Новости термоядерный холодный синтез

Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза.

Что такое Холодный ядерный синтез?

теоретически возможный способ простого и дешёвого получения огромных количеств экологически чистой энергии. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях. 8 декабря 2014 Новости. 8 октября 2014 года была завершена проверка независимыми исследователями из Италии и Швеции устройства E-Cat для выработки электроэнергии на основе реактора холодного термоядерного синтеза. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике.

Российские физики рассказали о приручении термоядерного синтеза

Предварительная схема ITER. В семи новых исследованиях ученые описали результаты расчетов и моделирований суперкомпьютеров, лежащих в основе конструкции SPARC. Ожидается, что этот термоядерный реактор будет генерировать как минимум в два, а то и в 10 раз больше энергии, чем потребляет, как показали исследования. Однако все еще ITER будет как минимум в 5 раз мощнее.

А дальше принцип работы схож с текущими атомными электростанциями: тепло от термоядерного реактора будет превращать воду в пар. Он, в свою очередь, будет приводить в действие турбину и электрический генератор, после чего конденсироваться и снова нагреваться у реактора, завершая цикл. Однако в отличие от ядерных реакторов не нужно будет строить несколько контуров, на которых сильно теряется КПД, дабы избежать радиации — «снимать энергию» можно будет сразу же с первого контура.

Напротив, по его словам, электростанции, использующие возобновляемые источники энергии, такие как солнечный свет или ветер, «плохо приспособлены к нынешним электрическим сетям». Исследователи в конечном итоге надеются, что компактные термоядерные электростанции, вдохновленные SPARC, смогут вырабатывать от 250 до 1000 мегаватт каждая. Он будет производить только тепло, но не электричество.

Они умирают, но им на смену приходят молодые, с новым духом. Именно они могут делать прорыв в науке. Для этого требуется время. Революция не происходит в один день. Прошел уже 31 год.

Кажется, что это много в границах продолжительности жизни одного человека, но, если сравнивать с жизнью всего человечества, это мгновение. Люди не думают о будущем. Невозможно остановить машины и вернуться назад, в прошлые века, но с новыми технологиями мы можем двигаться вперед. И невозможно предсказать новые технологии. Некоторые политики экстраполируют какие-то явления, но пословица говорит: «деревья не растут до неба».

Это означает, что всё меняется. Правильно говорят, что каменный век прекратился не потому, что закончились камни, а потому, что появилось что-то еще. И наше время не прекратится с исчерпанием нефти, оно станет другим с появлением чего-то нового. Я так горжусь, что могу быть частью этого, частью истории. Я пришел в науку с опозданием — Эйнштейн уже мёртв, Коперник тоже мертв, но у меня уникальный шанс работать в сфере, в которой предстоит сделать еще много открытий, которые не были сделаны раньше.

Но раньше, вероятно, не было возможностей, не было нужного оборудования. Нанопорошки уже существуют достаточно долгое время — сигареты делают на нанопорошках. Но у нас раньше не было инструментов, чтобы рассмотреть их. Теперь, когда у нас есть такие инструменты, людей беспокоят нанотехнологии. Это аналогично тому, что до появления микроскопа мы ничего не знали о микробах, так как не видели их.

А как только появился микроскоп, мы стали беспокоиться по поводу микробов. Когда Христофор Колумб прибыл в Америку, он не знал, что это была Америка. Он думал, что это Индия. Мы не знаем, к чему мы придём с холодным синтезом. Для нас это неизведанная земля.

У нас ни малейшего представления, что мы получим. Я объясню на одном примере. Вот у вас есть атом кислорода, в нем восемь электронов крутятся вокруг ядра. Если вы убираете один электрон, остаётся семь. Высокая энергия — это только один электрон.

Вы убрали один электрон, и больше нет энергии электрона, есть только энергия ядра. Водород без одного электрона это уже не водород. Но кислород без одного электрона все еще остается кислородом. Промежуточное состояние высокой энергии имеет абсолютно другое поведение — вот что мы обнаружили. Люди еще не могут осознать этого.

Цитатат из видео «Реактор холодного синтеза» на YouTube Реактор холодного синтеза Андрес Ковач, изобретатель, основатель компании BroadBit Словакия : В этом проекте я ответственный за экспериментальную работу и теоретические разработки, и я возглавляю отдел, который будет разрабатывать теорию.

При этом прорыв уже широко обсуждается учеными, добавили источники. Национальный комплекс лазерных термоядерных реакций стоимостью 3,5 миллиарда долларов изначально строился для испытаний ядерного оружия через имитацию взрывов, но с тех пор использовался для исследований в области термоядерной энергии.

Gizmodo США : сможет ли человечество использовать термоядерный синтез как источник энергии? Ученые давно ведут поиски альтернативных источников энергии для спасения планеты. Один из них — управляемый термоядерный синтез.

Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи. Он взял интервью у ряда экспертов, чтобы узнать, способны ли термоядерные реакции обеспечить электроэнергией весь мир. Большинство исследований в этой области сосредоточено на другом подходе — так называемом синтезе с магнитным удержанием.

При нем водородное топливо удерживается на месте мощными магнитами и нагревается настолько, что атомные ядра сливаются.

В семи новых исследованиях ученые описали результаты расчетов и моделирований суперкомпьютеров, лежащих в основе конструкции SPARC. Ожидается, что этот термоядерный реактор будет генерировать как минимум в два, а то и в 10 раз больше энергии, чем потребляет, как показали исследования. Однако все еще ITER будет как минимум в 5 раз мощнее. А дальше принцип работы схож с текущими атомными электростанциями: тепло от термоядерного реактора будет превращать воду в пар.

Он, в свою очередь, будет приводить в действие турбину и электрический генератор, после чего конденсироваться и снова нагреваться у реактора, завершая цикл. Однако в отличие от ядерных реакторов не нужно будет строить несколько контуров, на которых сильно теряется КПД, дабы избежать радиации — «снимать энергию» можно будет сразу же с первого контура. Напротив, по его словам, электростанции, использующие возобновляемые источники энергии, такие как солнечный свет или ветер, «плохо приспособлены к нынешним электрическим сетям». Исследователи в конечном итоге надеются, что компактные термоядерные электростанции, вдохновленные SPARC, смогут вырабатывать от 250 до 1000 мегаватт каждая. Он будет производить только тепло, но не электричество.

После того, как исследователи построят и протестируют SPARC, они планируют построить реактор ARC Affordable Robust Compact, Доступный компактный прочный реактор , который сможет вырабатывать электричество из «термоядерного тепла».

Российские физики рассказали о приручении термоядерного синтеза

В 1980 году изобретение было признано открытием и стало известно как эффект Курдюмова или эффект памяти формы. Один из самых популярных и перспективных материалов — сплав никеля и титана — нитенол. При последовательной смене температур кристаллическая решетка сплава меняет конфигурацию, крайне важно, что эффект проявляет себя даже при незначительном нагревании и охлаждении, что значительно удешевляет технологию. На картинке видно кинетическую схему нитенолового двигателя. А это двигатель Бэнкса, работающий на таком принципе. Естественными бесплатными источниками энергии для таких двигателей и для всех нас уже давно могли бы стать моря и океаны, если бы в дешевой энергии были бы заинтересованы те, кто находиться у власти. Генератор Хендершота Первое упоминание о магнитном генераторе свободной энергии в работах американского физика — изобретателя Лестора Хендершота появилось в 1927.

Уже в следующем году Хенедершот построил прототип небольшого генератора и сумел запитать 2 стандартные лампы по 110 ватт. Авторитетные эксперты вынуждены были признать — генератор работал без видимого внешнего источника.

Lahey, Jr. Они заявили, что смогли добиться необходимого для реакции сближения ядер, используя не палладий, а эффект кавитации. Кавитацией называют образование в жидкости полостей, или пузырьков, заполненных газом. Образование пузырьков может быть, в частности, спровоцировано прохождением через жидкость звуковых волн. При определенных условиях пузырьки лопаются, выделяя большое количество энергии.

Как пузырьки могут помочь в ядерном синтезе? Очень просто: в момент "взрыва" температура внутри пузырька достигает десяти миллионов градусов по Цельсию — что сравнимо с температурой на Солнце, где свободно происходит ядерный синтез. Талейархан и Лейхи пропускали звуковые волны через ацетон, в котором легкий изотоп водорода протий был заменен на дейтерий. Им удалось зарегистрировать поток нейтронов высокой энергии, а также образование гелия и трития — еще одного продукта ядерного синтеза. Несмотря на красоту и логичность экспериментальной схемы, научная общественность восприняла заявления физиков более чем прохладно. На ученых обрушилось огромное количество критики, касающейся постановки эксперимента и регистрации потока нейтронов. Талейархан и Лейхи переставили опыт с учетом полученных замечаний — и снова получили тот же результат.

Тем не менее, авторитетный научный журнал Nature в 2006 году опубликовал статью , в которой высказывались сомнения в достоверности результатов. Фактически, ученых обвинили в фальсификации. В Университете Пердью, куда перешли работать Талейархан и Лейхи, было проведено независимое расследование. По его итогам был вынесен вердикт: эксперимент поставлен верно, ошибки или фальсификации не обнаружено. Несмотря на это, пока в Nature не появилось опровержения статьи, а вопрос о признании кавитационного ядерного синтеза научным фактом повис в воздухе. Новая надежда Но вернемся к японским физикам. В своей работе они использовали уже знакомый палладий.

Точнее, смесь палладия с оксидом циркония. Ученые пропускали дейтерий через ячейку, содержащую эту смесь.

Конечно, это меньше, чем на большом торе у европейцев, но их показатели нельзя сравнивать из-за небольших размеров нашего «Глобуса», который имеет диаметр всего 36 сантиметров диаметр JET — около 3 метров.

На «Глобусе-М2» мы пытаемся проверить правильность выбора сферической формы для термоядерного реактора, понять, будет ли у него преимущество по удержанию плазмы, будет ли он превосходить классический тор по энергозатратам. Но у него будет ряд принципиальных отличий. Прежде всего из-за увеличенных размеров качественно изменятся параметры плазмы.

Кроме того, будут впервые испытаны в таком масштабе сверхпроводящая магнитная система, новые системы дополнительного нагрева плазмы и многое другое. И есть подозрение, что у них это получится быстрее, чем у международного консорциума. Создавая термоядерный реактор на Земле, люди хотят воссоздать аналог реакций на Солнце Фото: nasa.

Кто в итоге выживет, это пока вопрос. Скорей всего, термоядерный реактор будет построен на базе классического токамака. Но для сферических токамаков может найтись своя ниша, а их коммерческое применение может начаться гораздо раньше.

Гибридные технологии Как выяснилось, мало нашим физикам-ядерщикам сферической модернизации термоядерного реактора. Сейчас, по словам Минаева, в нашей стране параллельно запускается процесс разработки и создания гибридной электростанции, основанной на термоядерной и ядерной технологиях. Это позволит эффективней удерживать плазму?

Мы хотим за счет термоядерных технологий решить проблему с «замыканием» ядерного топливного цикла. Представляете, мы сможем нарабатывать искусственное топливо для атомных реакторов, получать в реакторе энергию, а после дожигать отработанное топливо до безопасного состояния, чего раньше никогда не было. До сих пор мы просто захоранивали ядерные отходы, накапливая их.

В целом новая гибридная атомная станция будет значительно безопасней и экологичней. Отсутствие большого количества опасных отходов также позволит повысить экспортный потенциал нашей атомной промышленности. Развивая эту технологию, мы оставим своим потомкам более чистую планету, без залежей ядерных отходов.

Мы будем использовать термоядерный реактор как мощный источник нейтронов для получения ядерного топлива. При этом параметры плазмы в таком термоядерном источнике нейтронов могут быть существенно ниже, чем в чисто термоядерном энергетическом реакторе, а размеры — существенно меньше, чем у того же ИТЕРа. Следовательно, такой реактор-источник будет значительно дешевле.

Но самое главное: реализация гибридной концепции позволит существенно сократить время, требующееся для внедрения уже наработанных термоядерных технологий в коммерческий оборот. Существует еще и открытый тип реактора — зеркальные ловушки, или, образно говоря, «магнитные бутылки», имеющие на концах магнитные «пробки» или магнитные «зеркала». На концах такого реактора, возле «пробок», магнитное поле сильное, в центре — слабее.

Частицы плазмы привязаны к силовым линиям магнитного поля и движутся от одной «пробки» к другой, каждый раз отражаясь от них. Конструкция такого реактора получается более простой, а значит, дешевой и легкой в сборке.

Как шутят сами физики, занимающиеся термоядом, через 50 лет или, может быть, на два дня раньше». Действительно, заявления типа «Ученые США впервые в мире смогли получить от термоядерного синтеза больше энергии, чем на него потратили», «Научные прорывы в этой сфере позволят человечеству в будущем полностью отказаться от ископаемого топлива» существенно переоценивают значение эксперимента на установке NIF.

Да, полученной «сверхнормативной» энергии хватит, чтобы вскипятить 10—15 чайников. Но журнал Nature напоминает: на работу всей установки потратили 322 МДж; лазеры выдали мощность на топливо, равную 2,05 МДж; конечная реакция произвела 3,15 МДж. Но с точки зрения промышленности все остается на своих местах: потратили 322, получили 3,15», — резюмируют сотрудники Московского инженерно-физического института в Telegram-канале «Эвтектика из МИФИ». Но в этой гонке принципов — токамаки vs инерциальный термояд — как-то оказался отодвинутым на периферию научного и государственного, что важно!

Этот сценарий, как бы, зеркально противоположен лазерному термояду. Если в реакторе NIF происходит внешнее обжатие капли термоядерного топлива, то в пузырьковом варианте, наоборот, нейтроны рождаются в результате экстремального схлопывания газовых пузырьков. Любопытно, что теоретическую схему этого процесса предложил как раз академик Роберт Нигматулин в середине 1990-х. По крайней мере в 1995 году он уже выступал с докладом «Перспективы пузырькового термояда» на научной конференции в США.

Несколько американских физиков заинтересовались теоретическими выкладками российского ученого, и начались «камерные» лабораторные эксперименты. Действие лабораторной термоядерной установки основано на эффекте акустической кавитации в специально подготовленной жидкости, подвергнутой воздействию акустической волны, образуется кластер мельчайших пузырьков, которые с огромной скоростью схлопываются. Все происходило в небольшом цилиндре с ацетоном, в котором ядра водорода были заменены ядрами дейтерия, имеющими в своем составе по дополнительному нейтрону. Ученые зарегистрировали поток нейтронов, вылетающих из камеры, где находился цилиндр с ацетоном.

Это и появление ядер трития в облученном таким образом ацетоне — явные признаки термоядерной реакции. А в середине нулевых в одном из номеров журнала Physical Review Е оявилось сообщение группы физиков из двух американских институтов Окриджская национальная лаборатория, штат Теннесси, и Ренселлерский политехнический институт в Трое, штат Нью-Йорк о том, что им вторично удалось получить доказательства существования пузырькового термояда. Экспериментаторы «бомбардировали» цилиндр мощными звуковыми волнами и одновременно — высокоэнергичными нейтронами. В результате рождалось скопление воздушных пузырьков диаметром около миллиметра, то есть гораздо более крупных, нежели образуются при воздействии только звуковых волн.

Схлопывание пузырьков нагревало дейтерированный ацетон до таких температур, при которых, утверждают физики, уже начинается термоядерная реакция — слияние двух ядер дейтерия в ядро трития с вылетом лишнего нейтрона. Кстати, о температурах. Пузырьковый термояд иногда называют «холодным». Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза».

О холодном синтезе... афёра, но для чего?

Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. За последние два года физики, работающие с NIF, смогли в несколько раз повысить энергетическую эффективность "быстрого" термоядерного синтеза. Холодный термоядерный синтез признали официально. В Китае на несколько часов запустили реактор термоядерного синтеза, или так называемую установку токамак. Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность.

Холодный синтез: желаемое или действительное?

Азы которой все присутствующие проходили в школе, а некоторые изучали более глубоко в вузе. Это т. Но при этом, если явление имеет место быть, мы должны обязательно его следы обнаружить, даже если ХЯС связан с какими-либо потусторонними силами. Мы были практически уверены в успехе, так как пришли к обоюдному согласию, что давно открытый ядерной физикой мюонный катализ уже и есть в чистом виде ХЯС. От этой «печки» и решили танцевать, так как при этой гипотезе аппаратура для эксперимента от исходной модели не зависит, просто мы несколько усложняем себе жизнь, делая аппаратуру портативной и спускаясь с ней под землю. Общие положения. Эксперименты на ускорителях по синтезу различных элементов показали, что эффективные поперечные сечения реакций ХЯС зависят от того, в каком материале размещены ядра частицы-мишени. В этих экспериментах наблюдалось существенное увеличение вероятности взаимодействия в тех случаях, когда ядра мишени внедрены или являются частью проводящего кристалла. Эти опыты позволяют совершенно по-новому взглянуть на проблему ХЯС. Это может означать, что в кристалле платины атомы дейтерия не испытывают кулоновского отталкивания до расстояний, в 25 раз меньших, чем размер самих атомов дейтерия.

В последнем случае мюон как удавка сразу для двух висельников стягивает дейтоны до критически малого расстояния. Процесс DD-синтеза в кристалле можно рассматривать на основе представления о квазимолекуле дейтерия, захваченной в одну кристаллическую ячейку. Скорость ядерного синтеза в такой системе равна проницаемости барьера, умноженной на частоту колебаний квазимолекулы: Корректный расчет частоты колебаний такой системы в реальном потенциале кристаллической ячейки — довольно сложная задача. В таблице приводятся экспериментальные оценки скорости реакции DD-синтеза на основе такого подхода для кристаллов палладия, кобальта и платины. Таблица 1 Скорости реакции DD-синтеза Выражение для сечения синтеза так называется в физике вероятность реакции при столкновении двух ядер можно записать в виде: Здесь энергия E приведена в единицах кэВ; S E — т. Таким образом, мы постараемся избежать неопределенностей и сложностей для понимания, связанных с теоретическими вычислениями. В 1 см3 палладия содержится 6. Пока пренебрежем тем обстоятельством, что механизм может оказаться зависимым от ориентации спиновых состояний электронов сближенных атомов дейтерия. Это вполне достаточно для объяснения результатов опытов на ускорителях.

Остается вопрос, возможно ли получить ХЯС, согласно этим выкладкам без ускорителей, используя интенсивный и абсолютно бесплатный поток мюонов, пронизывающий все вокруг. Так, за время, пока Вы читали эту фразу сквозь Вас пролетело 10 тыс. Критерием истины является практика, а критерием теории — эксперимент. Поэтому мы выбрали три эксперимента по ХЯС, по видам рабочего вещества — газообразное, жидкое и твердое. Во всех случаях существенную роль играет обязательное условие! Почему-то такой принцип адептами ХЯС используется крайне редко, прямо скажем, нам такие эксперименты не известны. Было принято, что мы регистрируем только разность температур между рабочей и контрольной ячейкой с точность 0,1 К. Все остальные гипотетические признаки наличия ХЯС, такие как потоки нейтронов, образования трития и тритонов, разные гамма-излучения мы считаем противоречивыми, предвзятыми, умозрительными, неубедительными и недостоверными. Тем более, что кроме тепла от ХЯС ничего большего и не требуется.

Есть тепло — уже интересно, нет тепла — ну так и ни к чему городок городить. Также договорились принимать во внимание только превышение температуры измерительной ячейки над контрольной в 0,3 К. Аппаратура и материалы Вся аппаратура у нас уже имелась, ничего экстраординарного прикупать не потребовалось: пишущие терморегуляторы типа Термодат, мультиметры, смартфоны, компьютеры, радиометр СРП. Имелись также две ячейки высокого давления, оставшиеся от других тем, начинка от пальчиковых никель-металл-гидридных аккумуляторов и термопары. Из расходных материалов были приобретены: сцинтилляционный 2,5-Дифенилоксазолом на 527 руб. Итого расходы на материалы — 1819 руб.

С другой стороны, в сообщении говорится о большом энергетическом выходе, который трудно подделать и в каковом факте трудно ошибиться. Поэтому я думаю, что вскоре эта история прояснится». Еще один характерный факт, связанный с Росси и Фокарди, заключается в том, что ни один рецензируемый журнал не принял их публикацию про холодный термояд к печати. Но результаты все же опубликованы: специально для этого Росси и Фокарди основали онлайн-журнал Journal of Nuclear Physics. Кроме того, есть информация, что Росси ранее имел проблемы с законом, так как уклонялся от налогов и нелегально перевозил золото. Все это практически не оставляет сомнений в том, что Росси и Фокарди не сделали ничего выдающегося. Но является ли идея холодного термоядерного синтеза лженаукой?

Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества АФО , которая состоялась в Балтиморе 1 мая того же года. В газете New York Times появилась разгромная статья, а к концу мая научное сообщество пришло к выводу, что претензии химиков из Юты — либо проявление крайней некомпетентности, либо элементарное жульничество. Но имелись и диссиденты, даже среди научной элиты. Эксцентричный нобелевский лауреат Джулиан Швингер, один из создателей квантовой электродинамики, настолько уверовал в открытие химиков из Солт-Лейк-Сити, что в знак протеста аннулировал свое членство в АФО. Тем не менее академическая карьера Флейшмана и Понса завершилась — быстро и бесславно. В 1992 году они ушли из Университета Юты и на японские деньги продолжали свои работы во Франции, пока не лишились и этого финансирования. Флейшман возвратился в Англию, где живет на пенсии. Понс отказался от американского гражданства и поселился во Франции. Материалов полно. Люди работают, идиоты "разоблачают". В Японии исследования финансируются правительством, в нем участвуют ведущие промышленные компании. Однако "все то вздор, чего не знает Митрофанушка". Невежество — не аргумент.

Это не утопия, это обычный день в мире, где человек освоил реакцию холодного ядерного синтеза. В четверг, 22 мая 2008 года, группа японских физиков из Университета Осаки под руководством профессора Араты провела демонстрацию реакции холодного ядерного синтеза. Некоторые из присутствовавших на демонстрации ученых назвали ее успешной, однако большинство заявило, что для подобных утверждений необходимо независимо повторить опыт в других лабораториях. О заявлении японцев написало несколько физических изданий, однако наиболее уважаемые в научном мире журналы, такие как Science и Nature, пока не опубликовали своей оценки этого события. Чем объясняется такой скепсис научного сообщества? Все дело в том, что холодный ядерный синтез с некоторых пор пользуется у ученых дурной славой. Несколько раз заявления об успешном проведении этой реакции на поверку оказывались фальсификацией либо неверно поставленным экспериментом. Чтобы понять, в чем трудность осуществления ядерного синтеза в лабораторных условиях, необходимо коротко коснуться теоретических основ реакции. Куры и ядерная физика Ядерный синтез - это реакция, при которой атомные ядра легких элементов сливаются, образуя ядро более тяжелого. При реакции выделяется огромное количество энергии. Это обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения, которые удерживают вместе входящие в состав ядра протоны и нейтроны. На маленьких расстояниях — около 10-13 сантиметров - эти силы чрезвычайно сильны. С другой стороны, протоны в ядрах заряжены положительно, и, соответственно, стремятся оттолкнуться друг от друга. Радиус действия электростатических сил намного больше, чем у ядерных, поэтому когда ядра удалены друг от друга, первые начинают преобладать. В обычных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы они смогли преодолеть электростатическое отталкивание и вступить в ядерную реакцию. Заставить атомы сблизиться можно, сталкивая их на большой скорости или используя сверхвысокие давления и температуры. Однако теоретически существует и альтернативный способ, позволяющий проводить желанную реакцию практически "на столе". Одним из первых идею осуществления ядерного синтеза при комнатной температуре высказал в 60-е годы прошлого века французский физик, лауреат Нобелевской премии Луис Кервран Louis Kervran. Ученый обратил внимание на тот факт, что куры, не получающие кальция с пищей, тем не менее несут нормальные яйца, покрытые скорлупой. В скорлупе, как известно, содержится очень много кальция. Кервран заключил, что куры синтезируют его у себя в организме из более легкого элемента — калия.

Российские физики рассказали о приручении термоядерного синтеза

В термоядерном синтезе ядра разгоняются до высоких скоростей в токамаках и в Солнце — из-за высокой температуры. А как это сделать в более-менее обычных условиях, не знаю. Известные мне попытки холодного синтеза недостоверны, а иногда и подложны». Отталкивание протонов, которое не позволяет ядрам приблизиться на достаточно близкое расстояние, называется кулоновским барьером — и в термоядерных реакциях преодолеть его позволяет температура в миллионы Кельвинов. В холодном ядерном синтезе этих температур нет — следовательно, непонятно, за счет чего барьер преодолевается. Опровержения Флейшмана и Понса появились достаточно быстро, и, возможно, даже слишком быстро.

Сергей Цветков, главный ученый Deneum, писал о том, что выделение тепла в эксперименте ученых начиналось через 40 дней — а первые опровержения появились уже через 30 дней. В любом случае, на сегодняшний день не существует ни одного убедительного эксперимента, который бы однозначно доказывал достоверность результатов Флейшмана и Понса. С этим тезисом могут поспорить ученые, которые занимаются холодным ядерным синтезом, но к их мнению мало кто прислушивается. И после неудачных попыток повторить эксперимент научное сообщество пришло к выводу , что это невозможно. Холодный ядерный синтез перешел из области экспериментальной науки в сферу, где вроде бы еще не лженаука, но и доказательной базы процесса не существует при этом.

Тем не менее, откровенный скепсис научного сообщества не остановил эксперименты. Коммерческие эксперименты Холодный ядерный синтез получил новое название — низкоэнергетические ядерные реакции LENR и работа продолжилась. Химики, инженеры и инвесторы продолжают попытки генерации избыточного тепла, надеясь на ошеломительные коммерческие прибыли. Миллс еще в 1991 году представил свою теорию, согласно которой электрон в водороде может переходить в новые состояния, высвобождая огромное количество энергии. Он назвал новый тип водорода «гидрино» и основал компанию Brilliant Light Power BLP , которая пыталась использовать технологию с коммерческой стороны.

BLP до сих пор представляют прототипы своих устройств, но трудно сказать, что происходит в них на самом деле. У него даже был заключен контракт с американской армией, но, по некоторым сообщениям , устройства не работали согласно своим спецификациям.

Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение.

Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте.

Повторение эксперимента на более крупном реакторе После такого успеха ученые хотят экстраполировать результаты на более крупные установки. В частности, они думают об ИТЭР, экспериментальном токамаке нового поколения, который сейчас строится во Франции. Однако исследователи подчеркивают, что воспроизвести тот же эксперимент на реакторе такого размера может быть очень сложно.

Реактор ITER — это лишь первый шаг. Его размеры велики, но по мере развития технологии такая станция станет меньше. Возможно, со временем размеры всего комплекса уменьшат до размеров офисного здания Владимир Спиридонов Особенность термоядерного синтеза заключается в том, что за сутки таких импульсов может быть десять, а при должном умении — сто и даже более тысячи.

После перемножения импульсов на мегаватты выработанной энергии получится, что самая маленькая термоядерная электростанция в разы производительнее атомной. К тому же дейтерий и тритий, используемые в качестве топлива, существенно экологичнее изотопов урана и плутония, да и термоядерный реактор в теории почти не надо "перезаряжать". По сути, термоядерная электроэнергетика — "святой Грааль" человечества.

Она способна решить все энергетические проблемы на ближайшие несколько столетий вперёд. Во-первых, после появления термоядерной энергии исчезнет проблема радиационной опасности объектов. Проще говоря, никакого "второго Чернобыля" или "Фукусимы" и близко произойти не сможет.

Во-вторых, развитие термоядерного синтеза позволит ликвидировать энергетический голод человечества. Стремительный рост населения спровоцировал и дефицит энергии. Сейчас, по прогнозам специалистов, потребность человечества в электроэнергии оценивается в 10 ТВт — почти в пять раз больше, чем наука и промышленность могут предложить.

В-третьих, термоядерный синтез почти сразу станет причиной освоения... Дело в том, что, несмотря на достаточное количество дейтерия и трития, идеальным топливом для термоядерных реакторов будущего является гелий-3 — самый лёгкий изотоп гелия. Его практически нет в чистом виде на Земле — для его наработки специальным образом обрабатывают тритий, а процесс этот стоит так дорого, что промышленное производство гелия-3 крайне невыгодно и потому лишено смысла.

Идеальным местом добычи гелия-3 является именно Луна.

Ядерный синтез часто говорят «термоядерный синтез» — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. Например, ядра тяжелого водорода дейтерия и трития превращаются в ядро гелия и один нейтрон. При этом выделяется огромное количество энергии в виде тепла. Энергии выделяется настолько много, что 100 тонн тяжелого водорода хватило бы, чтобы обеспечить энергией все человечество на целый год не только электричеством, но и теплом.

Именно такие реакции происходят внутри звезд, благодаря чему звезды и живут. Много энергии это хорошо, но есть проблема. Чтобы запустить такую реакцию, нужно сильно столкнуть ядра. Для этого придется разогреть вещество примерно до 100 миллионов градусов Цельсия. Люди умеют это делать, причем довольно успешно.

Именно это происходит в водородной бомбе, где разогрев происходит за счет традиционного ядерного взрыва.

«Очевидно, что авторы темнят»

  • Прорыв в термоядерном синтезе - Телеканал "Наука"
  • Комментарии
  • Что еще почитать
  • Преимущества и недостатки термоядерных реакторов
  • Прорыв в термоядерном синтезе - Телеканал "Наука"

Холодный синтез: миф и реальность

Волны, действительно, возникают. Как правило, это совпадает с какими-то кризисными явлениями. Сейчас понятно, что с ростом цен на энергоносители. Здесь нужно внимательно подходить, вокруг очень много пиара. Частники, в общем-то, понимают, что есть деньги, то можно попробовать их заложить туда. А вдруг это сработает?

Большая часть из них понимает, что, скорее всего, это вложение на далекое будущее. Кто-то ориентируется на внуков, а кто-то верит рекламе». Тем временем корпорация Microsoft подписала в начале мая коммерческий контракт на поставку электроэнергии, произведенной с помощью термоядерного синтеза, с компанией Helion Energy, занимающейся разработкой систем уникальной конфигурации, именуемых Fusion Engine, которые сочетают в себе элементы магнитного удержания и инерционного сжатия. Helion Energy планирует подключить реактор мощностью минимум 50 МВт — это немного, но речь здесь идет, скорее, о самом факте первого в истории коммерческого контракта на получение энергии посредством термоядерного синтеза.

Ожидается, что это будет сделано завтра. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Проект National Ignition Facility, специалисты которого и добились успеха, использует метод так называемого «термоядерного инерционного синтеза». На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду.

Границей «легкости» служит ядро железа. Ядра тяжелее железа уже, строго говоря, метастабильны и, в принципе, способны к ядерному распаду с выделением энергии — чем тяжелее ядро, тем у него больше избыточной энергии практически эту энергию удаётся извлекать только в особых случаях очень тяжёлых ядер — уран, плутоний... Так вот: никель тяжелее железа, а потому для его слияния с протоном с образованием меди нужно затратить энергию! С другой стороны, в сообщении говорится о большом энергетическом выходе, который трудно подделать и в каковом факте трудно ошибиться. Поэтому я думаю, что вскоре эта история прояснится». Еще один характерный факт, связанный с Росси и Фокарди, заключается в том, что ни один рецензируемый журнал не принял их публикацию про холодный термояд к печати. Но результаты все же опубликованы: специально для этого Росси и Фокарди основали онлайн-журнал Journal of Nuclear Physics.

Реакции термоядерного синтеза не выделяют ни углерода, ни радиоактивных отходов с долгим периодом полураспада, а небольшая чашка водородного топлива теоретически может питать дом в течение сотен лет. Американский прорыв свершился в момент, когда мир столкнулся с высокими ценами на энергию и необходимостью скорейшего отказа от ископаемого топлива, чтобы не допустить опасного скачка средних мировых температур. В соответствии с Законом о снижении инфляции администрация Байдена вложит в новые субсидии на низкоуглеродную энергетику почти 370 миллиардов долларов — это поможет сократить выбросы и выиграть глобальную гонку за чистые технологии следующего поколения. Если все пройдет хорошо, этот проект позволит получать самую "зеленую" энергию.

Французские читатели тронуты верностью россиян. Проект начинался при Горбачеве, когда Запад "был еще цивилизованным". От дальнейших комментариев в ведомстве отказались. Лаборатория подтвердила успешный эксперимент в Национальном комплексе лазерных термоядерных реакций, но подчеркнула, что анализ результатов продолжается.

Однако точная выработка все еще определяется, и мы не можем подтвердить, что на сегодняшний момент она превышает пороговое значение, — говорится в сообщении.

Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы

Реакции термоядерного синтеза возможны в случае экстремального нагрева атомов вплоть до 100 миллионов градусов по Цельсию, что приводит к их слиянию с побочным выделением большого количества энергии. Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии. У России появился шанс вновь стать лидером в освоении термоядерного синтеза.

Похожие новости:

Оцените статью
Добавить комментарий