По первым оценкам, создание водородной бомбы казалось чисто инженерной задачей. Термоя́дерное ору́жие — вид ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые. Принцип действия водородной бомбы. vodorbombaShema. Основой термоядерного взрыва является энергия, которая выделяется при реакции термоядерного синтеза легких ядер.
Как устроена водородная бомба
ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Последовательность процессов, происходящих при взрыве водородной бомбы. Новость декабря — успешные испытания Северной Кореей водородной бомбы. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов. Американская термоядерная бомба основана на принципе Теллера-Улама. С известной долей условности ее можно представить в виде прочного корпуса, внутри которого находится инициирующий триггер и контейнер с термоядерным горючим. Первая водородная бомба SHRIMP имела массу в 10 тонн и длину 4,5 м. Это позволяло разместить ее внутри бомбардировщика, поэтому опытная SHRIMP стала предсерийным образцом Mark 21, произведенной в количестве 275 штук. В 1949 году физик Андрей Сахаров предложил основной принцип советской водородной бомбы — слойку. Во внешнем слое — взрывчатое вещество, в середине между слоями — термоядерное горючее, в центре — ядерный заряд.
Водородная бомба. История создания мощного оружия
Следом взлетел самолет-лаборатория Ту-16 для записи явлений взрыва и полетел ведомым за самолетом-носителем. Весь ход полета и сам взрыв снимались с борта Ту-95В, с сопровождавшего Ту-16 и с различных точек на Земле. Фото: www. Огненный шар при взрыве превысил радиус четыре километра, достичь поверхности земли ему помешала мощная отраженная ударная волна, отбросившая огненный шар от земли. Огромное облако, образовавшееся в результате взрыва, достигло высоты 67 километров, а диаметр купола из раскаленных продуктов — 20 километров. Взрыв был такой силы, что сейсмическая волна в земной коре, порожденная ударной волной, три раза обошла вокруг Земли. Вспышка была видна на расстоянии более 1000 километров.
В брошенном поселке, расположенном на расстоянии 400 километров от эпицентра, были вырваны деревья, выбиты стекла и снесены крыши домов. Ударной волной самолет-носитель, который к тому времени находился на расстоянии 45 километров от точки сброса, скинуло до высоты 8000 метров, и в течение некоторого времени после взрыва Ту-95В был неуправляем. Экипаж получил некоторую дозу радиации. За счет ионизации, на 40 мин была потеряна связь с Ту-95В и Ту-16. Что случилось с самолетами и экипажами, все это время никто не знал. Через какое-то время оба самолета вернулись на базу, на фюзеляже Ту-95В виднелись подпалы.
Фото: defence. Участники испытаний прибыли в точку, над которой произошел термоядерный взрыв, уже через два часа; уровень радиации в этом месте большой опасности не представлял. В этом сказались конструктивные особенности советской бомбы, а также то, что взрыв произошел на достаточно большом удалении от поверхности. По итогам самолетных и наземных измерений энерговыделение взрыва было оценено в 50 мегатонн тротилового эквивалента, что совпало с ожидаемым по расчетам значением. Испытание 30 октября 1961 года показало, что разработки в области ядерного оружия могут быстро перешагнуть критический предел. Основной целью, которая ставилась и была достигнута этим испытанием, стала демонстрация возможности создания СССР неограниченных по мощности термоядерных зарядов.
Данное событие сыграло ключевую роль в установлении ядерного паритета в мире и предотвращении использования атомного оружия. Материал подготовлен на основе информации РИА Новости и открытых источников МОСКВА, РИА Новости 12 Оригинал Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала. Ученый и гуманист Судьба Андрея Сахарова была исключительной: он вошел в историю дважды, как великий ученый и не менее великий политик. Обычная двухкомнатная квартира в Нижнем Новгороде, где жил в ссылке опальный академик, превращена в музей. По словам его сотрудников, посетителей много, но гостей, особенно молодых, больше интересует создание водородной бомбы, чем Сахаров-правозащитник. Советская пропаганда любила обвинять диссидентов, помимо прочего, и в том, что они-де ничтожества и неудачники, ищущие дешевой популярности.
Про светило мировой физики, трижды Героя Социалистического Труда, осыпанного всеми мыслимыми благами, этого нельзя было сказать даже при сильном желании. По словам самого Сахарова, в молодости он был бесконечно далек от политики и думал только о воплощении научных идей. Правообладатель иллюстрации RIA Novosti Image caption Участие в создании водородной бомбы побудило Андрея Сахарова задуматься о мирном сосуществовании и интеллектуальной свободе Его диссидентство началось с банкета по поводу очередного испытания в Семипалатинске. Сахаров предложил тост «за то, чтобы наши «изделия» всегда успешно взрывались над полигонами и никогда над городами». Повисло неловкое молчание, словно он сморозил непристойность. Потом старший по званию из военных маршал артиллерии Митрофан Неделин рассказал анекдот: «Лежит старуха на печи, а дед молится перед образами: «Господи, укрепи и направь!
Бабка подает голос: «Ты, старый, молись только об укреплении, а направить я и сама сумею! Тогда, вспоминал Сахаров, он и ужаснулся тому, с кем имеет дело. Читайте также: «Петр Великий» станет «Варягом», если нападет на «Нимитц» Последней каплей для властей стала критика Сахаровым советского вторжения в Афганистан.
Просите всё что угодно! Отказа не будет. Только дайте бомбу», — сказал Сталин. Уже через год, в 1946-м, Игорь Курчатов с коллегами запустили первый в Евразии уран-графитовый реактор. А в 1949-м состоялись первые испытания советского ядерного оружия — появилась наша атомная бомба, началось их серийное производство. Но для победы в гонке вооружений Советскому Союзу понадобилась разработка оружия, превышавшего по мощности ядерное. Лебедева ФИАН , других ученых. За основу взяли американскую разработку водородной бомбы: в 1947 году в Лондоне немецкий физик-теоретик Клаус Фукс передал информацию о новом оружии сотруднику советской разведки Александру Феликсову. Фото: РИА Новости Игорь Васильевич Курчатов Разработка бомбы велась в режиме секретности, ученых поселили недалеко от Семипалатинского полигона в Казахстане, работники между собой называли это место объектом. Благодаря кропотливой работе команды Игоря Курчатова, советские ученые превзошли своих американских коллег. Американская водородная бомба была большой и не поддавалась транспортировке, а советский вариант помещался в бомбардировщик. В первый день тренировок пуски успешно выполнили все компоненты российской триады О прорыве СССР в термоядерных исследованиях заявил 8 августа 1953 года председатель Совета министров СССР Георгий Маленков, выступая на закрытом заседании Верховного Совета. Испытание водородной бомбы провели под научным руководством Игоря Курчатова 12 августа 1953 года. Полигон представлял собой поле, на котором построили объекты разного назначения: небольшие дома, многоэтажки, мост. Там же разместили образцы военной техники.
Бомбардировщик Ту-95. Поэтому возможности проверять любую интересную идею на практике просто не было. Но в итоге Сахарова в приказном порядке включили в рабочую группу. Андрей Сахаров, начало 1950-х. А ведь среди физиков-ядерщиков он был самым молодым и наименее именитым.
Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла.
Как действует водородная бомба и каковы последствия взрыва? Инфографика
Последовательность процессов, происходящих при взрыве водородной бомбы: Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Слайд 7 Описание слайда: Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе.
Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Слайд 8 Слайд 9 Описание слайда: Последствия взрыва.
Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер.
Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет.
Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой. Между зарядами находится щит нейтронной защиты.
Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. H-bomb А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития тяжелого и сверхтяжелого изотопа водорода энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235. Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика.
Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. Классический супер К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички. Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики. Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США. Чистое термоядерное оружие Основная статья: Чистое термоядерное оружие Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера.
Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе — в настоящее время создать чистый термоядерный боеприпас разумных размеров и веса не представляется практически возможным. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими.
Поделиться 50 лет назад была испытана водородная бомба 12 августа 1953 года на полигоне в Семипалатинске была испытана первая в мире водородная бомба. Это было четвертое по счету советское испытание ядерного оружия. После испытания Курчатов с глубоким поклоном обратился к 32-летнему Сахарову: "Тебе, спасителю России, спасибо! Термоядерная бомба построена на другом принципе: энергия выделяется при слиянии легких изотопов водорода , дейтерия и трития. Материалы на основе легких элементов не имеют критической массы, что было большой конструкционной сложностью в атомной бомбе.
Еще во время работы над созданием проекта «Классический супер» в 1946 году Таллер придумал еще один проект, получивший название «Будильник». Однако этот проект не получил должного внимания и работы по нему в США не проводились. Одновременно с возникновением «Будильника» в Советском Союзе начинается работа над похожим проектом «Слойка». Сахаров, который предложил окружить первичный атомный заряд чередующимися слоями делящегося и горючего термоядерного материала. Работы велись не зря, в итоге появилась первая в мире транспортабельная термоядерная авиабомба, в которой в качестве термоядерного топлива использовался Li6D — дейтерид лития-6, предложенный в марте 1949 года В. Исследования продолжались и в Штатах, где была начата разработка проекта «Таллера-Улама». Станислав Улам с конца 50-го и до начала 51 года 20 века думал над решением усовершенствования деления ядерных зарядов и пришел к выводу, что усилить мощность термоядерного оружия можно увеличив компрессию делящегося материала, а этого можно добиться при помощи обжатия одного атомного заряда при помощи другого. Были проведены испытания, в результате которых удалось получить из емкости с термоядерным горючим отдельную капсулу для второй ступени заряда. Таллер сомневался в том, что из-за компрессии материала можно будет произвести поджег топлива, но расчеты Улама доказали обратное и Америка готова была приступить к изготовлению бомбы на практике. Несмотря на идею создания капсулы термоядерного топлива Улам не знал, как правильно использовать ее для создания бомбы и за решение этой проблемы взялся Таллер. Он заметил, что в ходе реакции деления выделяется небольшое количество кинетической энергии и много излучения, при этом излучение действует эффективнее механического обжатия. Эта идея Таллера ныне известна под названием Схема радиационной имплозии.
Новое советское оружие страшной разрушительной мощи – термоядерная (водородная) бомба
Американская термоядерная бомба основана на принципе Теллера-Улама. С известной долей условности ее можно представить в виде прочного корпуса, внутри которого находится инициирующий триггер и контейнер с термоядерным горючим. Принцип действия этого типа оружия основан на высвобождении огромного количества энергии при синтезе легких химических элементов в более тяжелые. КНДР пригрозила США «мощнейшим» испытанием водородной бомбы Пхеньян может провести «самое мощное испытание» водородной бомбы в ответ на угрозу Трампа «полностью уничтожить» КНДР, заявил глава МИД страны. Sputnik Молдова. Принцип действия этого типа оружия основан на высвобождении огромного количества энергии при синтезе легких химических элементов в более тяжелые.
Водородная и атомная бомбы: сравнительные характеристики
"Царь-бомба": как СССР показал миру "Кузькину мать" - ТАСС | Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. |
Водородная бомба | Американская водородная бомба была большой и не поддавалась транспортировке, а советский вариант помещался в бомбардировщик. |
Что опаснее водородная или ядерная бомба. Разница между атомной и водородной бомбой | Непосредственная работа по изготовлению первой водородной бомбы началась в 1950 году. Научным руководителем стал Юлий Харитон, а его заместителями — Игорь Тамм и Яков Зельдович (Андрей Сахаров трудился в группе Тамма). |
Водородная бомба | Принцип действия. Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. |
Как устроена водородная бомба
Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го. Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или "Сияпе", расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане. Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы "Толстяк", сброшенной на Нагасаки. Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне. Это была уже настоящая бомба, сброшенная с самолета. Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Юлием Харитоном. Курчатова 30 октября 1961 года на полигоне "Сухой Нос" на архипелаге Новая земля. Измеренная мощность взрыва составила 58,6 мегатонны, что многократно превышало все опытные взрывы, произведенные на территории СССР или США. Изначально планировалось, что бомба будет еще больше и мощнее, однако не существовало ни одного самолета, который мог бы поднять больший вес в воздух.
Однако применение такой бомбы не сказывается на радиационном фоне, в отличие от боеприпаса с ядерной начинкой. В горах такие бомбы отличаются особой эффективностью: скальная поверхность способствуют значительному усилению ударной волны благодаря переотражениям. В теории, используя ударный беспилотник "Сириус" или С-70 "Охотник" российская армия может поразить цель в любом уголке Украины.
Вероятность использования такого оружия по целям в черте города крайне низка — слишком высок шанс поражения мирного населения. Человеческий организм поражается не только ударной волной, но также и тепловым воздействием. Особенно уязвимы внутренние органы, а также органы слуха.
Поражение происходит вплоть до 600 метров от эпицентра взрыва. В эпицентре действия бомбы также сгорает весь кислород — выжившие, находящиеся в помещении быстро задыхаются от дефицита воздуха. В 1976 году ООН назвало подобные бомбы негуманным средством.
Стоит отметить также удобство работы такими боеприпасами по позициям противника, находящимся в относительной близости от позиций своих войск.
Большой успех советской бомбы, изначально создававшейся как готовое к бою «изделие» заключался в том, что все научные данные, включая расчет массы веществ, конструкцию и отдельные компоненты, научный коллектив разработал практически сразу, без долгих экспериментов и многолетней математики. Большой вклад в создание бомбы внес лично А. Сахаров, который без долгих раздумий, фактически на одном листке бумаги мог нарисовать схематичное изображение нового устройства и пояснить, как именно и в каком процентном соотношении должны сочетаться между собой вещества.
Взрыв, прогремевший на полигоне, лишний раз доказал, что «сахаровская» водородная бомба, помимо огромного тепловыделения и КПД, обладает чудовищной разрушительной силой. И хотя заряд советской водородной бомбы оказался гораздо скромнее американской эксперименталки — 400 килотонн вместо 10,7 мегатонны, разрушения, зафиксированные комиссией на полигоне, свидетельствовали о том, что боевое применение бомбы возможно по первой же необходимости. Задача, поставленная перед учеными, была решена, и за один прием группа ученых создала не только заряд огромной мощности, но и разработала конструкцию корпуса и бомбу в целом таким образом, чтобы боеприпас легко мог помещаться в отсек для вооружения бомбардировщика Ту-16. Через два года, основываясь на результатах труда группы ученых А.
Сахарова, Ю. Харитона и Я. Зельдовича, была разработана еще одна водородная бомба с мощностью заряда в 1,6 мегатонны. Что касается ученых, «подаривших» оружие массового поражения Соединенным Штатам, то авиационного боеприпаса, который бомбардировщик мог бы доставить до ключевых объектов в СССР, американская наука не могла создать вплоть до середины 50-х годов.
Мать всех бомб Другим непревзойденным до сих пор результатом советских научных разработок остается термоядерная бомба АН602, больше известная как «Царь-бомба». Она разрабатывалась под руководством И. Однако в этот раз коллектив ученых, состоящий из А. Бабаева и В.
Адамскогоне, работал не над очередным спецсредством, а над особым боеприпасом «повышенной мощности».
Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана. Если в урановой бомбе идет реакция деления, то в водородной реакция слияния - в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода — дейтерию и тритию. Собственно поэтому бомба и называется водородной.
Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия. После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте.
Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более. Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1. Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. Ударная волна обошла планету три раза. На полигоне Новая Земля не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности Штаты располагали на тот момент бомбами вчетверо меньше по силе стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства.
Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой. Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза. Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба.
Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда. Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен.
На планете останутся тысячи крупных городов , миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества пыли, сажи, дыма , чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата: похолодание на 1 градус, пройдет незаметно; ядерная осень — похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов; аналог «года без лета» — когда температура упала значительно, на несколько градусов на год; малый ледниковый период — температура может упасть на 30 — 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями; ледниковый период — развитие малого ледникового периода , когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре; необратимое похолодание — это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету. Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми.
Атомная бомба
- Смертельная гонка
- «Просите всё что угодно! Отказа не будет. Только дайте бомбу» | Статьи | Известия
- Истинное происхождение советской водородной бомбы
- Атомная, водородная, нейтронная… Чем отличаются и как работают | Владимир, 03 февраля 2020
Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы
Термоядерное оружие (оно же водородное) – это тип ЯО, разрушительная мощь которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (к примеру, синтеза одного ядра атома гелия из двух ядер атомов дейтерия). Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. ВОДОРОДНАЯ БОМБА оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер.
Как работает водородная бомба
Термоя́дерное ору́жие — вид ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые. Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. Термоядерную («водородную») бомбу в принципе можно сделать любых размеров. Работы над созданием мощной термоядерной бомбы начались задолго до 1961 года — в 1956-м в специально созданном НИИ-1011 приступили к созданию советской "Царь-бомбы" АН602, которая, по мнению Москвы, должна была стать самым надежным средством сдерживания.
ВОДОРОДНАЯ БОМБА
Гриб после взрыва виден на расстоянии 160 км, диаметр облака в момент съёмки — 56 км Вспышка от взрыва Царь-бомбы, около 8 км в диаметре Принцип действия водородной бомбы Устройство водородной бомбы. Первичная ступень выполняет роль включателя — триггера. Происходит термоядерный взрыв. Первое испытание водородной бомбы шокировало мировое сообщество своей разрушительной силой.
Имея те же поражающие факторы, что и у ядерного оружия , термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва.
Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления. Общее описание Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого.
Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития.
Собственно, 6 Li - единственный промышленный источник получения трития: В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру порядка 50 млн градусов , в водородной бомбе сначала взрывается небольшая по мощности атомная бомба.
Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий. Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию 234 , которая и дает основное выделение энергии при взрыве водородной термоядерной бомбы.
Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности. Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы.
Устройство термоядерного боеприпаса Термоядерные боеприпасы существуют как в виде авиационных бомб водородная или термоядерная бомба , так и боеголовок для баллистических и крылатых ракет. История СССР Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама.
В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова». Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз. Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки.
Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект.
Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий. В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954.
Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом «лучевая имплозия». Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95.
Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы. США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта.
Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам.
Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию.
Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах. Термоядерные реакции.
В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии.
Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода.
Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H2O показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий 2H.
Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия.
Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы.
Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным.
Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия.
Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции.
Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом.
Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий.
Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы.
Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием.
Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы.
Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных "осколка".
В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов.
Сегодня на сцене доминирует проект гигантского Международного термоядерного экспериментального реактора ИТЭР , который сейчас строится в Кадараше, Франция. На мой взгляд, ИТЭР ценен прежде всего как платформа для исследований плазмы, разработки технологий и как средство поддержки экосистемы ученых и инженеров, работающих в соответствующих областях. Однако с точки зрения практической реализации термоядерного синтеза в качестве коммерческого источника энергии ИТЭР выглядит тупиком.
Модель реакторной камеры ИТЭР Намного более перспективными являются устройства гораздо меньшего размера, использующие сильно неравновесные импульсные режимы, такие как фокусированная плотная плазма DPF. DPF использует процессы самоорганизации в плазме для достижения чрезвычайно высокой плотности энергии. Второй основной подход, на котором я сосредоточусь в этой статье, называется термоядерным синтезом с инерционным удержанием ICF. В ICF мы не пытаемся ограничить расширение плазмы; но перед началом процесса мы сжимаем топливо до такой высокой плотности, что большое количество реакций происходит уже в первые моменты, до того как оно успевает расшириться.
В этот крошечный промежуток времени энергия, выделяемая каждой реакцией, нагревает смесь еще больше; процесс горения становится самоподдерживающимся — достигается воспламенение. Получается миниатюрный термоядерный взрыв. Будущий реактор ICF будет работать в импульсном режиме, при этом крошечные топливные таблетки одна за другой сбрасываются во взрывную камеру и зажигаются лазерными импульсами. Взрывная камера NIF слева.
Лазерный отсек NIF, генерирующий 192 луча Излишне говорить, что базовая физика ICF была разработана в контексте разработки ядерного оружия и до сих пор существенно пересекается с областью секретных военных исследований. Можно было бы много сказать о политике магнитного и инерционного синтеза, но это не моя тема здесь. ОтSuper-бомбы к радиационному взрыву Пока что единственной доступной технологией генерирования большого количества избыточной энергии с помощью реакций ядерного синтеза является водородная бомба, также известная как термоядерная бомба. Впервые эта технология была успешно испытана 31 октября 1952 года.
Во время американского Манхэттенского проекта создания атомной бомбы, использующей реакции ядерного деления, физик Эдвард Теллер задумал потенциально гораздо более разрушительное оружие, основанное не на делении урана, а на синтезе изотопов водорода. Его называли Super. Поскольку было ясно, что химические взрывчатые вещества не могут генерировать температуру в десятки миллионов градусов, необходимую для зажигания термоядерных реакций, единственным вариантом было использование бомбы деления. Название изобретения — «Совершенствование методов и средств использования ядерной энергии».
Что и говорить, устройство не предназначалось для гражданского использования! Содержание патента фон Неймана-Фукса до сих пор официально является секретом правительства США, но его можно найти в увлекательной серии томов, опубликованных в России в 2008 году «Атомный проект СССР: Документы и материалы». Там можно найти подробный текст с расчетами и диаграммами в переводе на английский и русский языки, а также комментарии к нему ведущих советских исследователей с 1948 года.
США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х.
В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны что в 450 раз больше мощности бомбы, сброшенной на Нагасаки , а в 1953 году в СССР было испытано устройство мощностью 400 килотонн. Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн.
Предложения Б. Ванникова, И. Курчатова и Ю. В постановлении, в частности, ставилась задача проверить возможность создания водородной бомбы, которой был присвоен индекс РДС-6. Берии материалы К. Фукса направляются в КБ-11 Ю. Харитону для использования в работе.
Кроме Ю. В июне 1948 года приступила к работе специальная группа И. Тамма, в состав которой вошли С. Беленький и А. Вскоре к работе группы примкнули В. Гинзбург и Ю. Группа не имела доступа к разведданным. Участвуя в анализе расчетов группы Я. Зельдовича, А. Теллера, он приходит к схеме, аналогичной схеме «будильника».
Предложенная А. Лежащий в ее основе принцип ионизационного сжатия термоядерного горючего назвали «сахаризацией». Правда, надо заметить, что до предложения А. Сахарова в журнале «Science New Letter» от 17 июля 1948 года, в статье W. Сахаров выпустил свой первый отчет по «слойке». А пока Ю. Харитон, ознакомившись с результатами расчетов группы И. Тамм и А.
Ядерное оружие
- 50 лет назад была испытана водородная бомба - CNews
- Как устроена водородная бомба
- Другие материалы рубрики
- Как работает водородная бомба (6 фото + видео)
- Новое советское оружие страшной разрушительной мощи – термоядерная (водородная) бомба
Зачем Хрущеву бомба?
- Водородная бомба
- Последствия взрыва водородной бомбы | Плюсы и минусы
- Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной
- «Просите всё что угодно! Отказа не будет. Только дайте бомбу» | Статьи | Известия
Атомная, водородная, нейтронная… Чем отличаются и как работают
Проект «Манхэттен» Проект «Манхэттен» — кодовое название американского проекта по разработке практической атомной бомбы во время Второй мировой войны. Проект «Манхэттен» был начат как ответ усилиям немецких ученых, работавших над оружием, использующим ядерную технологию, с 1930-х годов. Большая часть работы была выполнена в Лос-Аламосе, штат Нью-Мексико, под руководством физика-теоретика Дж. Роберта Оппенгеймера. Взрыв водородной бомбы создал огромное грибоподобное облако высотой около 150 метров и открыл атомный век.
Единственное фото первого в мире атомного взрыва, сделанное американским физиком Джеком Аэби Малыш и Толстяк Ученые из Лос-Аламоса разработали два различных типа атомных бомб к 1945 году — проект на основе урана под названием «Малыш» и оружие на основе плутония под названием «Толстяк». В то время как война в Европе закончилась в апреле, боевые действия в Тихоокеанском регионе продолжались между японскими войсками и войсками США. В конце июля президент Гарри Трумэн призвал к капитуляции Японии в Потсдамской декларации. Декларация обещала «быстрое и полное уничтожение», если бы Япония не сдалась.
Взрыв «Малыша» соответствовал 13 килотоннам в тротиловом эквиваленте, сравнял с землёй пять квадратных миль города и мгновенно убил 80 000 человек. Десятки тысяч людей позже умрут от радиационного облучения. Японцы продолжали сражаться, и Соединенные Штаты сбросили вторую атомную бомбу через три дня в городе Нагасаки. Взрыв «Толстяка» убил около 40 000 человек.
Ссылаясь на разрушительную силу «новой и самой жестокой бомбы», японский император Хирохито объявил о капитуляции своей страны 15 августа, закончив Вторую мировую войну. Холодная Война В послевоенные годы Соединенные Штаты были единственной страной с ядерным оружием. Сначала у СССР не хватало научных наработок и сырья для создания ядерных боеголовок. Но, благодаря усилиям советских учёных, данным разведки и обнаруженным региональным источникам урана в Восточной Европе, 29 августа 1949 года СССР опробовал свою первую ядерную бомбу.
Устройство водородной бомбы разработано академиком Сахаровым. От атомного оружия к термоядерному Соединенные Штаты ответили в 1950 запуском программы разработки более совершенного термоядерного оружия. Началась гонка вооружений «холодной войны», а ядерные испытания и исследования стали широкомасштабными целями для нескольких стран, особенно для Соединенных Штатов и Советского Союза. Но главные успехи советского ВПК были впереди.
Только в 1958 году СССР испытал 36 ядерных бомб различного класса. Но ничто из того, что испытал Советский Союз, не сравнится с Царь — бомбой. Испытание и первый врыв водородной бомбы в СССР Утром 30 октября 1961 года советский бомбардировщик Ту-95 взлетел с аэродрома Оленя на Кольском полуострове на крайнем севере России. Самолёт был специально измененной версией, появившейся в эксплуатации несколько лет назад — огромный четырехмоторный монстр, которому поручено носить советский ядерный арсенал.
Модифицированная версия ТУ-95 «Медведь», специально подготовленная для первого испытания водородной Царь-бомбы в СССР Ту-95 нёс под собой огромную 58-мегатонную бомбу, устройство слишком большое, чтобы вместить внутри бомбового отсека самолета, где такие боеприпасы обычно перевозились. Бомба длиной 8 м имела диаметр около 2,6 м и весила более 27 тонн и в истории осталась с именем Царь-бомба — «Tsar Bomba». Царь-бомба не была обычной ядерной бомбой. Это был результат напряженных усилий ученых СССР создать самое мощное ядерное оружие.
Царь Бомба взорвалась в 11:32 по московскому времени. Результаты испытания водородной бомбы в СССР продемонстрировали весь букет поражающих факторов данного вида оружия. Прежде, чем ответить на вопрос, что мощнее, атомная или водородная бомба, следует знать, что мощность последней ихмеряется мегатоннами, а у атомных — килотоннами. Световое излучение В мгновение ока бомба создала огненный шар шириной в семь километров.
Огненный шар пульсировал от силы собственной ударной волны. Вспышку можно было увидеть за тысячи километров — на Аляске, в Сибири и в Северной Европе. Ударная волна Последствия взрыва водородной бомбы Новой Земле были катастрофическими. В селе Северный, примерно в 55 км от Ground Zero, все дома были полностью разрушены.
Сообщалось о том, что на советской территории в сотнях километров от зоны взрыва было повреждено все — разрушались дома, падали крыши, повреждались двери, разрушались окна. Радиус действия водородной бомбы несколько сотен километров. В зависимости от мощности заряда и поражающих факторов. Датчики регистрировали взрывную волну, обернувшуюся вокруг Земли не один раз, не дважды, а три раза.
Звуковую волну зафиксировали у острова Диксон на расстоянии около 800 км. Электромагнитный импульс Более часа была нарушена радиосвязь во всей Арктике. Проникающая радиация Получил некоторую дозу радиации экипаж. Радиоактивное заражение местности Взрыв Царь-бомбы на Новой Земле оказался на удивление «чистым».
Испытатели прибыли в точку взрыва через два часа. Причинами были особенности конструкции бомбы и выполнение взрыва на достаточно большом расстоянии от поверхности. Тепловое излучение Несмотря на то, что самолет-носитель, покрытый особой свето- и теплоотражающей краской, в момент подрыва бомбы ушёл на расстояние 45 км, он вернулся на базу со значительными термическими повреждениями обшивки. У незащищенного человека излучение вызвало бы ожоги третьей степени на расстоянии до 100 км.
Гриб после взрыва виден на расстоянии 160 км, диаметр облака в момент съёмки — 56 км Вспышка от взрыва Царь-бомбы, около 8 км в диаметре Принцип действия водородной бомбы Устройство водородной бомбы. Первичная ступень выполняет роль включателя — триггера. Происходит термоядерный взрыв. Первое испытание водородной бомбы шокировало мировое сообщество своей разрушительной силой.
Имея те же поражающие факторы, что и у ядерного оружия , термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым».
Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления. Общее описание Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6.
Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6 Li - единственный промышленный источник получения трития: В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру порядка 50 млн градусов , в водородной бомбе сначала взрывается небольшая по мощности атомная бомба.
Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий. Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию 234 , которая и дает основное выделение энергии при взрыве водородной термоядерной бомбы. Возникает третья фаза взрыва водородной бомбы.
Подобным образом создается термоядерный взрыв практически неограниченной мощности. Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы. Устройство термоядерного боеприпаса Термоядерные боеприпасы существуют как в виде авиационных бомб водородная или термоядерная бомба , так и боеголовок для баллистических и крылатых ракет. История СССР Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка».
Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова». Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз. Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки.
Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.
В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом «лучевая имплозия». Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.
Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы. США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта.
Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам.
Гораздо опаснее для человека ударная взрывная волна, расходящаяся по поверхности земли от эпицентра взрыва по окружности радиусом, достигающим 700 км, и радиоактивные осадки, выпадающие из того самого грибовидного облака. В день на полигонах могли производиться по три-четыре эксперимента, в ходе которых изучалась динамика взрыва, поражающие способности, потенциальный ущерб противника. Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го. Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или "Сияпе", расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане.
Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы "Толстяк", сброшенной на Нагасаки. Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне. Это была уже настоящая бомба, сброшенная с самолета. Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Юлием Харитоном. Курчатова 30 октября 1961 года на полигоне "Сухой Нос" на архипелаге Новая земля.
Дейтерий лития-6 уже содержит тритий. Но чтобы его выделить, требуется создать пиковую температуру и грандиозное давление. Для этого под термоядерное горючее конструируется оболочка из урана-238 и полистирола. По соседству устанавливается небольшой ядерный заряд мощностью несколько килотонн. Он служит триггером. При взрыве заряда оболочка урана переходит в плазменное состояние, создавая пиковую температуру и грандиозное давление. В процессе нейтроны плутония контактируют с литием-6, что позволяет выделяться тритию. Ядра дейтерия и лития коммуницируют, образуя термоядерный взрыв.
Таков принцип действия водородной бомбы. При подрыве термоядерного заряда формируется горячая светящаяся сферическая масса, более известная как огненный шар. По мере формирования масса расширяется, охлаждается и устремляется вверх. В процессе охлаждения пары в огненном шаре сгущаются в облако с твёрдыми частицами, влагой и элементами заряда. Образуется воздушный рукав, который втягивает с поверхности полигона подвижные элементы и переносит их в атмосферу. Нагретое облако поднимается на высоту 10-15 км, затем остывает и начинает расплываться по поверхности атмосферы, принимая грибовидную форму. В 7:30 утра на полигоне Семипалатинска была подорвана водородная бомба РДС-6. Стоит сказать, что это было четвёртое тестирование атомного оружия в Советском Союзе, но первое термоядерное.
Масса бомбы составляла 7 тонн. Она могла бы свободно разместиться в бомболюке бомбардировщика Ту-16. В сравнение приведём пример Запада: американская бомба Ivy Mike весила 54 тонны, и для неё был построен 3-этажный корпус, схожий на дом. Советские учёные пошли дальше американцев. Чтобы оценить силу разрушения, на полигоне был построен городок из жилых и административных зданий. Разместили по периметру военную технику от каждого рода войск. Всего в зоне поражения разместилось 190 различных объектов недвижимого и движимого имущества.
После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов , миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества пыли, сажи, дыма , чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата: похолодание на 1 градус, пройдет незаметно; ядерная осень — похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов; аналог «года без лета» — когда температура упала значительно, на несколько градусов на год; малый ледниковый период — температура может упасть на 30 — 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями; ледниковый период — развитие малого ледникового периода , когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре; необратимое похолодание — это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету. Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб. Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет. Мощность этого взрыва была эквивалентна взрыву тысячи бомб, которые были сброшены на японские города Хиросиму и Нагасаки. Это было самое мощное испытание из когда-либо произведённых в Соединенных Штатах. Расчётная мощность бомбы была равна 15 мегатоннам. В дальнейшем в США повышение взрывной силы таких бомб признали нецелесообразным. В результате испытания в атмосферу попало около 100 млн. Пострадали и люди. Американские военные не стали откладывать испытание, зная, что ветер дует в сторону обитаемых островов и, что могут пострадать рыбаки. Островитян и рыбаков даже не предупредили об испытаниях и возможной опасности. Так, японское рыболовное судно «Счастливый дракон» «Фукурю-Мару» , которое находилось в 140 км от эпицентра взрыва, подверглось облучению, 23 человека пострадали в дальнейшем 12 из них умерло. По данным японского министерства здравоохранения, в результате испытания «Кастл Браво» заражению различной степени подверглось более 800 японских рыболовных судов. На них находилось около 20 тыс. Серьёзные дозы облучения получили жители атоллов Ронгелап и Аилингинаэ. Пострадали и некоторые американские военные. Мировая общественность высказала свою обеспокоенность по поводу мощной ударной войны и радиоактивных осадков. В 1957 году в канадском местечке Пагуош прошла первая конференция научного движения, целью которого был запрет ядерных испытаний, снижение опасности возникновения вооруженных конфликтов и совместный поиск решения глобальных проблем Пагуошское движение. Из истории создания водородной бомбы в США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была высказано ещё в 1941 году. В мае 1941 года учёный-физик Токутаро Хагивара из университета в Киото в Японии высказал мысль о возможности возбуждения термоядерной реакции между ядрами водорода с помощью взрывной цепной реакции деления ядер урана-235. Аналогичную идею, в сентябре 1941 года в Колумбийском университете высказал выдающийся итальянский физик Энрико Ферми. Он её изложил своему коллеге американскому физику Эдварду Теллеру. Затем Ферми и Теллер высказали мысль о возможности инициирования ядерным взрывом термоядерных реакций в среде из дейтерия. Теллер загорелся этой идеей и в ходе реализации Манхэттенского проекта большую часть своего времени посвятил работе по созданию термоядерной бомбы. Надо сказать, что был настоящим учёным-«милитаристом», который выступал за обеспечение преимущества США в области ядерных вооружений. Учёный был против запрещения ядерных испытаний в трех средах, предлагал проводить новые работы по созданию более дешевых и эффективных видов атомного. Выступал за развертывание вооружений в космосе. Группа блестящих учёных США и Европы, которая работала в Лос-Аламосской лаборатории, в ходе работы по созданию ядерного оружия, затрагивала и проблемы дейтериевой сверхбомбы. К концу 1945 года была создана относительная целостная концепция «классического супера». Считалось, что потоком нейтронов, выходящих из первичной атомной бомбы на основе урана-235, можно вызвать детонацию в цилиндре с жидким дейтерием через промежуточную камеру с DT-смесью. Эмиль Конопинский предложил добавить к дейтерию тритий для уменьшения температуры зажигания. В 1946 году Клаус Фукс при участии Джона Фон-Неймана предложил использовать новую систему инициирования. Она включала в себя дополнительный вторичный узел из жидкой DT-смеси, которая зажигалась в результате излучения первичной атомной бомбы. Сотрудник Теллера польский математик Станислав Улам высказал предложения, которые позволили перевести разработку термоядерной бомбы в практическую плоскость. Так, он для инициирования термоядерного синтеза предложил сжимать термоядерное топливо до начала его нагрева, использовав для этого первичную реакцию расщепления и разместив термоядерный заряд отдельно от первичного ядерного компонента. Исходя из этих расчётов, Теллер предположил, что рентгеновское и гамма излучение, вызванное первичным взрывом, сможет передать достаточно энергии во вторичный компонент, позволит инициировать термоядерную реакцию. В январе 1950 года американский президент Гарри Трумен заявил о том, что США будут вести работу над всеми видами атомного оружия, включая водородную бомбу «сверхбомбу». Было принято решение провести в 1951 году первые полигонные испытания с термоядерными реакциями. Так, планировали испытать «усиленную» атомную бомбу «Пункт», а также модель «классического супера» с бинарным инициирующим отсеком.