Для обозначения века также можно использовать арабские цифры, например, «20 век» или «21 век».
Как пишутся все века
Если нужно отметить век до нашей эры, то используем то же обозначение века плюс "до н.э.", например "в V веке до н.э.". События, которые произошли в очень далёком прошлом, нужно указывать с обозначением века и года Причём года пишутся арабскими цифрами, а века — римскими. Таблицы соотношения столетий веков годов тысячелетий между собой за период с 12-го тысячелетия до нашей эры по 3-е тысячелетие нашей эры. Обозначения веков простыми словами. Если историческое событие произошло в XVI–XVII веках, нужно прибавить 10 дней, если в XVIII веке – 11 дн., в XIX в. – 12, в XX и XXI – 13 д. Для обозначения веков при написании и печати используют заглавные буквы английского алфавита – I, V и X, которые соответствуют арабским цифрам – от 1 до 10. Если нужно отметить век до нашей эры, то используем то же обозначение века плюс «до н.э.», например «в V веке до н.э.».
Соотношение веков годов тысячелетий (Таблица)
Век обычно пишется римскими цифрами для того, чтобы отличить его от года. Но традиционно для обозначения веков используются римские цифры, этот вариант предпочтительный. время, значительный отрезок времени: "Иже от Отца рожденнаго прежде всех век" - от Отца рожденного прежде всех времен (Символ веры); Во веки, в век века. Расшифровка римских цифр в веках. Именно такой способ обозначения веков позволяет учитывать границы временных периодов и упорядочивать исторические события по хронологии.
Счет лет в истории. Историческая карта.
XII век — с 1101 по 1200 г. XI век — с 1001 по 1100 г. VIII век — с 701 по 800 г. VII век — с 601 по 700 г. III век — с 201 по 300 год II век — длился с 101 по 200 год. I век нашей эры, согласно юлианскому календарю начался 1 января 1 года и закончился 31 декабря 100 года.
О том как нужно считать и переводить года в столетия вы узнаете из статьи. Содержание Как считаются века, столетия в истории? Какое соотношение существует между веком и годом? Соотношение веков и годов: таблица Видео: О столетии История отсчитывается порой минутами, а чаще всего — столетиями. Последние единицы измерения для нее особенно значимы, ведь в них вписаны события и даты, которые мы называем эпохами.
Как не «потеряться во времени» и правильно определить период истории, о котором идет речь? Как считаются века, столетия в истории? Год, а также век — это наиболее используемые для временного определения исторических событий понятия. Реже используются временные рамки, обозначенные тысячелетиями.
Период времени, характеризующийся чем-л. Каменный век. Средние века. Леонов, Неизвестному американскому другу. Жизнь, период существования кого-, чего-л. Прожить свой век. Гаршин, Сигнал. Саянов, Небо и земля. Очень долгое время; вечность. Не видеть кого-л. Гоголь, Письмо Г. Высоцкому, 17 янв. Века прошли, дорогой мой, что не видел я Вас. Мусоргский, Письмо В. Стасову, 10 авг. Всегда, вечно. Крылов, Кукушка и Петух.
У них были все мыслимые виды обозначений. Частая история, когда авторы впереди своих издателей: Рассел сам разрабатывал шрифты для многих используемых им обозначений. И, разумеется, тогда речь шла не о шрифтах TrueType или о Type 1, а о самых настоящих кусках свинца. Я о том, что Рассела можно было встретить с тележкой, полной свинцовых оттисков, катящему её в издательство Кембриджского университета для обеспечения корректной вёрстки его книг. Но, несмотря на все эти усилия, результаты были довольно гротескными и малопонятными. Я думаю, это довольно ясно, что Рассел и Уайтхед зашли слишком далеко со своими обозначениями. И хотя область математической логики немного прояснилась в результате деятельности Рассела и Уайтхеда, она всё ещё остаётся наименее стандартизированной и содержащей самую сложную нотацию. Но что насчёт более распространённых составляющих математики? Какое-то время в начале 20 века то, что было сделано в математической логике, ещё не произвело никакого эффекта. Однако ситуация резко начала меняться с движением Бурбаки, которое начало разрастаться во Франции в примерное сороковые года. Бурбаки придавали особое значение гораздо более абстрактному, логико-ориентированному подходу к математике. В частности, они акцентировали внимание на использовании обозначений там, где это только возможно, любым способом сводя использование потенциально неточного текста к минимуму. Где-то с сороковых работы в области чистой математики претерпели серьёзные изменения, что можно заметить в соответствующих журналах, в работах международного математического сообщества и прочих источниках подобного рода. Изменения заключались в переходе от работ, полных текста и лишь с основными алгебраическими и вычислительными выкладками к работам, насыщенными обозначениями. Конечно, эта тенденция коснулась не всех областей математики. Это в некотором роде то, чем занимаются в лингвистике обычных естественных языков. По устаревшим используемым математическим обозначениям можно заметить, как различные области, их использующие, отстают от основной магистрали математического развития. Так, к примеру, можно сказать, что физика осталась где-то в конце 19 века, используя уже устаревшую математическую нотацию тех времён. Есть один момент, который постоянно проявляется в этой области — нотация, как и обычные языки, сильно разделяет людей. Я имею в виду, что между теми, кто понимает конкретные обозначения, и теми, кто не понимает, имеется большой барьер. Это кажется довольно мистическим, напоминая ситуацию с алхимиками и оккультистами — математическая нотация полна знаков и символов, которые люди в обычной жизни не используют, и большинство людей их не понимают. На самом деле, довольно любопытно, что с недавних пор в рекламе появился тренд на использование математических обозначений. Думаю, по какой-то причине математическая нотация стала чем-то вроде шика. Вот один актуальный пример рекламы. Отношение к математическим обозначениям, к примеру, в школьном образовании, часто напоминает мне отношение к символам секретных сообществ и тому подобному. Что ж, это был краткий конспект некоторых наиболее важных эпизодов истории математической нотации. В ходе исторических процессов некоторые обозначения перестали использоваться. Помимо некоторых областей, таких как математическая логика, она стала весьма стандартизированной. Разница в используемых разными людьми обозначениях минимальна. Как и в ситуации с любым обычным языком, математические записи практически всегда выглядят одинаково. Компьютеры Вот вопрос: можно ли сделать так, чтобы компьютеры понимали эти обозначения? Это зависит от того, насколько они систематизированы и как много смысла можно извлечь из некоторого заданного фрагмента математической записи. Ну, надеюсь, мне удалось донести мысль о том, что нотация развивалась в результате непродуманных случайных исторических процессов. Было несколько людей, таких как Лейбниц и Пеано, которые пытались подойти к этому вопросу более системно. Но в основном обозначения появлялись по ходу решения каких-то конкретных задач — подобно тому, как это происходит в обычных разговорных языках. И одна из вещей, которая меня удивила, заключается в том, что по сути никогда не проводилось интроспективного изучения структуры математической нотации. Грамматика обычных разговорных языков развивалась веками. Без сомнения, многие римские и греческие философы и ораторы уделяли ей много внимания. И, по сути, уже примерно в 500 года до н. Панини удивительно подробно и ясно расписал грамматику для санскрита. Фактически, грамматика Панини была удивительно похожа по структуре на спецификацию правил создания компьютерных языков в форме Бэкуса-Наура , которая используется в настоящее время. И были грамматики не только для языков — в последнее столетие появилось бесконечное количество научных работ по правильному использованию языка и тому подобному. Но, несмотря на всю эту активность в отношении обычных языков, по сути, абсолютно ничего не было сделано для языка математики и математической нотации. Это действительно довольно странно. Были даже математики, которые работали над грамматиками обычных языков. Ранним примером являлся Джон Уоллис, который придумал формулу произведения Уоллиса для числа пи, и вот он писал работы по грамматике английского языка в 1658 году. Уоллис был тем самым человеком, который начал всю эту суматоху с правильным использованием "will" или "shall". В начале 20 века в математической логике говорили о разных слоях правильно сформированного математического выражения: переменные внутри функций внутри предикатов внутри функций внутри соединительных слов внутри кванторов. Но не о том, что же это всё значило для обозначений выражений. Некоторая определённость появилась в 50-е годы 20 века, когда Хомский и Бакус, независимо разработали идею контекстно-свободных языков. Идея пришла походу работы над правилами подстановки в математической логике, в основном благодаря Эмилю Посту в 20-х годах 20 века. Но, любопытно, что и у Хомского, и у Бакуса возникла одна и та же идея именно в 1950-е. И он заметил, что алгебраические выражения могут быть представлены в контекстно-свободной грамматике. Хомский применил эту идею к обычному человеческому языку. И он отмечал, что с некоторой степенью точности обычные человеческие языки так же могут быть представлены контекстно-свободными грамматиками. Конечно, лингвисты включая Хомского, потратили годы на демонстрацию того, насколько всё же эта идея не соответствует действительности. Но вещь, которую я всегда отмечал, а с научной точки зрения считал самой важной, состоит в том, что в первом приближении это всё-таки истина — то, что обычные естественные языки контекстно-свободны. Однако никто из них не рассматривал вопрос разработки более продвинутой математики, чем простой алгебраический язык. И, насколько я могу судить, практически никто с тех времён не занимался этим вопросом. Но, если вы хотите посмотреть, сможете ли вы интерпретировать некоторые математические обозначения, вы должны знать, грамматику какого типа они используют. Сейчас я должен сказать вам, что считал математическую нотацию чем-то слишком случайным для того, чтобы её мог корректно интерпретировать компьютер. В начале девяностых мы горели идеей предоставить возможность Mathematica работать с математической нотацией. И по ходу реализации этой идеи нам пришлось разобраться с тем, что происходит с математической нотацией. Нил Сойффер потратил множество лет, работая над редактированием и интерпретацией математической нотации, и когда он присоединился к нам в 1991, он пытаться убедить меня, что с математической нотацией вполне можно работать — как с вводом, так и с выводом. Вопрос заключался во вводе данных. На самом деле, мы уже кое-что выяснили для себя касательно вывода. Мы поняли, что хотя бы на некотором уровне многие математические обозначения могут быть представлены в некоторой контекстно-свободной форме. Поскольку многие знают подобный принцип из, скажем, TEX, то можно было бы всё настроить через работу со вложенными структурами. Но что насчёт входных данных? Один из самых важных моментов заключался в том, с чем всегда сталкиваются при парсинге: если у вас есть строка текста с операторами и операндами, то как задать, что и с чем группируется? Итак, допустим, у вас есть подобное математическое выражение. Чтобы это понять, нужно знать приоритеты операторов — какие действуют сильнее, а какие слабее в отношении операндов. Я подозревал, что для этого нет какого-то серьёзного обоснования ни в каких статьях, посвящённых математике. И я решил исследовать это. Я прошёлся по самой разнообразной математической литературе, показывал разным людям какие-то случайные фрагменты математической нотации и спрашивал у них, как бы они их интерпретировали. И я обнаружил весьма любопытную вещь: была удивительная слаженность мнений людей в определении приоритетов операторов. Таким образом, можно утверждать: имеется определённая последовательность приоритетов математических операторов. Можно с некоторой уверенностью сказать, что люди представляют именно эту последовательность приоритетов, когда смотрят на фрагменты математической нотации. Обнаружив этот факт, я стал значительно более оптимистично оценивать возможность интерпретации вводимых математических обозначений. Один из способов, с помощью которого всегда можно это реализовать — использовать шаблоны. То есть достаточно просто иметь шаблон для интеграла и заполнять ячейки подынтегрального выражения, переменной и так далее. И когда шаблон вставляется в документ, то всё выглядит как надо, однако всё ещё содержится информация о том, что это за шаблон, и программа понимает, как это интерпретировать. И многие программы действительно так и работают. Но в целом это крайне неудобно. Потому что если вы попытаетесь быстро вводить данные или редактировать, вы будете обнаруживать, что компьютер вам бикает beeping и не даёт делать те вещи, которые, очевидно, должны быть вам доступны для реализации. Дать людям возможность ввода в свободной форме — значительно более сложная задача. Но это то, что мы хотим реализовать. Итак, что это влечёт? Прежде всего, математический синтаксис должен быть тщательно продуманным и однозначным. Очевидно, получить подобный синтаксис можно, если использовать обычный язык программирования с основанным на строках синтаксисом. Но тогда вы не получите знакомую математическую нотацию. Вот ключевая проблема: традиционная математическая нотация содержит неоднозначности. По крайней мере, если вы захотите представить её в достаточно общем виде. Возьмём, к примеру, "i". Что это — Sqrt[-1] или переменная "i"? В обычном текстовом InputForm в Mathematica все подобные неоднозначности решены простым путём: все встроенные объекты Mathematica начинаются с заглавной буквы. Но заглавная "I" не очень то и похожа на то, чем обозначается Sqrt[-1] в математических текстах. И что с этим делать? И вот ключевая идея: можно сделать другой символ, который вроде тоже прописная «i», однако это будет не обычная прописная «i», а квадратный корень из -1. Можно было бы подумать: Ну, а почему бы просто не использовать две «i», которые бы выглядели одинаково, — прям как в математических текстах — однако из них будет особой? Ну, это бы точно сбивало с толку. Вы должны будете знать, какую именно «i» вы печатаете, а если вы её куда-то передвинете или сделаете что-то подобное, то получится неразбериха. Итак, значит, должно быть два "i". Как должна выглядеть особая версия этого символа? У нас была идея — использовать двойное начертание для символа. Мы перепробовали самые разные графические представления. Но идея с двойным начертанием оказалась лучшей. В некотором роде она отвечает традиции в математике обозначать специфичные объекты двойным начертанием. Так, к примеру, прописная R могла бы быть переменной в математических записях. А вот R с двойным начертанием — уже специфический объект, которым обозначают множество действительных чисел. Таким образом, "i" с двойным начертанием есть специфичный объект, который мы называем ImaginaryI. Вот как это работает: Идея с двойным начертанием решает множество проблем. В том числе и самую большую — интегралы. Допустим, вы пытаетесь разработать синтаксис для интегралов. Один из ключевых вопросов — что может означать "d" в интеграле? Что, если это параметр в подынтегральном выражении? Или переменная? Получается ужасная путаница. Всё становится очень просто, если использовать DifferentialD или "d" с двойным начертанием. И получается хорошо определённый синтаксис. Вот как это работает: Оказывается, что требуется всего лишь несколько маленьких изменений в основании математического обозначения, чтобы сделать его однозначным. Это удивительно. И весьма здорово. Потому что вы можете просто ввести что-то, состоящее из математических обозначений, в свободной форме, и оно будет прекрасно понято системой. И это то, что мы реализовали в Mathematica 3. Конечно, чтобы всё работало так, как надо, нужно разобраться с некоторыми нюансами. К примеру, иметь возможность вводить что бы то ни было эффективным и легко запоминающимся путём. Мы долго думали над этим. И мы придумали несколько хороших и общих схем для реализации подобного. Одна из них — ввод таких вещей, как степени, в качестве верхних индексов. Наличие ясного набора принципов подобных этому важно для того, чтобы заставить всё вместе работать на практике. И оно работает. Вот как мог бы выглядеть ввод довольно сложного выражения: Но мы можем брать фрагменты из этого результата и работать с ними. И смысл в том, что это выражение полностью понятно для Mathematica, то есть оно может быть вычислено. Из этого следует, что результаты выполнения Out — объекты той же природы, что и входные данные In , то есть их можно редактировать, использовать их части по отдельности, использовать их фрагменты в качестве входных данных и так далее. Чтобы заставить всё это работать, нам пришлось обобщить обычные языки программирования и кое-что проанализировать. Прежде была внедрена возможность работать с целым «зоопарком» специальных символов в качестве операторов. Однако, вероятно, более важно то, что мы внедрили поддержку двумерных структур. Так, помимо префиксных операторов, имеется поддержка оверфиксных операторов и прочего. Если вы посмотрите на это выражение, вы можете сказать, что оно не совсем похоже на традиционную математическую нотацию. Но оно очень близко. И оно несомненно содержит все особенности структуры и форм записи обычной математической нотации. И важная вещь заключается в том, что ни у кого, владеющим обычной математической нотацией, не возникнет трудностей в интерпретации этого выражения. Конечно, есть некоторые косметические отличия от того, что можно было бы увидеть в обычном учебнике по математике. К примеру, как записываются тригонометрические функции, ну и тому подобное. Однако я готов поспорить, что StandardForm в Mathematica лучше и яснее для представления этого выражения. И в книге, которую я писал много лет о научном проекте, которым я занимался, для представления чего бы то ни было я использовал только StandardForm. Однако если нужно полное соответствие с обычными учебниками, то понадобится уже что-то другое. Любое выражение я всегда могу сконвертировать в TraditionalForm. И в действительности TraditionalForm всегда содержит достаточно информации, чтобы быть однозначно сконвертированным обратно в StandardForm. Но TraditionalForm выглядит практически как обычные математические обозначения. Со всеми этими довольно странными вещами в традиционной математической нотации, как запись синус в квадрате x вместо синус x в квадрате и так далее. Так что насчёт ввода TraditionalForm? Вы могли заметить пунктир справа от ячейки [в других выводах ячейки были скрыты для упрощения картинок — прим. Они означают, что есть какой-то опасный момент. Однако давайте попробуем кое-что отредактировать. Мы прекрасно можем всё редактировать. Давайте посмотрим, что случится, если мы попытаемся это вычислить. Вот, возникло предупреждение. В любом случае, всё равно продолжим. Что ж, система поняла, что мы хотим. Фактически, у нас есть несколько сотен эвристических правил интерпретации выражений в традиционной форме. И они работают весьма хорошо. Достаточно хорошо, чтобы пройти через большие объёмы устаревших математических обозначений, определённых, скажем, в TEX, и автоматически и однозначно сконвертировать их в осмысленные данные в Mathematica. И эта возможность весьма вдохновляет. Потому что для того же устаревшего текста на естественном языке нет никакого способа сконвертировать его во что-то значимое. Однако в математике есть такая возможность. Конечно, есть некоторые вещи, связанные с математикой, в основном на стороне выхода, с которыми существенно больше сложностей, чем с обычным текстом. Часть проблемы в том, что от математики часто ожидают автоматической работы. Нельзя автоматически сгенерировать много текста, который будет достаточно осмысленным. Однако в математике производятся вычисления, которые могут выдавать большие выражения. Так что вам нужно придумывать, как разбивать выражение по строкам так, чтобы всё выглядело достаточно аккуратно, и в Mathematica мы хорошо поработали над этой задачей.
До Рождества Иисуса Христа время идет в противоположную сторону. Таким образом, историческая лента времени необходима историкам, чтобы знать, когда случилось какое-либо событие, ведь без этих знаний историю как науку невозможно себе представить. Исторические задачи Чтобы узнать,как пользоваться лентой времени, необходимо разобрать несколько исторических задач. Для начала необходимо нарисовать линию времени, затем отметить на ней необходимые временные промежутки. Решение: необходимо отметить 988 г. Обе даты относятся к нашей эре, чтобы узнать сколько лет прошло от 988 г. Какой город был основан раньше? На сколько лет? Решение: события на исторической линии отмечаются последовательно, начиная слева. Поэтому все даты, расположенные правее от выбранной точки, случались позже и наоборот. Соответственно 753 г. Год основания Рима относится к периоду до нашей эры, а дата основания Санкт-Петербурга — к периоду нашей эры. Решение: для определения века, необходимо посмотреть на 2 последние цифры данного числа. Получается в 1875 г. Во втором примере Б. В примере В. Ответ: А. В каком веке будет отмечаться 1000-летие этого события?
Счет лет в истории. Историческая карта.
В Российской Федерации единица век допущена для использования наряду с единицами времени Международной системы единиц СИ. Её наименование и обозначение с дольными и кратными приставками СИ не применяются. В более узком смысле веком называют не вообще столетний интервал времени, а конкретный, номерной отрезок, повторяющийся каждые 100 лет, исходная точка зависит от используемого календаря способа летосчисления. Жизнь разг. На мой в. Зла, в девках целый в. Эпоха, период времени, означенный какими-н. Рыцарские века. Восемнадцатый в. Неопределенно долгое время, слишком долго употр. Целый в.
Постоянно разг. Для чего, меня спросили, в. То же, что ввек устар. С ней в. На век или навек , на веки или навеки или на веки вечные разг. До скончания века церк.
За этот период произошло множество важных событий: Первая и Вторая мировые войны, период Холодной войны, крупные научные открытия и изобретения, распад СССР и многое другое. Некоторые из важных дат, связанных с XX веком, включают 1914 год начало Первой мировой войны , 1945 год Конец Второй мировой войны , 1969 год первая человеческая посадка на Луну и 1989 год падение Берлинской стены. Какова система обозначения десятилетий в веках? Система обозначения десятилетий в веках состоит из двух цифр — первая цифра указывает на последнюю цифру номера века, а вторая цифра — на десятилетие. Например, 20-е годы XX века означают 1920-1929 года, а 90-е годы XX века — 1990-1999 года. Какие даты относятся ко второму веку? Второй век — это период с 101 по 200 год нашей эры. В этот период произошло множество событий, связанных с религией, политикой, культурой и технологиями. Некоторые из важных дат, связанных с вторым веком, включают 101 год завершение правления императора Траяна , 132 год Бар Кохба восстание в Иудее , 166 год Затмение Солнца, стрелявшее в то время в Китае и 200 год завершение второго века нашей эры.
Убедится в том, что далеко не только век обозначается римскими цифрами довольно просто, достаточно лишь посмотреть на книжное издание сочинений в нескольких томах, где тома, наверняка, пронумерованы римскими цифрами. В некоторых странах римскими цифрами обозначаются даже года, что гораздо сложнее, чем выучить какой это век XIX, ведь когда добавляются сотни и тысячи, римские цифры также увеличиваются на несколько цифр — L, C, V и M. Также римскими цифрами обозначаются все Олимпийские игры. Таким образом, можно сказать, что не зная какой это век XIX, человек лишает себя возможности свободно читать о различных событиях, происходящих в мире.
Заглавная буква «I», стоящая перед цифрами даты изображена настолько явно, что ни с какой «единицей» ее спутать невозможно. Изготовлена эта гравюра, без сомнения, в 658 году от «Рождества Христова». Кстати, двуглавый орел, расположенный в центре герба, говорит нам о том, что Нюрнберг в те далекие времена входил в состав Российской Империи. Точно такие, же, заглавные буквы «I» можно увидеть и в датах на старинных фресках в средневековом «Шильенском замке», расположенном в живописной швейцарской ривьере на берегу Женевского озера близ города Монтрё. Даты, «от Иисуса 699 и 636 год», историки и искусствоведы, сегодня, читают, как 1699 и 1636год, объясняя, это несоответствие, невежеством неграмотных средневековых художников, допускавших ошибки в написании цифр. В других старинных фресках, Шильенсконго замка, датированных, уже, восемнадцатым веком, т. Литера «I», означавшая ранее, «от рождества Иисуса», заменена на цифру «1», т. И перед каждой датой изображена заглавная латинская буква «I» от Иисуса. Художник в этом портрете явно переусердствовал. Букву «I» он поставил не только перед цифрами года, но и перед цифрами, означающими дни месяца. Так, наверное, он проявил свое раболепное преклонение перед ватиканским «наместника Бога на земле». А вот, совершенно уникальная с точки зрения средневековой датировки, гравюра русской Царицы Марии Ильиничны Милославской жены царя Алексея Михайловича. Историки относят ее, естественно, к 1662 году. Однако на ней стоит совершенно иная дата. Латинская буква «I» здесь прописная с точкой и уж никак не похожа на единицу. Чуть ниже, мы видим другую дату - дату рождения Царицы: «от Иисуса» 625 год, т. Такую же букву «I» с точкой мы видим и перед датой на портрете Эразма Ротердамского немецкого художника Альбрехта Дюрера. Во всех искусствоведческих справочниках рисунок этот датируется 1520-м годом. Однако, совершенно очевидно, что дата эта трактуется ошибочно и соответствует 520-му году «от Рождества Христова». На этом старинном плане немецкого города Кельна поставлена дата, которую современные историки читают как, 1633 год. Однако и здесь латинская буква «I» с точкой совершенно не похожа на единицу. Значит правильная датировка этой гравюры - 633 год от «Рождества Христова». Кстати, и здесь, мы видим изображение двуглавого орла, что лишний раз свидетельствует, что Германия когда-то входила в Российскую Империю. Авторские монограммы средневекового немецкого художника Августина Гиршфогеля На этих гравюрах немецкого художника Августина Гиршфогеля дата помещена в авторскую монограмму. Здесь, тоже, латинская буква «I» стоит перед цифрами года. И, конечно же, она совершенно не похожа на единицу. Таким же образом, датировал свои гравюры средневековый немецкий художник Георг Пенц. А на средневековом немецком Гербе Западной Саксонии даты написаны и вовсе без литеры «I». Толи художнику не хватило места для буквы на узких виньетках, толи он просто пренебрег ее написанием, оставив лишь самую важную для зрителя информацию — 519-й и 527-й год.
Как правильно определить век по году: таблица соотношения веков по годам
Добавочным днем раз в четыре года было не 29 февраля, как мы привыкли, а вставной день между 24 и 25 февраля, или по римскому календарю — между шестым и пятым днем до 1 марта. Он получил официальное название «дважды шестой до мартовских календ» — bis sectum Kal. Вот это самое bis sectum и превратилось для нас в слово високосный, а соответствующие годы стали впоследствии называться високосными годами. Начало года было перенесено Цезарем с 1 марта на 1 января. Вот собственно и вся реформа. Ее четкость и простота так восхитили измученных своим календарем римлян, что в благодарность в том числе и за военные заслуги римский сенат переименовал месяц Квинтилис в Юлиус в этом месяце родился Цезарь. Юлианский календарь Через год, в мартовские иды 44 года до новой эры, Цезарь был убит заговорщиками во главе с Брутом. Началась борьба за власть между полководцами Антонием и Октавианом. Жрецы воспользовались неразберихой во власти и некоторое время продолжали «командовать» календарем по своему усмотрению, изменяя порядок високосных лет и вставку добавочного дня. И только через 50 лет юлианский солнечный календарь наконец заработал так, как это было задумано Цезарем. Это сделал полководец Октавиан, за военные и гражданские заслуги получивший от сената пожизненный «империй» чрезвычайные права, которые раньше давались полководцу на короткое время военных действий.
Это означало фактическое превращение республики в империю. Октавиану сенат присвоил титул императора и имя Август «преумножающий». Август сделал юлианский календарь государственным, обязательным на всей огромной территории Римской империи с 1 января 4 года нашей эры. Месяц септилий был переименован в август и было подправлено чередование длинных и коротких месяцев — оно стало таким, как сейчас. А сейчас по нему живет только ортодоксальная православная христианская церковь. Необходимость изменения юлианского календаря Так зачем же нужно было заменять юлианский календарь? Причина этого — чисто арифметическая. Юлианский календарь основан на том, что период солнечного цикла, так называемый календарный год, составляет 365,25 суток. Но с календарем должен быть связан так называемый тропический год, длительность которого чуть-чуть меньше — 365,2424 суток. В первые века нашей эры, когда стал общепринятым юлианский календарь, казалось, что маленькая разность этих периодов несущественна и не мешает календарю.
Как нетрудно определить, она приводит к сдвигу календаря на одни сутки за 128 лет. Когда постепенно исчезала власть Римской империи и потом, в «темные столетия» раннего Средневековья, этот сдвиг мало кого интересовал. Но в XVI веке, в эпоху «осени Средневековья», которую чаще называют эпохой Возрождения, человеческий быт и общественное сознание так изменились, что многие общественные деятели и ученые стали выражать беспокойство по поводу неточности календаря. В христианском европейском мире документальным началом отсчета считается четвертый век нашей эры, когда указом римского императора Константина христианство стало государственной религией. За прошедшие после этого 12 веков сдвиг юлианского календаря составил уже больше 9 дней. Одной из причин беспокойства стало перемещение дня весеннего равноденствия с 21 марта на 12 марта. А с этим днем было связано начало многих сельскохозяйственных работ, и время подготовки к ним существенно сократилось. Весна по календарю наступала все раньше и раньше. Но была и еще одна причина беспокойства. Она имела религиозное обоснование.
В христианских общинах Римской империи к началу IV века установился обычай отмечать как самый светлый праздник ставшую легендарной дату воскресения Христа. События, связанные с казнью Христа, происходили в Иерусалиме, столице римской провинции Иудеи, в дни, являвшиеся важным иудейским праздником, называвшимся «песах». Начиная с 12 века до нашей эры в иудейской религии этот праздник отмечался как память о благополучном исходе евреев из Египта, где они считались низшей расой. В начале нашей эры как, впрочем, и сейчас в Иудее продолжал действовать лунно-солнечный календарь, согласно которому весенний месяц Нисана перемещается относительно природного календаря, например относительно дня весеннего равноденствия. К последним дням песаха приурочивались и казни преступников, как праздничное «развлечение» для народа. На основании устных преданий и, по-видимому, не дошедших до нашего времени письменных свидетельств, четыре античных историка зафиксировали, что казнь Христа произошла 13 Нисана, а его воскресение — 15 Нисана 30-го года нашей эры. В ранних христианских общинах и установился обычай ежегодно отмечать 15 Нисана еврейского календаря как праздник Светлого Воскресения. Почти во всех европейских языках этот день получил название «пасха», очень похожее на еврейское «песах». Естественно, что еврейское 15 Нисана в юлианском календаре приходилось на разные дни. В уточняющих эту дату устных преданиях говорилось о том, что это было после дня весеннего равноденствия и первого после этого полнолуния.
И в 325 году первый христианский собор съезд всех епископов — руководителей христианских общин империи , организованный императором Константином в городе Никея и поэтому получивший имя Никейского собора, установил каноном празднование Пасхи в первое воскресенье после первого новолуния после весеннего равноденствия. По юлианскому календарю разброс дня Пасхи составил 36 дней — с 20 марта по 25 апреля. Соответственно перемещались по календарю и все связанные с Пасхой религиозные дни и установления — весенние и летние посты, день Святого Духа, Троицын день и др. Недаром они называются переходящими в отличие от постоянных в календаре Рождество Христово, осенний пост, Благовещение и пр. Но когда реальные астрономические события, и прежде всего весеннее равноденствие, стали заметно на 10 дней не совпадать с каноном празднования Пасхи по юлианскому календарю, необходимость календарной реформы стала неотвратимой. Григорианский календарь Проблема календарной реформы обсуждалась католической церковью на нескольких соборах. На последнем из них был рассмотрен проект изменения календаря, подготовленный итальянским врачом и астрономом Луиджи Лилио. Суть проекта была достаточно простой. Луиджи Лилио лат. Алоизий Лилий не использовал аппарат «цепных дробей» см.
Таким образом, за 400 лет число високосных лет должно быть равно не 100, как в юлианском календаре, а 97. Период в 400 лет был выбран Луиджи Лилио без всякого математического или астрономического обоснования, а из соображений удобства введения нового календаря.
Новое десятилетие начнётся лишь в следующем, 2021 году. Как определить век 1900 год и все, заканчивающиеся на 2 нуля 1700, 1800, 2000 и т. Например, 1900 год — это ещё XIX век.
Присмотритесь к списку повнимательнее и уловите логику. Подсказка: десятилетие равно 10 лет. Новое десятилетие начнётся лишь в следующем, 2021 году.
Мир слов воистину огромен, безбрежен. Лексическое ядро... Мир имен и названий...
Где и когда время стали делить на «нашу эру» и «до нашей эры»?
Мир имен и названий Сколько слов существует в русском языке? Ответ на этот вопрос и сложен, и прост. Трудно назвать точную цифру, и на это есть несколько причин: язык постоянно развивается, обновляется одни слова появляются в речи, другие исчезают, уходят ; масса диалектных слов пока учеными просто не зафиксирована и ни в каких словарях не описана; почти все профессии и научные дисциплины обладают «собственными» лексиконами, которые не входят в общенародную литературную речь; есть и другие причины.
Каждую пятую насечку обозначали скосом — V, а десятую перечеркивали — Х. Постепенно зарубки превратились в графические символы I, V и X, и приобрели самостоятельность. Позже они стали идентифицироваться с римскими буквами — так как были на них внешне похожи. Альтернативная теория принадлежит Альфреду Куперу, который предположил рассмотреть римскую систему счета с точки зрения физиологии. V — это отставленный большой палец, образующий вместе с ладонью подобную букве V фигуру. Именно поэтому римские цифры суммируют не только единицы, но и складывают их с пятерками — VI, VII и т. Число 10 выражали с помощью перекрещивания рук или пальцев, отсюда пошел символ X.
Еще один вариант — цифру V попросту удвоили, получив X. Большие числа передавали с помощью левой ладони, которая считала десятки. Так постепенно знаки древнего пальцевого счета стали пиктограммами, которые затем начали отождествлять с буквами латинского алфавита.
Художник в этом портрете явно переусердствовал. Букву «I» он поставил не только перед цифрами года, но и перед цифрами, означающими дни месяца. Так, наверное, он проявил свое раболепное преклонение перед ватиканским «наместника Бога на земле». А вот, совершенно уникальная с точки зрения средневековой датировки, гравюра русской Царицы Марии Ильиничны Милославской жены царя Алексея Михайловича. Историки относят ее, естественно, к 1662 году.
Однако на ней стоит совершенно иная дата. Латинская буква «I» здесь прописная с точкой и уж никак не похожа на единицу. Чуть ниже, мы видим другую дату - дату рождения Царицы: «от Иисуса» 625 год, т. Такую же букву «I» с точкой мы видим и перед датой на портрете Эразма Ротердамского немецкого художника Альбрехта Дюрера. Во всех искусствоведческих справочниках рисунок этот датируется 1520-м годом. Однако, совершенно очевидно, что дата эта трактуется ошибочно и соответствует 520-му году «от Рождества Христова». На этом старинном плане немецкого города Кельна поставлена дата, которую современные историки читают как, 1633 год. Однако и здесь латинская буква «I» с точкой совершенно не похожа на единицу.
Значит правильная датировка этой гравюры - 633 год от «Рождества Христова». Кстати, и здесь, мы видим изображение двуглавого орла, что лишний раз свидетельствует, что Германия когда-то входила в Российскую Империю. Авторские монограммы средневекового немецкого художника Августина Гиршфогеля На этих гравюрах немецкого художника Августина Гиршфогеля дата помещена в авторскую монограмму. Здесь, тоже, латинская буква «I» стоит перед цифрами года. И, конечно же, она совершенно не похожа на единицу. Таким же образом, датировал свои гравюры средневековый немецкий художник Георг Пенц. А на средневековом немецком Гербе Западной Саксонии даты написаны и вовсе без литеры «I». Толи художнику не хватило места для буквы на узких виньетках, толи он просто пренебрег ее написанием, оставив лишь самую важную для зрителя информацию — 519-й и 527-й год.
А то, что даты эти «от Рождества Христова» - в те времена, было известно всем. На этой русской военно-морской карте, изданной во время правления российской Императрицы Елизаветы Петровны, т. Карта Морская Аккуратная. Написана и измерена по указу ее Императорского Величества в 740-м году флота капитаном Ногаевым… сочинена в 750-мгоду». Даты 740 и 750 записаны тоже без буквы «I». Но 750-й год это 8-й век, а не 18-й. Примеры с датами можно приводить до бесконечности, но в этом, мне кажется, уже нет необходимости. Свидетельства, дошедшие до наших дней, убеждают нас в том, что скалигеровские хронологи при помощи несложных манипуляций удлинили нашу историю на 1000 лет, заставив общественность всего мира поверить в эту откровенную ложь.
Мир имен и названий Сколько слов существует в русском языке? Ответ на этот вопрос и сложен, и прост. Трудно назвать точную цифру, и на это есть несколько причин: язык постоянно развивается, обновляется одни слова появляются в речи, другие исчезают, уходят ; масса диалектных слов пока учеными просто не зафиксирована и ни в каких словарях не описана; почти все профессии и научные дисциплины обладают «собственными» лексиконами, которые не входят в общенародную литературную речь; есть и другие причины.
Какой это век XIX в цифрах
Таблицы соотношения столетий веков годов тысячелетий между собой за период с 12-го тысячелетия до нашей эры по 3-е тысячелетие нашей эры. так в Византийской империи передавали название Русской митрополии, основанной в Киеве в конце X века. Обозначения веков простыми словами. Многие считают, что наш век — это время метаморфоз, когда мир продолжает эволюционировать в невиданных прежде направлениях. Век (столетие) — внесистемная единица измерения времени, равная 100 годам. В своих книгах мы пишем века арабскими цифрами и даже используем запись в виде отрицательных чисел для веков до нашей эры. время, значительный отрезок времени: "Иже от Отца рожденнаго прежде всех век" - от Отца рожденного прежде всех времен (Символ веры); Во веки, в век века.
7. Даты и время дня
Считать Сегодня на дворе 21-й век, следовательно, от рождества Христова прошло 20 столетий, и сейчас длится 21-е. А вот все, что предшествовало данной дате, принято определять термином «до нашей эры». Здесь счет идет словно в обратном порядке: к примеру, за 5-м годом следует четвертый. И если мы хотим узнать, сколько лет назад случилось то или иное событие, произошедшее до нашей эры, нужно просто к текущему году прибавить номер года, в котором произошло интересующее нас событие. Так, например, от 2019-го до 184-го года до н. Века и года соотношение узнать также нетрудно, помня, что в веке — сто лет. Разделим на 2203 на 100 и получим 22 полных столетия. Какое соотношение существует между веком и годом?
Если мы знаем, в каком году произошло то или иное событие, то определить соответствующий ему век достаточно просто. Достаточно всего лишь год разделить на 100, а потом получившуюся целую часть частного увеличить на единицу. К примеру, нам нужно узнать, к какому веку относится 1243-й год. Делим 1243 на 100 и получаем 12,43.
История Материал из «Знание. Вики» Запросы «100 лет» и «Столетие» перенаправляются сюда. У терминов «Век», «100 лет» и «Столетие» есть также другие значения, см. Век значения.
Век столетие — внесистемная единица измерения времени , равная 100 годам [1].
Что ж, система поняла, что мы хотим. Фактически, у нас есть несколько сотен эвристических правил интерпретации выражений в традиционной форме.
И они работают весьма хорошо. Достаточно хорошо, чтобы пройти через большие объёмы устаревших математических обозначений, определённых, скажем, в TEX, и автоматически и однозначно сконвертировать их в осмысленные данные в Mathematica. И эта возможность весьма вдохновляет.
Потому что для того же устаревшего текста на естественном языке нет никакого способа сконвертировать его во что-то значимое. Однако в математике есть такая возможность. Конечно, есть некоторые вещи, связанные с математикой, в основном на стороне выхода, с которыми существенно больше сложностей, чем с обычным текстом.
Часть проблемы в том, что от математики часто ожидают автоматической работы. Нельзя автоматически сгенерировать много текста, который будет достаточно осмысленным. Однако в математике производятся вычисления, которые могут выдавать большие выражения.
Так что вам нужно придумывать, как разбивать выражение по строкам так, чтобы всё выглядело достаточно аккуратно, и в Mathematica мы хорошо поработали над этой задачей. И с ней связано несколько интересных вопросов, как, например, то, что во время редактирования выражения оптимальное разбиение на строки постоянно может меняться по ходу работы. И это значит, что будут возникать такие противные моменты, как если вы печатаете, и вдруг курсор перескакивает назад.
Что ж, эту проблему, полагаю, мы решили довольно изящным образом. Давайте рассмотрим пример. Вы видели это?
Была забавная анимация, которая появляется на мгновение, когда курсор должен передвинуться назад. Возможно, вы её заметили. Однако если бы вы печатали, вы бы, вероятно, и не заметили бы, что курсор передвинулся назад, хотя вы могли бы её и заметить, потому что эта анимация заставляет ваши глаза автоматически посмотреть на это место.
С точки зрения физиологии, полагаю, это работает за счёт нервных импульсов, которые поступают не в зрительную кору, а прямо в мозговой ствол, который контролирует движения глаз. Итак, эта анимация заставляет вас подсознательно переместить свой взор в нужное место. Таким образом, мы смогли найти способ интерпретировать стандартную математическую нотацию.
Означает ли это, что теперь вся работа в Mathematica должна теперь проводиться в рамках традиционных математических обозначений? Должны ли мы ввести специальные символы для всех представленных операций в Mathematica? Таким образом можно получить весьма компактную нотацию.
Но насколько это разумно? Будет ли это читаемо? Пожалуй, ответом будет нет.
Думаю, тут сокрыт фундаментальный принцип: кто-то хочет всё представлять в обозначениях, и не использовать ничего другого. А кому-то не нужны специальные обозначения. А кто-то пользуется в Mathematica FullForm.
Однако с этой формой весьма утомительно работать. Другая возможность заключается в том, что всему можно присвоить специальные обозначения. Получится что-то наподобие APL или каких-то фрагментов математической логики.
Вот пример этого. Довольно трудно читать. Вот другой пример из оригинальной статьи Тьюринга, в которой содержатся обозначения для универсальной машины Тьюринга, опять-таки — пример не самой лучшей нотации.
Она тоже относительно нечитабельная. Думаю, эта проблема очень близка к той, что возникала при использовании очень коротких имён для команд. К примеру, Unix.
Ранние версии Unix весьма здорово смотрелись, когда там было небольшое количество коротких для набора команд. Но система разрасталась. И через какое-то время было уже большое количество команд, состоящих из небольшого количества символов.
И большинство простых смертных не смогли бы их запомнить. И всё стало выглядеть совершенно непонятным. Та же ситуация, что и с математической или другой нотацией, если на то пошло.
Люди могут работать лишь с небольшим количеством специальных форм и символов. Возможно, с несколькими десятками. Соизмеримым с длиной алфавита.
Но не более. А если дать им больше, особенно все и сразу, в голове у них будет полная неразбериха. Это следует немного конкретизировать.
Вот, к примеру, множество различных операторов отношений. Но большинство из них по сути состоят из небольшого количества элементов, так что с ними проблем быть не должно. Конечно, принципиально люди могут выучить очень большое количество символов.
Потому что в языках наподобие китайского или японского имеются тысячи иероглифов. Однако людям требуется несколько дополнительных лет для обучения чтению на этих языках в сравнении с теми, которые используют обычный алфавит. Если говорить о символах, кстати, полагаю, что людям гораздо легче справится с какими-то новыми символами в качестве переменных, нежели в качестве операторов.
И весьма занятно рассмотреть этот вопрос с точки зрения истории. Один из наиболее любопытных моментов — во все времена и практически без исключения в качестве переменных использовались лишь латинские и греческие символы. Ну, Кантор ввёл алеф, взятый из иврита, для своих кардинальных чисел бесконечных множеств.
И некоторые люди утверждают, что символ частной производной — русская д, хотя я думаю, что на самом деле это не так. Однако нет никаких других символов, которые были бы заимствованы из других языков и получили бы распространение. Кстати, наверняка вам известно, что в английском языке буква "e" — самая популярная, затем идёт "t", ну и так далее.
И мне стало любопытно, каково распределение по частоте использования букв в математике. Потому я исследовал сайт MathWorld , в котором содержится большое количество математической информации — более 13 500 записей, и посмотрел, каково распределение для различных букв [к сожалению, эту картинку, сделанную Стивеном, не удалось осовременить — прим. Можно увидеть, что "e" — самая популярная.
И весьма странно, что "a" занимает второе место. Это очень необычно. Я немного рассказал об обозначениях, которые в принципе можно использовать в математике.
Так какая нотация лучше всего подходит для использования? Большинство людей, использующих математическую нотацию, наверняка задавались этим вопросом. Однако для математики нет никакого аналога, подобного "Современному использованию английского языка" Фаулера для английского языка.
Была небольшая книжка под названием Математика в печати, изданная AMS, однако она в основном о типографских приёмах. В результате мы не имеем хорошо расписанных принципов, аналогичным вещам наподобие инфинитивов с отдельными частицами в английском языке. Если вы используете StandardForm в Mathematica, вам это больше не потребуется.
Потому что всё, что вы введёте, будет однозначно интерпретировано. Однако для TraditionalForm следует придерживаться некоторых принципов. К примеру, не писать , потому что не совсем ясно, что это означает.
Будущее Чтобы закончить, позвольте мне рассказать немного о будущем математической нотации. Какой, к примеру, должна бы быть новая нотация? В какой-нибудь книге символов будет содержаться около 2500 символов, популярных в тех или иных областях и не являющимися буквами языков.
И с правильным написанием символов, многие из них могли бы идеально сочетаться с математическими символами. Для чего же их использовать? Первая приходящая на ум возможность — нотация для представления программ и математических операций.
В Mathematica, к примеру, представлено довольно много текстовых операторов, используемых в программах. И я долгое время считал, что было бы здорово иметь возможность использовать для них какие-то специальные символы вместо комбинаций обычных символов ASCII [последние версии Mathematica полностью поддерживают Unicode — прим. Оказывается, иногда это можно реализовать весьма просто.
Поскольку мы выбрали символы ASCII, то часто можно получить некоторые символы, очень близкие по написанию, но более изящные. И это всё реализуемо за счёт того, что парсер в Mathematica может работать в том числе и со специальными символами. Я часто размышлял о том, как бы расширить всё это.
И вот, постепенно появляются новые идеи. Обратите внимание на знак решётки , или номерной знак, или, как его ещё иногда называют, октоторп, который мы используем в тех местах, в которые передаётся параметр чистой функции. Он напоминает квадрат с щупальцами.
И в будущем, возможно, он будет обозначаться симпатичным квадратиком с маленькими засечками, и будет означать место для передачи параметра в функцию. И он будет более гладким, не похожим на фрагмент обычного кода, чем-то вроде пиктограммы. Насколько далеко можно зайти в этом направлении — представлении вещей в визуальной форме или в виде пиктограмм?
Ясно, что такие вещи, как блок-схемы в инженерии, коммутативные диаграммы в чистой математике, технологические схемы — все хорошо справляются со своими задачами. По крайней мере до настоящего момента. Но как долго это может продолжаться?
Не думаю, что уж очень долго. Думаю, некоторые приближаются к некоторым фундаментальным ограничениям людей в обработке лингвистической информации. Когда языки более или менее контекстно-свободные, имеют древовидную структуру, с ними можно многое сделать.
Наша буферная память из пяти элементов памяти и что бы то ни было спокойно сможет их разобрать. Конечно, если у нас будет слишком много вспомогательных предложений даже на контекстно-свободном языке, то будет вероятность исчерпать стековое пространство и попасть впросак. Но, если стек не будет заходить слишком глубоко, то всё будет работать как надо.
Но что насчёт сетей? Можем ли мы понимать произвольные сети? Я имею в виду — почему у нас должны быть только префиксные, инфиксные, оверфиксные операторы?
Почему бы операторам не получать свои аргументы через какие-то связи внутри сети? Меня особенно интересовал этот вопрос в контексте того, что я занимался некоторыми научными вопросами касательно сетей. И мне действительно хотелось бы получить некоторое языковое представление для сетей.
Но не смотря на то, что я уделил этому вопросу довольно много времени — не думаю, что мой мозг смог бы работать с подобными сетями так же, как с обычными языковыми или математическими конструкциями, имеющими одномерную или двумерную контекстно-свободную структуру. Так что я думаю, что это, возможно, то место, до которого нотация не сможет добраться. Вообще, как я упоминал выше, это частый случай, когда язык или нотация ограничивают наше пространство мыслимого.
Итак, что это значит для математики? В своём научном проекте я разрабатывал некоторые основные обобщения того, что люди обычно относят к математике. И вопрос в том, какие обозначения могут быть использованы для абстрактного представления подобных вещей.
Что ж, я не смог пока что полностью ответить на этот вопрос. Однако я обнаружил, что, по крайней мере в большинстве случаев, графическое представление или представление в виде пиктограмм гораздо эффективнее обозначений в виде конструкций на обычных языках. Возвращаясь к самому началу этого разговора, ситуация напоминает то, что происходило тысячи лет в геометрии.
В геометрии мы знаем, как представить что-то в графическом виде. Ещё со времён древнего Вавилона. И чуть более ста лет назад стало ясно, как можно формулировать геометрические задачи с точки зрения алгебры.
Однако мы всё ещё не знаем простого и ясного способа представлять геометрические схемы в обозначениях на естественном языке. И моя догадка состоит в том, что практически все эти математические вещи лишь в небольшом количестве могут быть представлены в обозначениях на естественном языке. Однако мы — люди — легко воспринимаем лишь эти обозначения на естественном языке.
Так что мы склонны изучать те вещи, которые могут быть представлены этим способом. Конечно, подобные вещи не могут быть тем, что происходит в природе и вселенной. Но это уже совсем другая история.
Так что я лучше закончу на этом. Большое спасибо. Примечания В ходе обсуждения после выступления и во время общения с другими людьми на конференции возникло несколько моментов, которые следовало бы обсудить.
Эмпирические законы для математических обозначений При изучении обычного естественного языка были обнаружены различные историко-эмпирические законы. Пример — Закон Гримма , которые описывает переносы в согласных на индоевропейских языках. Мне было любопытно, можно ли найти подобные историко-эмпирические законы для математического обозначения.
Дана Скотт предложила такой вариант: тенденция к удалению явных параметров. Как пример, в 60 годах 19 века часто каждый компонент вектора именовался отдельно. Но затем компоненты стали помечать индексами — как ai.
И вскоре после этого — в основном после работ Гиббса — векторы стали представлять как один объект, обозначаемый, скажем, как или a. С тензорами всё не так просто. Нотацию, избегающую явных индексов, обычно называют координатно-свободной.
И подобная нотация — частое явление в чистой математике. Однако в физике данный подход считается слишком абстрактным, потому явные индексы используются повсеместно. В отношении функций так же имеется тенденция явно не упоминать параметры.
В чистой математике, когда функции рассматриваются через сопоставления, они часто упоминаются лишь по своему имени — просто f, без каких-либо параметров. Однако это будет хорошо только тогда, когда у функции только один параметр. Когда параметров несколько, обычно становится непонятно, как будут работать те потоки данных, которые ассоциированы с параметрами.
Однако, ещё в 20-х годах 20 века было показано, что можно использовать так называемые комбинаторы для определения подобных потоков данных без какого-либо явного указания параметров. Комбинаторы не использовались в основных течениях математики, однако время от времени становились популярными в теории вычислений, хотя их популярность заметно поубавилась из-за несовместимости с идеей о типах данных. Комбинаторы довольно легко задать в Mathematica через задание функции с составным заголовком.
Никакие переменные не требуются. Проблема заключается в том, что выражения получаются непонятными, и с этим ничего не поделать. Я пытался найти какие-то способы для более ясного представления их и сопряжённых с ними вычислений.
Я добился небольшого прогресса, однако нельзя сказать, что задача была решена. Печатные обозначения против экранных Некоторые спрашивали о разнице в возможностях печатных и экранных обозначений. Чтобы можно было понимать обозначения, они должны быть похожими, и разница между ними не должна быть очень большой.
Но есть некоторые очевидные возможности. Во-первых, на экране легко можно использовать цвет. Можно было бы подумать, что было каким-то образом удобно использовать разные цвета для переменных.
Мой опыт говорит о том, что это удобно для разъяснения формулы. Однако всё станет весьма запутанным, если, к примеру, красному x и зелёному x будут соответствовать разные переменные. Другая возможность состоит в том, чтобы иметь в формуле какие-то анимированные элементы.
Полагаю, что они будут столь же раздражающими, как и мигающий текст, и не будут особо полезными. Пожалуй, идея получше — иметь возможность скрывать и разворачивать определённые части выражения — как группы ячеек в ноутбуке Mathematica. Тогда будет возможность сразу получить представление обо всём выражении, а если интересны детали, то разворачивать его далее и далее.
Письменные обозначения Некоторые могли бы подумать, что я уж слишком много времени уделил графическим обозначениям. Хотелось бы прояснить, что я нахожу довольно затруднительным графические обозначения обычных математических действий и операций. В своей книге A New Kind of Science я повсеместно использую графику, и мне не представляется никакого другого способа делать то, что я делаю.
И в традиционной науке, и в математике есть множество графических обозначений, которые прекрасно работают, пускай и в основном для статичных конструкций. Теория графов — очевидный пример использования графического представления.
Первый век нашей эры — это I век, второй — II и т.
Но есть несколько нюансов: так, нулевой век был существованием Христа до нашей эры, поэтому этот период обозначают I веком до нашей эры. А двадцатый век закончился в 2000 году, поэтому XXI век начался в 2001 году. Использование обозначений веков в настоящее время Обозначения веков используются в исторической литературе, в школьных учебниках и при описании культурных и исторических явлений.
Они также часто употребляются в нашей повседневной речи. Например, говорят «в ХХ веке произошла перестройка». Заключение Обозначения веков — это частичка нашей истории.
Они отражают систему мышления тех времен, в которые были разработаны. Важно помнить, что для полного понимания исторических событий необходимо знать не только обозначения веков, но и контекст их использования. Век до нашей эры Древняя история человечества На протяжении веков человечество сталкивалось с различными вызовами и трудностями.
Во времена до нашей эры, люди еще только начинали осваивать мир. Египет, Греция, Рим — это лишь несколько известных цивилизаций, которые оставили свой след в истории. Они создавались и разрушались, а вместе с ними менялся и мир в целом.
Период до нашей эры характеризовался не только научным прогрессом, но и массовыми конфликтами. Войны, насилие и распад государств — это лишь несколько из тех проблем, которые можно выделить из богатой истории. Наука и культура древности Несмотря на конфликты и напряженные отношения между государствами, древние цивилизации внесли большой вклад в развитие науки и культуры.
В Эгейском бассейне появились первые греки и они создали свою собственную культуру, работали над математическими задачами и доказали, что планеты вращаются вокруг Солнца. Наследие древнеримской культуры видно и сегодня во многих аспектах нашей жизни, включая право, политику, инженерию и архитектуру. Значение века до нашей эры Век до нашей эры является периодом научного и культурного прогресса, а также периодом массовых конфликтов.
Мир разрушался и создавался заново, формировалась жизнь и смерть цивилизаций. Однако, наследие древних народов до сих пор является источником вдохновения и знаний.
Как пишутся все века
В середине XIX века аристократы наряжали рождественскую елку и соревновались, чья выше и богаче украшена. Официальное распространение метода деления времени на нашу эру и до нашей эры произошло в 8 веке. Год, а также век – это наиболее используемые для временного определения исторических событий понятия. Век (столетие) — внесистемная единица измерения времени, равная 100 годам[1]. Десять веков составляют тысячелетие.
Рекомендуем другие советы
- Календари Китая
- XX век. Знаки времени
- Какой это век XIX в цифрах | То что Интересно!
- Содержание
- Что такое система обозначения веков в истории?
- Историческая хронология. Счёт лет в истории