Рассказываем, как появился первый квантовый компьютер, сколько кубитов в современных процессорах и какие задачи они могут решать. или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется.
Что такое квантовые вычисления?
В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры. Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Российские ученые изготовили и испытали первый в нашей стране сверхпроводящий кубит.
Технологии квантовых компьютеров в 2022: достижения, ограничения
Что такое квантовые вычисления? | Среднее время жизни кубита составляет порядка 14 мс, а среднее время одной квантовой операции — всего 50 наносекунд. |
Про квантовые компьютеры простыми словами | Что такое кубиты для квантовых компьютеров? В квантовом компьютере основным элементом является кубит – квантовый бит. |
Что такое квантовые вычисления? | (1) Сформулировать, что такое кубит. |
В Канаде создали альтернативную архитектуру кубита со встроенной защитой от ошибок вычислений | С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами. |
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы | Кубит отличается от бита тем, что он представляет собой фактически не два отдельных состояния, а два состояния, которые как бы перекрываются. |
Как работают квантовые процессоры. Объяснили простыми словами
Кубит — это носитель квантовой информации и аналог бита в квантовом мире, основной элемент любых квантовых вычислителей. Кубит представляет собой систему, которая находится в контролируемом состоянии суперпозиции двух стационарных состояний — 0 и 1. Это значит, что, в отличие от классических битов, которые могут находиться в состоянии или 0, или 1, кубиты могут быть в состоянии 0 и 1 одновременно. Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. Потенциально эти свойства позволяют реализовывать параллельные вычисления и эффективнее классических систем работать с большими объемами информации.
Но режим квантового превосходства пока не был достигнут никем — такое устройство могло бы обогнать классические компьютеры в решении большинства задач.
Все права защищены. Условия использования информации.
Представьте себе две разные песни, одну из которых назовём песня A, другую песня B. Поскольку при измерении кубит коллапсирует в одно из двух детерминированных состояний, невозможно измерить истинное вероятностное состояние кубита. Впрочем, можно измерить его приблизительно. Суперпозиция — реальное явление: знаменитый эксперимент с двумя щелями демонстрирует, что определённые кванты, подобные электронам или фотонам, находятся в волновых состояниях и, проходя через две щели, вызывают появление интерференционной картины на экране. Источник На аппаратном уровне главная сложность в конструировании кубитов заключается в их вероятностной природе ведь они не детерминированы , что означает, что их состояние может очень легко изменяться под воздействием внешних сил. Кубиты трудно поддерживать по той же причине, по которой они так мощны — множество их возможных состояний трудно контролировать более нескольких секунд. Применение квантовых вентилей для осуществления операций зачастую может приводить к ошибкам вентиля из-за случайного неосторожного обращения с кубитом. Напомню, что кубитом может быть что угодно от фотона до электрона или определённых молекул , если они демонстрируют квантовое поведение. Многокубитные системы и запутанность Ваш компьютер далеко не продвинется с одним битом , ведь он может принимать только два значения, а компьютер работает с огромной многоразрядной системой. Как и биты, кубиты можно собрать в многокубитную систему. В 2-кубитной системе в состоянии 10 первый кубит находится в состоянии 1 и второй в состоянии 0. Однако из-за суперпозиции 2-кубитные системы не ограничены только детерминированными значениями 0 или 1. Они могут находиться в суперпозиции. Это означает, что при измерении системы она имеет равные шансы перейти в одно из четырёх детерминированных 2-кубитных состояний. Запутанность — ещё одно часто встречающееся умное слово, которое сбивает с толку. Скажем, при двух запутанных кубитах A и B в любой суперпозиции, когда Боб измеряет кубит A в состоянии 1, он мгновенно без измерения узнаёт состояние кубита B — тоже 1. Если Боб измерит кубит B, он убедится в этом. Что ещё более замечательно, это явление работает даже если A и B находятся на расстоянии триллионов световых лет друг от друга, так как расстояние не является коэффициентом запутанности. На первый взгляд запутанность выглядит как колдовство, но она реальна и не настолько сложна, если смотреть на её систему кубитов. Если 2-кубитная система с кубитами A и B находится в запутанном состоянии, кубиты могут находиться наполовину в состоянии 00, наполовину в 11. Таким образом, независимо от измерений системы два кубита останутся теми же самыми. Запутанная система может быть так же наполовину в 01, наполовину в 10, где два состояния всегда противоположны друг другу. Состояние 00 или 11 — два кубита останутся теми же Альберт Эйнштейн и другие физики считали запутанность ошибкой, потому что она противоречит специальной теории относительности Эйнштейна, в которой говорится, что ничто не может двигаться быстрее скорости света.
Сейчас уже ведется работа по подготовке человеческого общества к появлению полноценных квантовых компьютеров: разрабатываются новые стандарты, создаются дорожные карты, стратегии выхода на рынок и сфера применения квантовых вычислений. В России дорожная карта развития квантовых вычислений разработана совместными усилиями Росатома и Российского квантового центра. На создание квантовых компьютеров и облачной платформы для доступа к ним планируется потратить 23,6 миллиарда рублей. Что такое квантовое превосходство Квантовое превосходство — это свойство квантовых компьютеров решать задачи, которые не способны решить классические компьютеры за обозримый период времени. Сейчас ученые рассматривают это достижение больше как доказательство принципа, чем то, что может повлиять на будущую коммерческую жизнеспособность таких вычислений. В России под эгидой Росатома создана Национальная квантовая лаборатория, куда вступили различные научные организации, включая Фонд «Сколково» , Российский квантовый центр и профильные научные институты. Целью лаборатории является создание квантовых процессоров на базе сверхпроводников, холодных атомов, фотонов и ионов. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии. Квантовое превосходство может быть временным и не исключает появления более эффективных алгоритмов, ускоряющих вычисления классическими компьютерами, поэтому любое заявление о достижении квантового превосходства вызывает скепсис у специалистов и подвергается тщательной проверке. Когда Google опубликовала результаты вычислений квантового процессора Sycamore, IBM заявила, что ее суперкомпьютер способен решить ту же задачу более точно и почти с той же скоростью — за два с половиной дня. Страны вкладывают огромные суммы в развитие квантовой отрасли. Китай создал новый центр квантовых исследований National Laboratory for Quantum Information Sciences стоимостью 10 миллиардов долларов; Евросоюз разработал генеральный план развития квантовых технологий и планирует потратить на это около миллиарда евро; США, в соответствии с законом о национальной квантовой инициативе, выделили 1,2 миллиарда долларов на развитие проектов в этой области за пятилетний период. Однако для достижения полезной вычислительной производимости, вероятно, понадобятся машины, состоящие из сотен тысяч кубитов. Как работают квантовые компьютеры Классические компьютеры выполняют логические операции, используя биты — единицы информации, принимающие значение либо «0», либо «1». В квантовых вычислениях для этого используются кубиты, представляющие собой квантовое состояние объекта, например, фотона. До момента измерения квантовое состояние является неопределенным, то есть оно находится в суперпозиции двух возможных состояний — «0» или «1». Суперпозиция одного объекта может быть связана с суперпозициями других объектов, то есть можно сконструировать между ними логические отношения, подобные тем, что существуют на основе транзисторов в классических компьютерах. Однако квантовые системы трудно поддерживать в состоянии суперпозиции достаточно долго, поскольку квантовое состояние нарушается система декогерирует в результате взаимодействия с окружающей средой. Чтобы добиться квантового превосходства, необходимо использовать явление, называемое квантовой запутанностью. Оно возникает в случае, когда две системы настолько сильно связаны, что получение информации об одной системе немедленно даст информацию о другой — вне зависимости от расстояния между этими системами. Хартмут Невен, директор Google Quantum AI Labs предложил новое правило, которое предсказывает прогресс квантовых компьютеров в ближайшие 50 лет. Оно гласит, что мощность квантовых вычислений испытывает двукратный экспоненциальный рост по сравнению с обычными вычислениями. Если бы этому принципу подчинялись классические компьютеры, то ноутбуки и смартфоны появились бы в мире уже к 1975 году. Невен обосновывал свое правило тем, что ученые создают все более совершенные квантовые процессоры с большим количеством запутанных кубитов, и при этом процессоры сами по себе экспоненциально быстрее традиционных компьютеров. Закон Невена, или, как его еще называют, закон Мура 2.
Будущее квантовых компьютеров: перспективы и риски
Но пока до реального взлома всё же невероятно далеко — чтобы взломать код биткоина, нужны десятки миллионов кубитов. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. Кубит отличается от бита тем, что он представляет собой фактически не два отдельных состояния, а два состояния, которые как бы перекрываются. Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность демонстрирует ионный процессор.
Что такое кубит в квантовом компьютере человеческим языком
А все потому, что в основе японского чуда — не обычные процессоры, а квантовые. Ведь большинство квантовых компьютеров могут работать только при температурах, близких к абсолютному нулю, когда все замедляется и "шум" окружающей среды минимален", — рассказал руководитель группы экспериментальных квантовых вычислений компании — производителя квантовых компьютеров Джери Чоу. Но дело не только в размерах. В классических ЭВМ информация зашифрована в битах, то есть в нулях и единицах, а в квантовых — в кубитах. Один кубит — это атом или фотон — мельчайшая частица вещества или энергии. Причем она одновременно может быть как нулем, так и единицей. Как говорят ученые, такая запутанность позволяет квантовым компьютерам, что называется, "думать" в миллиарды раз быстрее. Они позволяют получить не только количественные результаты за счет ускорения процессов, но и качественные, обеспечивая лучшую адаптацию в средах и ситуациях. Это означает, что квантовые роботы более креативны", — говорит директор кафедры квантовой динамики Института квантовой оптики Общества Макса Планка Герхард Ремпе. Однако многие видят в них угрозу, ведь они будут в состоянии не только делать за человека механическую работу, но и легко заменят представителей творческих специальностей. Но не все так плохо: всемогущие кванты могут стать и нашими защитниками.
Что такое квантовый ключ и как он защитит от мошенников С телефонными мошенниками хоть раз сталкивался каждый. Их главная задача — узнать секретную информацию. Если не напрямую от нас, то путем взлома смартфона или компьютера.
Но если уже собрали вычислитель из сотен кубитов, почему нельзя, как в конструкторе ЛЕГО, объединить десятки тысяч, миллионы? Руслан Юнусов: Собрать, конечно, можно, но есть проблема - надежность.
И она сейчас является ключевой. Чем больше мы хотим объединить кубитов, тем сильней они влияют друг на друга. Как следствие, начинают вылезать ошибки. Понятно, что нам нужны точные, безошибочные вычисления. Кроме того, в отличие от работы кремниевого устройства квантовые состояния довольно неустойчивые.
Для защиты от разных внешних воздействий необходимы специальные условия. Все это дает повод скептикам утверждать, что собрать одновременно много кубитов и обеспечить надежность, безошибочную работу такой большой системы никогда не удастся. Либо одно, либо другое. Но с таким же упорством скептики заявляли, что никогда не удастся достичь квантового превосходства, а это произошло. Важно, что таких примеров становится все больше.
Ключевой вопрос Квантовая криптография обеспечит полную защиту информации. Фото: iStock У лидеров собраны системы из сотен кубитов, движутся к тысячам, у нас 16. Грустная цифра. Руслан Юнусов: Год назад, когда у нас было 4 кубита, а у них сотни, я бы признал, что мы сильно отстаем. Сейчас ситуация кардинально иная.
Важно, что мы не только достигли 16 кубитов, главное - есть четкое понимание, как к концу 2024 года выйти на сотню, а затем и на тысячи кубитов. А также достичь квантового превосходства. На самом деле число кубитов - не самоцель. Как я уже говорил, надо иметь не просто много кубитов, а много хороших кубитов. Например, ионный процессор одного из наших зарубежных коллег всего на 20-30 кубитах бьет системы с сотнями кубитов.
И мы знаем, как из наших 16 сделать такую же точную систему. Реализовав "дорожную карту", рассчитанную до конца 2024 года, значительно сократим отставание от лидеров. Сейчас разрабатывается новая концепция на период 2025-2030 годов. Лидеры обещают к 2030 году создать квантовый компьютер, который сможет решать самые разные практические задачи. А что планируем мы?
Руслан Юнусов: Говорить об этом еще рано, работа над концепцией только началась. Ее разрабатывают многие институты, вузы и корпорации. Крайне важно, что мы ощущаем полную поддержку со стороны государства. Все понимают значение этих работ для страны, для ее безопасности и суверенитета. Как санкции повлияли на наши работы?
Руслан Юнусов: По ряду позиций потеряем 1,5-2 года.
Транзисторы соединены таким хитрым образом, что когда они включаются и выключаются, на них можно производить математические вычисления. Из-за того, что транзисторов очень много миллиарды , а работают они очень быстро близко к скорости света , транзисторные компьютеры могут очень быстро совершать математические вычисления. Всё, что вы видите в компьютере, — это производные от вычислений. Вы видите окно, буквы, картинки, а где-то в самой-самой глубине это просто сложение и вычитание, а ещё глубже — включение-выключение кранов с электричеством на скорости света. Транзистор в компьютере может принимать значение 1 или 0, то есть «включён» или «выключен». С точки зрения компьютерной логики, этот транзистор называется битом. Это минимальная единица информации в компьютере.
Физически бит может быть в процессоре, на чипе памяти, на магнитном диске, но суть одна: это какое-то физическое пространство, которое определённо либо включено, либо выключено. Ключевое слово здесь — «определённо». Программист и инженер может точно узнать, в каком состоянии находится тот или иной бит. Заряд в нём либо есть, либо нет, никаких промежуточных состояний там не существует. В квантовом компьютере вместо битов — кубиты. Кубиты — это квантовые частицы, у которых есть интересная особенность: кроме стандартных 0 и 1 кубит может находиться между нулём и единицей — это называют суперпозицией. Нагляднее это видно на рисунке: Кубит может принимать все значения, которые видны на цветной сфере Все решения уже известны Ещё одна особенность кубитов — зависимость значения от измерения. Это значит, что программист не узнает значение кубита до тех пор, пока его не измерит, а сам факт измерения тоже влияет на значение кубита.
Это значит, что, в отличие от классических битов, которые могут находиться в состоянии или 0, или 1, кубиты могут быть в состоянии 0 и 1 одновременно. Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. Потенциально эти свойства позволяют реализовывать параллельные вычисления и эффективнее классических систем работать с большими объемами информации.
Но режим квантового превосходства пока не был достигнут никем — такое устройство могло бы обогнать классические компьютеры в решении большинства задач. Для достижения превосходства требуется машина с 50—60 кубитами и, что важно, достаточно малой декогеренцией, то есть в состоянии, при котором ничто извне не будет мешать кубитам находиться в квантовой запутанности между собой. Здесь, в частности, и возникает сложность в реализации полноценного квантового компьютера.
Квантовые компьютеры
Как устроен и зачем нужен квантовый компьютер | Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. |
Квантовый компьютер: что это, отличие от обычного, как купить и стоит ли покупать | Удерживать кубиты в нужном состоянии, учитывая количество внешних факторов, крайне сложно — именно поэтому они работают при абсолютном нуле. |
Что такое квантовый компьютер? Разбор / Хабр | Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. |
Сердце квантовых компьютеров - как создаются кубиты? | Если же взять, к примеру, десять кубитов, то будет уже 1024 классических состояния. |
Что такое квантовый компьютер? Разбор | Каждый лишний кубит играет большую роль – ведь он сразу повышает мощность вычислений в два раза. |
Квантовый компьютер как способ движения в завтра
Квантовые компьютеры: как они работают — и как изменят наш мир | Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа. |
Почему от квантового компьютера зависит национальная безопасность и когда он появится в России | Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа. |
Как устроен и зачем нужен квантовый компьютер | Кубит — это носитель квантовой информации и аналог бита в квантовом мире, основной элемент любых квантовых вычислителей. |
Квантовые компьютеры: как они работают — и как изменят наш мир - Hi-Tech | Фундаментальные принципы кубитов, простое объяснение того, что такое суперпозиция. |
Что такое кубиты и как они помогают обойти санкции? | Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. |
Что такое кубиты и как они помогают обойти санкции?
В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры. С точки зрения физики кубит — это элементарная частица, например электрон, а значение кубита — это значение одного из физических свойств этой частицы. Чтобы сделать кубиты, отдельные электроны помещают в линейный массив из шести «квантовых точек», отстоящих друг от друга на 90 нанометров.
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей. Среднее время жизни кубита составляет порядка 14 мс, а среднее время одной квантовой операции — всего 50 наносекунд. В качестве физического кубита используются фотоны, нейтральные атомы, ионы, квантовые точки, примеси в кристаллах. Что наиболее важно, кубит достиг времени когерентности в квантовом состоянии, конкурентоспособного с другими современными кубитами. Начинаем погружаться в основу основ квантовой связи и квантовой информатики, так что сегодня узнаем, что такое кубит, для чего он нужен и в каких направления.