Смирнов: термояд — голубая мечта человечества
  • Термоядерный реактор: что это, как устроен, международный термоядерный реактор ИТЭР
  • Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Аргументы и Факты

Ракетчики начали строить термоядерный двигатель

Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М.

Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке». Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние. Физик объяснил важность создания прототипа российского термоядерного реактора. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта.

˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜

Этот подход, по утверждению компании, может обеспечить безграничную чистую энергию при значительно меньших затратах и сложности, чем у конкурентов. Zap утверждает , что ее Z-пинч реактор является самым простым, маленьким и дешевым устройством, достигшим этой ключевой для термоядерных систем отметки. Вице-президент по исследованиям и разработкам Бен Левитт отметил, что измерения были сделаны на реакторе невероятно скромного масштаба в сравнении с традиционными термоядерными аппаратами. В отличие от токамаков и стеллараторов, технология Zap не требует дорогих и сложных сверхпроводящих магнитов или мощных лазеров.

Установку построили на основе модифицированного реактора HT-7. Радиус ее внешнего корпуса составляет 1,7 метра. В мае 2021 года ученым удалось установить первый рекорд. Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты. Ученые считают, что с помощью токамака удастся получить источник неограниченной чистой энергии, так как водород и дейтерий в изобилии присутствуют на Земле. Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время.

Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения.

В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад. Что же касается той новости, которую вы пересказываете сейчас, то это типичная армия Венка, которая вот-вот придет и спасет Берлин;.

Каждый из этих фрагментов будет собираться из более мелких сегментов. Всего сегментов 54. Их производством занята Индия. Затем фрагменты, после сборки в Здании криостата, по очереди будут перемещены и установлены на место — в шахту реактора [33]. Для снижения влияния нейтронного излучения токамака на окружающую среду криостат будет окружён «одеялом» из специального бетона, которое называют «биозащита» англ. Толщина биозащиты над криостатом составит 2 м. Эти выступы на сайте ITER называют «короной» «crown». Арматура элементов короны имеет очень сложный макет; для приготовления бетона будет использован гравий , добываемый в Лапландии [34]. Control, Data Access and Communication — управление, доступ к данным и связь является основной системой управления при эксплуатации ИТЭР-токамака. В настоящий момент команда проводит консультации с ведущими институтами и привлечёнными компаниями в целях принятия наилучших технических решений для ИТЭР. Central Safety Network — Сеть централизованной защиты ; терминалы; датчики. Организационно вся система управления делится на следующие подразделения: Центральный контроль и автоматизация, мониторинг и обработка данных Central supervision and automation, monitoring and data handling. Отображение данных и управление HMI англ. Human Maсhine Interface. Подразделение включает в себя терминалы и мнемосхемы, системы Центральной блокировки CIS англ. Central Safety System. Обе системы обладают собственными регистраторами параметров. Группа управления ITER англ. В составе два сервера: сервер обслуживания и приложений; шлюз доступа к каналам данных. Система токамака англ. Система обеспечивает получение потока данных с токамака и осуществляет непосредственное управление исполнительными механизмами. Система состоит из трёх уровней: Контроллеры. Каждый контроллер соединён шиной со своим интерфейсом. Интерфейсы в большинстве своем аналого-цифровые преобразователи преобразуют аналоговые данные с датчиков в цифровые данные. Некоторые интерфейсы преобразуют команды, полученные от контроллеров в команды для исполнительных механизмов. Датчики и исполнительные механизмы. Топливом для токамака ITER служит смесь изотопов водорода — дейтерия и трития. Критерий Лоусона для данного типа реакции n.

Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае

  • Термоядерный синтез вышел на новый уровень: подробности
  • Статьи по теме «термоядерный синтез» — Naked Science
  • Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
  • Почему сложно построить реактор для синтеза
  • Содержание

Клаус Фукс получил от Англии 14 лет каторги, а от Страны Советов — вечное забвение

  • Лазерный пресс
  • Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
  • Ядерная физика — узнай главное на ПостНауке
  • Поделиться
  • Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае
  • Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

Но ни один материал не способен вынести соприкосновения со столь горячей плазмой. Для этого академик Андрей Сахаров с подачи Олега Лаврентьева в 1950-е годы предложил использовать тороидальные в виде пустотелого бублика камеры с магнитным полем, которое удерживало бы плазму. Позже и термин придумали — токамак. Современные электростанции, сжигая ископаемое топливо, конвертируют механическую мощность кручения турбин, например в электричество. Токамаки будут использовать энергию синтеза, абсорбируемую в виде тепла стенками устройства, для нагрева и производства пара, который и будет крутить турбины. Первый токамак в мире. Советский Т-1. И они успешно доказали, что человек может создать высокотемпературную плазму и удерживать ее некоторое время в стабильном состоянии. Но до промышленных образцов еще далеко. Монтаж Т-15.

Первый можно вырабатывать на самом реакторе: высвобождающиеся во время синтеза нейтроны будут воздействовать на стенки реактора с примесями лития, из которого и появляется тритий. Запасов лития хватит на тысячи лет. В дейтерии тоже недостатка не будет — его в мире производят десятками тысяч тонн в год. Термоядерный реактор не производит выбросов парниковых газов, что характерно для ископаемого топлива. А побочный продукт в виде гелия-4 — это безвредный инертный газ. К тому же термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы. Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции.

Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек. И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы. К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии.

К тому же период полураспада трития — 12 лет. Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством.

Также могут быть использованы новые конструкции, где подачу энергию осуществляют лазерные диоды, производящие энергию в диапазоне частот, которые сильно поглощаются стенками хольраумов. Однако при этом остаются такие факторы, влияющие на экономическую целесообразность, как стоимость топлива и мишеней. Ливерморская национальная лаборатория обошла ITER Наряду c ICF существует еще один способ проведения термоядерного синтеза, называемый магнитным удержанием плазмы.

Он проводится в токамаках — тороидальных установках, где нагретая до экстремальных температур плазма удерживается с помощью мощных магнитных полей. Масштабный проект начал разрабатываться с середины 1980-х годов, а завершить грандиозную стройку планируется в 2025 году. Также как и в инерциальном термоядерном синтезе, в основе работы реактора ITER будет лежать термоядерная реакция слияния изотопов водорода, дейтерия и трития с образованием гелия и высокоэнергетического нейтрона. Для этого дейтерий-тритиевая смесь должна быть нагрета до температуры более 100 миллионов градусов, что в пять раз превышает температуру Солнца. Планируется, что эксперименты по нагреву плазмы для запуска энергоэффективных термоядерных реакций начнутся только в 2035 году. В то же время инженерные задачи и проблемы, с которыми специалисты сталкиваются при строительстве ITER, отличаются от тех, что возникают в ICF.

Рыночные перспективы появления почти неограниченной и почти бесплатной энергии оценивает экономист Сергей Хестанов: Сергей Хестанов советник по макроэкономике генерального директора компании «Открытие инвестиции» «Естественно, если удастся создать работоспособный реактор, работающий за счет ядерного синтеза, это буквально обвалит спрос на энергетические товары, то есть на энергетический уголь. В меньшей степени это затронет рынок нефти. Газ и нефть в значительной мере потребляются не для сжигания, а для разного рода синтетических процессов. Соответственно, эта часть спроса сохранится. А вот энергетический уголь пострадает довольно сильно. Но пока стадия, в которой находятся исследования, не позволяет сделать надежных выводов. Если действительно реактор, работающий на ядерном синтезе, удастся технически реализовать, это будет огромный прорыв. Это сильно изменит мировую экономику. Причем очень сильно.

Первый пуск EAST состоялся в 2006 году. Установку построили на основе модифицированного реактора HT-7. Радиус ее внешнего корпуса составляет 1,7 метра. В мае 2021 года ученым удалось установить первый рекорд. Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты. Ученые считают, что с помощью токамака удастся получить источник неограниченной чистой энергии, так как водород и дейтерий в изобилии присутствуют на Земле. Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время. Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский.

Похожие новости:

Оцените статью
Добавить комментарий