Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини. Коэффициент Джини Всемирного банка - CIA World Factbook. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%. Коэффициент Джини может принимать значения от 0 до 1. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход.
Как рассчитывать коэффициент Джини
Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения. Коэффициент концентрации доходов, или индекс Джини, может быть рассчитан и с помощью других методик. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках.
Коэффициент Джини. Формула. Что показывает
Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы. В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов. Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини.
Индекс Джини и неравенство доходов
И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом.
Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1.
Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур.
И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере.
Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2.
Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики.
Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем.
Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию.
Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и.
Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей.
Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге.
Закрашенная площадь показывает степень неравенства в распределении доходов. Обозначим ее через M. Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент.
Что это? Хабаровск Время прочтения: 6 мин. В области машинного обучения коэффициент Джини, находясь в диапазоне от 0 до 1, показывает качество прогнозирования модели — чем ближе к единице, тем точнее прогноз в данном посте не будем касаться применения коэффициента Джини в социальной области. Какой же доверительный интервал может быть у единственного числа? И тем не менее, доверительный интервал коэффициент Джини существует.
А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию. Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Делается это следующим образом: Строится прямая Лоренца на основе собранных статистических данных.
Затем рассчитывается коэффициент. Он берется, как отношение площади образованной фигуры к площади треугольника, отображающей прямую равенства. Фактически ищут 2 площади. Если они будут идентичны, то коэффициент Джини будет равен нулю и означать полное равенство между всеми группами населения.
Задача №77. Расчёт коэффициента Джини
Налоги являются основным источником доходов государства. Любое государство имеет множество налогов и сборов, построенных по определенным принципам, а также институты контроля по сбору налогов. Все это составляет налоговую систему государства. Для оценки налоговой системы используются принципы эффективности и справедливости. Как мы уже знаем, понятие справедливости не является точно определённым для экономистов. В зависимости от системы моральных ценностей справедливость может быть установлена тем или иным образом. Экономисты гораздо более едины при определении того, что такое эффективность. Эффективной является та налоговая система, которая менее всего приводит к искажению стимулов у участников рынка, а следовательно, и к возникновению безвозвратных потерь.
Покажем, каким образом безвозвратные потери связаны с искажением стимулов у участников рынка. По теме «рыночное равновесие» мы помним, что безвозвратные потери возникали, когда налоги и субсидии изменяли положение кривых спроса и предложения, то есть изменяли экономическое поведение людей. Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки. Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В. Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления.
Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А. Налоговые сборы при это составят 20 рублей их оплатит опять же только индивид А , и их получает государство. На этом простом примере мы убедились, что при налогообложении возникли безвозвратные потери в размере 10 рублей. И они возникают потому, что индивид В поменял свое экономическое поведение, полностью отказавшись от потребления мороженого. Таким же образом любые налоги приводят к безвозвратным потерям, поэтому можно смело утверждать, что любые налоги неэффективны в этом смысле. Задача экономистов заключается в том, чтобы найти такие налоги, которые будут минимально искажать стимулы людей, а значит, и приводить к минимальным безвозвратным потерям. Налоги могут взиматься по-разному в зависимости от величины дохода.
Для того, чтобы оказать это, нам будут нужны два типа налоговых ставок: средняя налоговая ставка и предельная налоговая ставка. У прогрессивного налога средняя ставка налога растет по мере увеличения дохода, а значит, предельная налоговая ставка превышают среднюю. Примеры прогрессивных налогов: налоги на доходы во Франции, налоги в Швеции, автомобильный налог в России. У пропорционального налога средняя ставка не изменяется с ростом дохода, а значит, средняя налоговая ставка совпадает с предельной. В случае, если индивиду предложена одинаковая налоговая ставка при существовании некоего налогонеоблагаемого минимума или же предоставлен налоговый вычет , то данная налоговая система является уже не пропорциональной, а прогрессивной. Индивид сначала вообще не платит налогов, а потом, после превышения налогонеоблагаемого минимума, начинает платить налог по одинаковой ставке. У регрессивных налогов средняя ставка падает с ростом дохода, а значит, предельная ставка налога оказывается ниже средней.
Примеры регрессивных налогов: акцизы - поскольку человек оплачивает их при покупке товара вне зависимости от его дохода. Например, от 10 до 30 рублей в стоимости каждой пачки сигарет составляют акцизные сборы, и человек оплачивает их вне зависимости от величины дохода при покупке каждой пачки сигарет. Таким образом, для бедняка этот налог составляет существенную часть его дохода, а для миллионера он будет несущественным. Другие примеры регрессивных налогов — это любые фиксированные налоги и пошлины.
Данный вид дохода равен разнице между номинальным доходом и налогами. В условиях развитого рынка существование неравенства объективно задано тем, что рыночная система - это бесстрастный и жесткий механизм, который не знает благотворительности и вознаграждает людей лишь по конечной эффективности их деятельности. Таким образом, основными причинами в неравном распределении доходов являются, прежде всего: 1.
Различия в способностях. У людей разные физические и интеллектуальные способности от рождения, например, некоторые люди, наделены исключительными физическими способностями и могут получать за свои спортивные достижения большие деньги, а некоторые наделены предпринимательскими способностями и имеют способности к ведению бизнеса. Итак, люди, которые имеют талант в какой-то сфере жизнедеятельности, могут получать больше денег, чем другие, задействованные в данной сфере. Различия в образовании. Люди отличаются не только различиями в способностях, но и по уровню образования. Однако эти различия в большинстве своем являются результатом выбора самого человека. Так, кто-то после окончания 11-го класса пойдет работать, а кто-то поступит в ВУЗ.
Итак, выпускник ВУЗа имеет больше возможностей для получения большего дохода, чем люди, не имеющие высшего образования. Различия в профессиональном опыте.
Другой показатель — децильный коэффициент фондов. И считают, во сколько раз их доход отличается. Делить доходы миллиардеров на численность жителей страны смысла нет.
Как правило, богатые люди — владельцы не национального, а международного капитала. Для сравнения: самый низкий децильный коэффициент в скандинавских странах — Дании, Финляндии и Швеции — три-четыре. Недавно в официальной статистике появился ещё один ряд показателей — индексы риска бедности, которые отвечают на вопрос, какие категории населения рискуют стать бедными по источникам доходам, характеристикам домашних хозяйств, уровню образования, месту жительства и так далее. Так, в мегаполисах жить легче, чем в маленьких городках. Рост уровня образования снижает риск бедности, а наличие детей — повышает.
Да, на трудовые доходы у нас единая ставка налога — 13 процентов. Но заработная плата — это не все виды доходов. По другим видам доходов у нас либо нет налогов — на пенсии, стипендии, пособия, либо другие ставки налогообложения, например, на предпринимательские доходы или от финансовых операций.
Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений. Для прогнозирования использую логистическую модель. Запишу факторы в отдельный лист для удобства. Однако, в ходе анализа модели было предложено рассмотреть возможность добавления нового фактора — F18. Данный показатель является качественным, поэтому требует преобразования с помощью woe функции.
Вы точно человек?
Любое государство имеет множество налогов и сборов, построенных по определенным принципам, а также институты контроля по сбору налогов. Все это составляет налоговую систему государства. Для оценки налоговой системы используются принципы эффективности и справедливости. Как мы уже знаем, понятие справедливости не является точно определённым для экономистов. В зависимости от системы моральных ценностей справедливость может быть установлена тем или иным образом. Экономисты гораздо более едины при определении того, что такое эффективность. Эффективной является та налоговая система, которая менее всего приводит к искажению стимулов у участников рынка, а следовательно, и к возникновению безвозвратных потерь.
Покажем, каким образом безвозвратные потери связаны с искажением стимулов у участников рынка. По теме «рыночное равновесие» мы помним, что безвозвратные потери возникали, когда налоги и субсидии изменяли положение кривых спроса и предложения, то есть изменяли экономическое поведение людей. Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки. Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В.
Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления. Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А. Налоговые сборы при это составят 20 рублей их оплатит опять же только индивид А , и их получает государство. На этом простом примере мы убедились, что при налогообложении возникли безвозвратные потери в размере 10 рублей. И они возникают потому, что индивид В поменял свое экономическое поведение, полностью отказавшись от потребления мороженого. Таким же образом любые налоги приводят к безвозвратным потерям, поэтому можно смело утверждать, что любые налоги неэффективны в этом смысле.
Задача экономистов заключается в том, чтобы найти такие налоги, которые будут минимально искажать стимулы людей, а значит, и приводить к минимальным безвозвратным потерям. Налоги могут взиматься по-разному в зависимости от величины дохода. Для того, чтобы оказать это, нам будут нужны два типа налоговых ставок: средняя налоговая ставка и предельная налоговая ставка. У прогрессивного налога средняя ставка налога растет по мере увеличения дохода, а значит, предельная налоговая ставка превышают среднюю. Примеры прогрессивных налогов: налоги на доходы во Франции, налоги в Швеции, автомобильный налог в России. У пропорционального налога средняя ставка не изменяется с ростом дохода, а значит, средняя налоговая ставка совпадает с предельной.
В случае, если индивиду предложена одинаковая налоговая ставка при существовании некоего налогонеоблагаемого минимума или же предоставлен налоговый вычет , то данная налоговая система является уже не пропорциональной, а прогрессивной. Индивид сначала вообще не платит налогов, а потом, после превышения налогонеоблагаемого минимума, начинает платить налог по одинаковой ставке. У регрессивных налогов средняя ставка падает с ростом дохода, а значит, предельная ставка налога оказывается ниже средней. Примеры регрессивных налогов: акцизы - поскольку человек оплачивает их при покупке товара вне зависимости от его дохода. Например, от 10 до 30 рублей в стоимости каждой пачки сигарет составляют акцизные сборы, и человек оплачивает их вне зависимости от величины дохода при покупке каждой пачки сигарет. Таким образом, для бедняка этот налог составляет существенную часть его дохода, а для миллионера он будет несущественным.
Другие примеры регрессивных налогов — это любые фиксированные налоги и пошлины. Например, в РФ человек вынужден заплатить фиксированную пошлину в размере около 1000 рублей при регистрации номерного знака автомобиля.
Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать.
Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться.
Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными. Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов.
В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5. В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты.
Коэффициент Джини отчасти неадекватен для плановых экономик, где распределение ресурсов зависит не только от доходов, но и от лояльности к государству партии. Кроме того, так как частное предпринимательство запрещено в плановой экономике , выходит ситуация когда получаемые доходы фиксируются не у предпринимателей, а у государства.
Из-за этого, формально выходит что доходы концентрируют предприниматели, в отличие от плановой экономики, где доходы принадлежат государству. Коэффициент Джини учитывает разницу доходов граждан, а не государства. Это приводит к значительно более положительным показателям коэффициента Джини в плановых экономиках. Пример расчёта коэффициента Джини[ править править код ] По данным Росстата коэффициент Джини в России составлял в разные годы [4] : Год.
И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib. Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами.
Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом »20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл.
Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца.
Как рассчитать коэффициент Джини в Excel (с примером)
Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Индекс Джини или коэффициент Джини — это статистическая мера распределения, разработанная итальянским статистиком Коррадо Джини в 1912 году. Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы. Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной.
РБК: Росстат зафиксировал рост концентрации доходов в 2023 году
Степень неравенства доходов внутри групп населения (коэффициент Джини) выросла по итогам 2023 года до 0,403, тогда как в 2022 этот показатель составлял 0,395, констатировал Росстат. Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. Что такое коэффициент Джини и кривая Лоренца: показатель концентрации доходов и по какой формуле он определяется, сколько составляет в России и в мире.
Индекс Джини
Потребление в целом продолжает поддерживаться опережающей динамикой 01 апр 2024 Ульяновская область подготовила первый выпуск народных облигаций 29 марта 2024 года начнется размещение первого выпуска народных облигаций для физических лиц Ульяновской области. Чтобы получить бонус, нужно:Зарегистрироваться на Финуслугах;Выбрать вклад;Ввести промокод 22 марта 2024 Как мы работаем 8 марта В праздничный день, 8 марта, Финуслуги работают в обычном режиме — вы можете выбирать любые продукты, отправлять заявки в банки и страховые компании. А теперь информация отдельно по продуктам:Вклады.
Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини. В какой стране самый высокий индекс Джини?
Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов. World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные. Что означает индекс Джини, равный 50? Джини в 50 — это половина пути, и в целом его можно воспринимать как место, где доходы распределяются несправедливо: только в 15 странах мира индекс Джини составляет 50 и более. Коэффициент Джини в США высокий или низкий? В США коэффициент Джини равен 41,1, что является высоким показателем для такой развитой экономики.
Экономисты возлагают вину за растущее неравенство доходов в США на такие факторы, как технологические изменения, глобализация, упадок профсоюзов и снижение минимальной заработной платы. Особенности Индекс Джини — это показатель распределения доходов среди населения. Из-за данных и других ограничений индекс Джини может завышать неравенство доходов и скрывать важную информацию о распределении доходов. Глобальное неравенство, измеряемое индексом Джини, неуклонно росло в течение последних нескольких столетий и резко возросло во время пандемии COVID-19.
Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику? Она не равна своему родственнику из экономики.
Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем.
Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Для понимания доказательства необходимо базовое понимание метрики ROC-AUC — что это вообще такое, как строится график и в каких осях.
В номинальном выражении также наблюдается ощутимый прирост. В июне среднемесячная начисленная заработная плата составила 76 604 руб. Показатель увеличился и по отношению к предыдущему месяцу.
Самые высокие показатели оплаты труда традиционно наблюдались у сотрудников, работающих в сфере добычи нефти и природного газа 169 473 руб. Меньше всего получают работники почты и курьеры 40 583 руб. Средний размер пенсии на июль по сравнению с данными о зарплате, оценки по этому показателю доходов населения Росстат публикует более оперативно составил 19 476 руб. Экономика В первом полугодии 2023 г. Ведомство оценивает показатель по так называемым квантилям - группам по доходам всего их пять.
Индекс Джини в странах мира
Степень неравенства доходов внутри групп населения (коэффициент Джини) выросла по итогам 2023 года до 0,403, тогда как в 2022 этот показатель составлял 0,395, констатировал Росстат. Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. "РГ"), подготовленный Росстатом, также демонстрирует снижение неравенства.
Индекс Джини
- Коэффициент Джини: все ли равны?
- Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца
- Индекс Джини и неравенство доходов
- Социальное неравенство в России устремилось вверх. Что дальше? | Новости 24
- Неравенство и бедность