Новости коэффициент джини показывает

Коэффициент Джини рассчитывается по формуле. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца.

What you should know about this indicator

  • Неравенство в доходах: Кривая Лоренца -
  • Коэффициент Джини — что это такое?
  • Индекс концентрации Джини
  • Коэффициент Джини | Истории | Что такое коэффициент 7 июня 2021
  • Информация

Индекс Джини: расчет и формула

  • Для продолжения работы вам необходимо ввести капчу
  • Что такое индекс Джини?
  • В России вырос показатель доходного неравенства
  • Коэффициент Джини (распределение дохода)

Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца

Самым распространенным показателем измерения уровня экономического неравенства коэффициент является коэффициент Джини. В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов. Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения.

В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи

Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход.

Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения

Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0.

Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини.

Индекс Джини Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов — кривой Лоуренса. Пример кривой Лоренца приведен на изображении ниже. В идеальной ситуации, то есть ситуации, когда нет неравенства в распределении доходов, эта линия будет биссектрисой, то есть пройдет под углом 45 градусов от начала координат. Индекс Джини представляет собой отношение площади фигуры между упомянутой биссектрисой и кривой Лоренца к площади треугольника, образованного биссектрисой и одной из осей. Достоинства и недостатки индекса Индекс Джини позволяет обобщенно оценить, насколько доходы распределены неравномерно. Из обобщенности метода вытекают как его достоинства, так и недостатки.

Так, например, индекс: легко рассчитывается при наличии небольшого количества статистической информации; предоставляет обобщенную, не персонифицированную информацию; позволяет сравнивать страны независимо от масштаба; универсален. Индекс Джини получил широкое признание как универсальный метод оценки неравенства распределения доходов в экономике, индекс рассчитывают многие страны и международные организации для оценки неравенства. Ниже приведена карта мира с распределением стран по индексу неравенства.

Расчетом данного показателя занимаются статистические ведомства и международные аналитические организации.

Значения и трактование коэффициента Джини Коэффициент Джини может иметь значение от 0 абсолютно равномерное распределение доходов до 1 абсолютно неравномерное распределение доходов. Чем выше значение индекса Джини — тем выше уровень социального неравенства в государстве. Коэффициент Джини показателен не только в абсолютном значении, но и в динамике: если он растет — уровень социального неравенства растет, если падает — соответственно, падает.

Можно также встретить его другие названия, например, индекс Джини, индекс справедливости, индекс социального неравенства. Изначально данная модель оценки финансового неравенства между слоями населения была разработана и предложена итальянским статистиком и демографом Коррадо Джини в 1912 году в работе под названием «Вариативность и изменчивость признака» известна также как «Изменчивость и непостоянство» , в честь которого впоследствии и была названа. Данный коэффициент показывает отклонение фактического распределения доходов между разными социальными группами от абсолютно равного. Для его расчета, как правило, используется уровень годового дохода граждан, но иногда могут применяться дополнительные параметры например, сбережения, дорогостоящие активы, недвижимость и т.

Коэффициент Джини: все ли равны?

Дело не в сознательном занижении инфляции, попытках «не увидеть» реальный рост цен или понизить показатели коэффициента Джини. Дело в большей степени состоит в проблемной выборке для статистической оценки. Так, например, индекс прожиточного минимума высчитывает Минтруд, который не учитывает полное изменение стоимости услуг по всей стране, что на выходе дает более красивую картину по прожиточному минимуму, а значит, население кажется менее бедным, чем есть на самом деле. В обзоре ВШЭ сказано, что Росстат тоже не безгрешен. Он определяет инфляцию и прожиточный минимум на основе цен в городах и не учитывает стоимость товаров в несетевых магазинах в сельской местности. То же касается и услуг.

Десятка богатых к десятке бедных Для определения неравенства используется еще так называемый децильный коэффициент. Этот показатель в России менялся за последнее десятилетие примерно в общей парадигме коэффициента Джини и тоже наглядно показывал разницу в доходах бедных и богатых. По данным Росстата, за последние десять лет наиболее низким децильный коэффициент оказался в 2017 году 15,3 , а самым высоким — в 2008-2010 годах 16,6. По другим оценкам, в истории современной России он в реальности мог достигать и 17. Нормально это или нет?

В предвоенной царской России начала XX века, например, по расчетам профессора факультета социологии Санкт-Петербургского государственного университета Бориса Миронова, децильный коэффициент равнялся всего лишь 6,5. В других странах коэффициент сильно разнится, причем далеко не всегда это коррелирует с благополучием страны. Так, в 2015 году в Южной Корее он составлял 7,8, что считается очень хорошим показателем. Сообразно общей картине различается и коэффициент Джини по странам. В США в 2000-х и 2010-х годах показатель доходил до 0,450, а вот в Великобритании был на уровне 0,360, в Германии — 0,280.

Разница очень наглядная.

Это индекс, который на самом деле пытается объяснить распространение неопределенности, а оценка риска — это на самом деле неопределенность, которую мы пытаемся уменьшить. Когда мы проверяем результаты моделей оценки риска, мы стремимся к как можно более высокому индексу Джини, то есть неравенству, которое будет максимально отражать предсказание только политики высокого риска. В примере мы построили две модели оценки риска страховых полисов в данном случае транспортных средств и оценили риск группы полисов.

Прогноз каждой модели — это значение утверждения каждой политики. После выполнения прогноза мы классифицировали уровень риска каждой политики. Каждая точка на оси X символизирует уровень риска полиса, а каждая точка на оси Y — сумму денег, заявленную группой в реальных деньгах. Группа 10 — это группа, которая спрогнозировала наиболее рискованные полисы с точки зрения фактических требований.

Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области.

На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169.

Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие. Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом. Создадим искусственную бизнес-задачу из сферы free2play игр. У нас есть база данных пользователей когда-то игравших в нашу игру и по каким-то причинам отвалившихся.

Мы хотим их вернуть в наш игровой проект, для каждого пользователя у нас есть некое признаковое пространство время в проекте, сколько он потратил, до какого уровня дошел и т. Оцениваем модель коэффициентом Джини и строим Lift Curve: Предположим, что в рамках маркетинговой кампании мы тем или иным способом устанавливаем контакт с пользователем email, соцсети , цена контакта с одним пользователем — 2 рубля. Мы знаем, что Lifetime Value составляет 5 рублей.

Это показано на графике как «линия равенства» Но среди населения, представленного на нашей диаграмме, доходы распределяются неравномерно. Площадь A, как и коэффициент Джини, будет равна 0. Если один человек получает все доходы, а остальные не имеют никакого, «кривая Лоренца» совпадает с осью X — общие доходы будут сконцентрированы в конце графика. Площадь B будет равна нулю, а коэффициент Джини — 1 Сравнение показателей: Рассказывает ли показатель Джини ту же историю, что и другие показатели неравенства? Показатели неравенства пытаются обобщить информацию о том, насколько распределение неравномерно — точно так же, как стандартное отклонение. В таких суммарных показателях заложены суждения о том, что именно должно иметь наибольшее значение при измерении неравенства Для примера сравним два выдуманных общества. В первом богатые люди намного богаче тех, кто находится в середине распределения, но доходы более бедных лишь немного ниже тех, что получают в середине.

Во втором — обратная ситуация: доходы богатых лишь немного выше доходов средних, но бедные намного беднее В каком обществе выше неравенство? Ответ будет зависеть от того, какие разрывы в разных частях распределения считать вносящими наибольший вклад в уровень неравенства.

Коэффициент Джини. Формула. Что показывает

Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру. Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают.

Информация

  • Коэффициент Джини: все ли равны?
  • Социальная поддержка сократила уровень неравенства в России
  • Рекомендуем
  • Машинное обучение
  • Что такое коэффициент / индекс Джини?
  • Коэффициент джини в России

Похожие новости:

Оцените статью
Добавить комментарий