Что обозначают в математике буквы S;V;t. более месяца назад. Буква V является одной из наиболее употребительных букв в математике и имеет много различных значений и применений. Математические обозначения символы. Что обозначает в математике. стрелка обозначает направление от А к В, Математические знаки. В математике принято обозначать переменное число не пустым окошком, а буквой.
Для чего буквы в алгебре?
область определения f, а область значений f - есть некоторое. b – буква, которой принято обозначать второй коэффициент квадратного уравнения. То есть означает куб. Скорость в математике обозначается буквой. Ниже приведён список наиболее часто встречающихся математических обозначений, соответствующие команды в TeXе, объяснения и примеры использования.
Остались вопросы?
Сила, действующая на тело, не совершает работу, если сила перпендикулярна перемещению тела. Сила тяжести совершает положительную работу при движении вертикально вверх. Сила трения всегда совершает положительную работу. Почему сила реакции опоры не совершает работу? Таким образом, если под действием силы 1 Н тело перемещается на 1 м, то сила совершает работу 1 Дж. Работа силы, перпендикулярной перемещению, по определению считается равной нулю. Так, в данном случае сила тяжести и сила реакции опоры не совершают работы. Когда сила действующая на тело совершает положительную работу? Если перемещение совпадает с направлением действия силы, то сила помогает движению. Это правило действует и в том случае, если угол между вектором перемещения и силой меньше 900.
В названных случаях совершенную работу считают положительной. Когда сила действующая на тело совершает работу?
Происходит этот символ от стилизованной первой буквы того же слова radix. Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт 1637 для иной цели вместо скобок , и эта черта вскоре слилась со знаком корня. Кубический корень в XVI веке обозначался следующим образом: Rx.
Radix universalis cubica. Привычное нам обозначение корня произвольной степени начал использовать Альбер Жирар 1629. Закрепился этот формат благодаря Исааку Ньютону и Готфриду Лейбницу. Логарифм, десятичный логарифм, натуральный логарифм. Кеплер 1624 , Б.
Кавальери 1632 , А. Принсхейм 1893. Логарифм у Дж. Непера — вспомогательное число для измерения отношения двух чисел. Современное определение логарифма впервые дано английским математиком Уильямом Гардинером 1742.
Обозначается logab. Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Термин «натуральный логарифм» ввели Пьетро Менголи 1659 и Николас Меркатор 1668 , хотя лондонский учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов. До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log, то над ним.
В конечном счёте математики пришли к выводу, что наиболее удобное место для основания — ниже строки, после символа log. Знак логарифма — результат сокращения слова «логарифм» — встречается в различных видах почти одновременно с появлением первых таблиц логарифмов, например Log — у И. Кеплера 1624 и Г. Бригса 1631 , log — у Б. Кавальери 1632.
Обозначение ln для натурального логарифма ввёл немецкий математик Альфред Прингсхейм 1893. Синус, косинус, тангенс, котангенс. Оутред сер. XVII века , И. Эйлер 1748, 1753.
В других странах употребляются названия этих функций tan, cot предложенные Альбером Жираром ещё ранее, в начале XVII века. В современную форму теорию тригонометрических функций привёл Леонард Эйлер 1748, 1753 , ему же мы обязаны и закреплением настоящей символики. Термин «тригонометрические функции» введён немецким математиком и физиком Георгом Симоном Клюгелем в 1770 году. Линия синуса у индийских математиков первоначально называлась «арха-джива» «полутетива», то есть половина хорды , затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба».
Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение. Термин «тангенс» от лат. Шерфер 1772 , Ж. Лагранж 1772.
Обратные тригонометрические функции — математические функции, которые являются обратными к тригонометрическим функциям. Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк» от лат. К обратным тригонометрическим функциям обычно относят шесть функций: арксинус arcsin , арккосинус arccos , арктангенс arctg , арккотангенс arcctg , арксеканс arcsec и арккосеканс arccosec. Впервые специальные символы для обратных тригонометрических функций использовал Даниил Бернулли 1729, 1736. Манера обозначать обратные тригонометрических функции с помощью приставки arc от лат.
Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Гиперболический синус, гиперболический косинус. Риккати 1757. Первое появление гиперболических функций историки обнаружили в трудах английского математика Абрахама де Муавра 1707, 1722. Современное определение и обстоятельное их исследование выполнил итальянец Винченцо Риккати в 1757 году в работе «Opusculorum», он же предложил их обозначения: sh, ch.
Риккати исходил из рассмотрения единичной гиперболы. Независимое открытие и дальнейшее исследование свойств гиперболических функций было проведено немецким математиком, физиком и философом Иоганном Ламбертом 1768 , который установил широкий параллелизм формул обычной и гиперболической тригонометрии. Лобачевский впоследствии использовал этот параллелизм, пытаясь доказать непротиворечивость неевклидовой геометрии, в которой обычная тригонометрия заменяется на гиперболическую. Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе. По аналогии с тригонометрическими функциями определены гиперболические тангенс и котангенс как отношения гиперболических синуса и косинуса, косинуса и синуса, соответственно.
Лейбниц 1675, в печати 1684. Главная, линейная часть приращения функции. Лейбниц 1675, в печати 1684 для «бесконечно малой разности» использовал обозначение d — первую букву слова «differential», образованого им же от «differentia». Неопределённый интеграл. Лейбниц 1675, в печати 1686.
Слово «интеграл» впервые в печати употребил Якоб Бернулли 1690. Возможно, термин образован от латинского integer — целый. По другому предположению, основой послужило латинское слово integro — приводить в прежнее состояние, восстанавливать. Впервые он был использован немецким математиком основателем дифференциального и интегрального исчислений Готфридом Лейбницем в конце XVII века. Другой из основателей дифференциального и интегрального исчислений Исаак Ньютон в своих работах не предложил альтернативной символики интеграла, хотя пробовал различные варианты: вертикальную черту над функцией или символ квадрата, который стоит перед функцией или окаймляет её.
Определённый интеграл. Фурье 1819—1822.
В категории Математика вы также найдете ответы на похожие вопросы по интересующей теме, с помощью автоматического «умного» поиска. Если после ознакомления со всеми вариантами ответа у вас остались сомнения, или полученная информация не полностью освещает тематику, создайте свой вопрос с помощью кнопки, которая находится вверху страницы, или обсудите вопрос с посетителями этой страницы. Последние ответы Bashirovaanna 27 апр. Bnxjut 27 апр. Svetabak87 26 апр. Daniiplq 26 апр.
Общепринятое обозначение. Не всегда разрешается к использованию в формулах, лучше вместо нее использовать точку. Применяется "крестик" и в случае переноса формул по математике на другую строку. Деление в математических формулах Знак ":" используется при составлении учебников и методической литературы для школьной программы по арифметике. Возведение в степень ху - первое обозначение, которое и сегодня является наиболее популярным. Его можно использовать как при составлении выражений на бумаге, так и в современных компьютерных редакторах. Он используется для маркировки степени числа в компьютерных программах, которые не поддерживают первый формат.
что значит v в математике
Так как вы нашли эту публикацию полезной... Подписывайтесь на нас в соцсетях! Имя Узнать стоимость учебной работы online! Тип работы.
Первые математические знаки для произвольных величин появились в 5—4 вв. Величины площади , объёмы , углы изображались в виде отрезков , а произведение двух однородных величин — в виде прямоугольника , построенного из отрезков, соответствующих этим величинам. В «Началах» Евклида величины обозначались двумя буквами, соответствующими началу и концу отрезка, а иногда и одной буквой. У Архимеда последний способ стал обычным.
Такие обозначения содержали в себе возможности развития буквенного исчисления, однако в античной математике буквенное исчисление не было создано, только в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы появились начала буквенного изображения величин и операций над ними.
Обычно скорость обозначается как V с надстрочным стрелкой. Это только некоторые из общепринятых значений, связанных с буквой V в математике. В зависимости от контекста и конкретной области математики, V может иметь и другие значения и интерпретации. Геометрическое представление Треугольник V может быть равнобедренным или равносторонним, в зависимости от своих размеров и углов. База треугольника может быть направлена как вверх, так и вниз, определяя его направление. Буква V также может быть представлена в виде ворот или вилки, что символизирует ветвление или разделение. Это отображает возможность выбора или раздвоения пути, как в теории вероятности или принятии решений. Геометрическое представление буквы V может варьироваться в различных областях математики, физики и инженерии, в зависимости от контекста и конкретного применения.
Вероятность Probability Вероятность - это мера, описывающая степень уверенности в возникновении определенного события. В математической терминологии вероятность обычно обозначается буквой P. Однако, в некоторых случаях, особенно в статистике и теории вероятностей, буква V может использоваться для обозначения вероятности. Это может быть случайным выбором и зависит от контекста. Матрица Matrix Матрица - это прямоугольный массив чисел или символов, расположенных в виде прямоугольной таблицы. Буква V может использоваться для обозначения матрицы в математике. Матрица может иметь различные размерности, такие как 2x2, 3x3 и т.
V что обозначает эта буква в математике
Значение ЗНАКИ МАТЕМАТИЧЕСКИЕ в математической энциклопедии. стрелка обозначает направление от А к В, Математические знаки. Ниже приведён список наиболее часто встречающихся математических обозначений, соответствующие команды в TeXе, объяснения и примеры использования. Буква “В” ассоциируется с понятием “высоковольтный” и обозначает, что материал обладает достаточным уровнем электроизоляции для работы с высокими напряжениями. Что обозначают в математике буквы S;V;t. 39 просмотров.
V что обозначает в математике?
«Виновником» появления букв в математике можно считать Диофанта Александрийского. Значение и использование в перевернутой в математике В математике перевернутый знак v обозначает переменную или неизвестное число. В системе греческой алфавитной записи чисел имеет числовое значение 2. Происходит от финикийской буквы — бет, что в переводе означает «дом». Что означает в в математике в задачах Для решения математических задач важно понимать, что означают математические обозначения.
Что обозначает буква V в математике
Значение буквы "в" в математике: расшифровка и применение | Таким образом, буква «в» в цифрах означает знак умножения и является важным элементом в математике. |
что значит v в математике | Использование латинских и греческих букв в качестве символов для обозначения математических объектов в этой статье не описано. |
Что означает буква V в математике
В таком случае буквы обычно называют коэффициентами и часто в алгебре обозначают буквами a, b, c. в математике что обозначает? объем, а в м, по СИ - Скорость. это обозначение объема тела или фигуры. «Виновником» появления букв в математике можно считать Диофанта Александрийского.
Числовые и буквенные выражения. Формулы
Ниже приведён список наиболее часто встречающихся математических обозначений, соответствующие команды в TeXе, объяснения и примеры использования. Буквы используются для обозначения других типов математических объектов. 9 классы, Математика. В этом видео объясняется, для чего используются буквы в математике.
Математика. 2 класс
Математические знаки | Когда математикам нужно сложить несколько чисел подряд, они иногда пишут так: Σ (читается «сигма») — это знак алгебраической суммы, который означает, что нам нужно сложить все числа от нижнего до верхнего, а перед этим сделать с ними то, что написано после знака Σ. |
Что обозначает буква V в математике? Разбираем смысл и значения | Таким образом, буква «в» в цифрах означает знак умножения и является важным элементом в математике. |
Обозначение в вероятности и статистике | Он первым понял огромное значение математических знаков и старался найти наиболее удобные символы для записи понятий математики. |
Что обозначают в математике буквы S;V;t. | Буквы используются для обозначения других типов математических объектов. |
Буквенные выражения. Определение. Значение буквенного выражения.
Существуют различные способы оформления решения текстовых задач. Чаще всего используют такие формы записи решения задач: 1. По действиям с пояснениями. При решении составных задач важно выделить главное, сделать краткую запись, разделить задачу на простые, составить план решения. Задача 1. В первый день собрали 12 кг клубники, а во второй день на 2 кг больше.
Сколько килограммов клубники собрали за эти два дня? Эта информация доступна зарегистрированным пользователям Решение: В I день - 12 кг клубники. Во II день - на 2 кг больше, чем в I день. Общее количество клубники в I и во II день-? Изобразим к задаче рисунок в виде схемы.
Эта информация доступна зарегистрированным пользователям Чтобы определить, сколько собрали клубники за два дня, необходимо знать, какое количество клубники было собрано в первый и во второй день. Из условия задачи известно количество клубники, собранной в первый день. Неизвестно количество клубники, собранной во второй день. Когда будет известно сколько собрали клубники во второй день, можно узнать какое количество ягод собрали за два дня. Задачу решаем в два действия каждое действие поясним.
Выясним сколько килограммов ягод собрали во второй день. Известно, что в первый день собрали 12 кг клубники.
Кроме основных математических знаков, существуют также другие символы, которые имеют специфическую роль в математике. Он используется для обозначения равенства двух выражений или чисел.
Также в математике используются знаки для обозначения различных арифметических операций. Эти знаки позволяют нам записывать и решать разнообразные математические задачи и выражения. Знаки в математике также используются для обозначения отношений между числами. Кроме того, в математике используются знаки для обозначения специальных значений и констант.
С помощью диаграмм Эйлера соотношение между множествами N, Z и Q будет изображено так: Название "рациональное число" связано с тем, что одним из значений латинского слова ratio является "отношение", а каждое рациональное число можно представить в виде отношения , где - целое число , а - натуральное. Поделив числитель данной дроби на ее знаменатель , можно представить данное рациональное число в виде конечной десятичной дроби или бесконечной периодической десятичной дроби при этом повторяющуюся группу чисел называют периодом дроби и записывают в круглых скобках. Мы помним, что справа от конечной десятичной дроби мы можем записывать сколько угодно нулей, а значит, любую десятичную дробь мы можем записать в виде периодической десятичной дроби с периодом 0. Вывод: Каждое рациональное число можно представить в виде бесконечной периодической дроби. Каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.
Эти люди в своих устремлениях были близки к Лейбницу. Они хотели разработать нотацию, которая представляла бы не только математические формулы, но и математические выводы и доказательства. В середине 19 века Буль показал, что основы логики высказываний можно представлять в терминах математики. Однако Фреге и его единомышленники хотели пойти дальше и представить так как логику высказываний, так и любые математические суждения в соответствующих математических терминах и обозначениях. Фреге решил, что для решения этой задачи потребуются графические обозначения. Вот фрагмент его так называемой "концептуальной нотации". К сожалению, в ней трудно разобраться. И в действительности, если посмотреть на историю обозначений в целом, то часто можно встретить попытки изобретения графических обозначений, которые оказывались трудными для понимания. Но в любом случае, обозначения Фреге уж точно не стали популярными. Потом был Пеано, самый главный энтузиаст в области математической нотации. Он делал ставку на линейное представление обозначений. Вот пример: Вообще говоря, в 80-х годах 19 века Пеано разработал то, что очень близко к обозначениям, которые используются в большинстве современных теоретико-множественных концепций. Однако, как и Лейбниц, Пеано не желал останавливаться лишь на универсальной нотации для математики. Он хотел разработать универсальный язык для всего. Эта идея реализовалась у него в то, что он назвал интерлингва — язык на основе упрощённой латыни. Затем он написал нечто вроде краткого изложения математики, назвав это Formulario Mathematico, которое было основано на его обозначениях для формул, и труд этот был написал на этой производной от латыни — на интерлингве. Интерлингва, подобно эсперанто, который появился примерно в это же время, так и не получил широкого распространения. Однако этого нельзя сказать об обозначениях Пеано. Сперва о них никто ничего толком и не слышал. Но затем Уайтхед и Рассел написали свой труд Principia Mathematica, в котором использовались обозначения Пеано. Думаю, Уайтхед и Рассел выиграли бы приз в номинации "самая насыщенная математическими обозначениями работа, которая когда-либо была сделана без помощи вычислительных устройств". Вот пример типичной страницы из Principia Mathematica. У них были все мыслимые виды обозначений. Частая история, когда авторы впереди своих издателей: Рассел сам разрабатывал шрифты для многих используемых им обозначений. И, разумеется, тогда речь шла не о шрифтах TrueType или о Type 1, а о самых настоящих кусках свинца. Я о том, что Рассела можно было встретить с тележкой, полной свинцовых оттисков, катящему её в издательство Кембриджского университета для обеспечения корректной вёрстки его книг. Но, несмотря на все эти усилия, результаты были довольно гротескными и малопонятными. Я думаю, это довольно ясно, что Рассел и Уайтхед зашли слишком далеко со своими обозначениями. И хотя область математической логики немного прояснилась в результате деятельности Рассела и Уайтхеда, она всё ещё остаётся наименее стандартизированной и содержащей самую сложную нотацию. Но что насчёт более распространённых составляющих математики? Какое-то время в начале 20 века то, что было сделано в математической логике, ещё не произвело никакого эффекта. Однако ситуация резко начала меняться с движением Бурбаки, которое начало разрастаться во Франции в примерное сороковые года. Бурбаки придавали особое значение гораздо более абстрактному, логико-ориентированному подходу к математике. В частности, они акцентировали внимание на использовании обозначений там, где это только возможно, любым способом сводя использование потенциально неточного текста к минимуму. Где-то с сороковых работы в области чистой математики претерпели серьёзные изменения, что можно заметить в соответствующих журналах, в работах международного математического сообщества и прочих источниках подобного рода. Изменения заключались в переходе от работ, полных текста и лишь с основными алгебраическими и вычислительными выкладками к работам, насыщенными обозначениями. Конечно, эта тенденция коснулась не всех областей математики. Это в некотором роде то, чем занимаются в лингвистике обычных естественных языков. По устаревшим используемым математическим обозначениям можно заметить, как различные области, их использующие, отстают от основной магистрали математического развития. Так, к примеру, можно сказать, что физика осталась где-то в конце 19 века, используя уже устаревшую математическую нотацию тех времён. Есть один момент, который постоянно проявляется в этой области — нотация, как и обычные языки, сильно разделяет людей. Я имею в виду, что между теми, кто понимает конкретные обозначения, и теми, кто не понимает, имеется большой барьер. Это кажется довольно мистическим, напоминая ситуацию с алхимиками и оккультистами — математическая нотация полна знаков и символов, которые люди в обычной жизни не используют, и большинство людей их не понимают. На самом деле, довольно любопытно, что с недавних пор в рекламе появился тренд на использование математических обозначений. Думаю, по какой-то причине математическая нотация стала чем-то вроде шика. Вот один актуальный пример рекламы. Отношение к математическим обозначениям, к примеру, в школьном образовании, часто напоминает мне отношение к символам секретных сообществ и тому подобному. Что ж, это был краткий конспект некоторых наиболее важных эпизодов истории математической нотации. В ходе исторических процессов некоторые обозначения перестали использоваться. Помимо некоторых областей, таких как математическая логика, она стала весьма стандартизированной. Разница в используемых разными людьми обозначениях минимальна. Как и в ситуации с любым обычным языком, математические записи практически всегда выглядят одинаково. Компьютеры Вот вопрос: можно ли сделать так, чтобы компьютеры понимали эти обозначения? Это зависит от того, насколько они систематизированы и как много смысла можно извлечь из некоторого заданного фрагмента математической записи. Ну, надеюсь, мне удалось донести мысль о том, что нотация развивалась в результате непродуманных случайных исторических процессов. Было несколько людей, таких как Лейбниц и Пеано, которые пытались подойти к этому вопросу более системно. Но в основном обозначения появлялись по ходу решения каких-то конкретных задач — подобно тому, как это происходит в обычных разговорных языках. И одна из вещей, которая меня удивила, заключается в том, что по сути никогда не проводилось интроспективного изучения структуры математической нотации. Грамматика обычных разговорных языков развивалась веками. Без сомнения, многие римские и греческие философы и ораторы уделяли ей много внимания. И, по сути, уже примерно в 500 года до н. Панини удивительно подробно и ясно расписал грамматику для санскрита. Фактически, грамматика Панини была удивительно похожа по структуре на спецификацию правил создания компьютерных языков в форме Бэкуса-Наура , которая используется в настоящее время. И были грамматики не только для языков — в последнее столетие появилось бесконечное количество научных работ по правильному использованию языка и тому подобному. Но, несмотря на всю эту активность в отношении обычных языков, по сути, абсолютно ничего не было сделано для языка математики и математической нотации. Это действительно довольно странно. Были даже математики, которые работали над грамматиками обычных языков. Ранним примером являлся Джон Уоллис, который придумал формулу произведения Уоллиса для числа пи, и вот он писал работы по грамматике английского языка в 1658 году. Уоллис был тем самым человеком, который начал всю эту суматоху с правильным использованием "will" или "shall". В начале 20 века в математической логике говорили о разных слоях правильно сформированного математического выражения: переменные внутри функций внутри предикатов внутри функций внутри соединительных слов внутри кванторов. Но не о том, что же это всё значило для обозначений выражений. Некоторая определённость появилась в 50-е годы 20 века, когда Хомский и Бакус, независимо разработали идею контекстно-свободных языков. Идея пришла походу работы над правилами подстановки в математической логике, в основном благодаря Эмилю Посту в 20-х годах 20 века. Но, любопытно, что и у Хомского, и у Бакуса возникла одна и та же идея именно в 1950-е. И он заметил, что алгебраические выражения могут быть представлены в контекстно-свободной грамматике. Хомский применил эту идею к обычному человеческому языку. И он отмечал, что с некоторой степенью точности обычные человеческие языки так же могут быть представлены контекстно-свободными грамматиками. Конечно, лингвисты включая Хомского, потратили годы на демонстрацию того, насколько всё же эта идея не соответствует действительности. Но вещь, которую я всегда отмечал, а с научной точки зрения считал самой важной, состоит в том, что в первом приближении это всё-таки истина — то, что обычные естественные языки контекстно-свободны. Однако никто из них не рассматривал вопрос разработки более продвинутой математики, чем простой алгебраический язык. И, насколько я могу судить, практически никто с тех времён не занимался этим вопросом. Но, если вы хотите посмотреть, сможете ли вы интерпретировать некоторые математические обозначения, вы должны знать, грамматику какого типа они используют. Сейчас я должен сказать вам, что считал математическую нотацию чем-то слишком случайным для того, чтобы её мог корректно интерпретировать компьютер. В начале девяностых мы горели идеей предоставить возможность Mathematica работать с математической нотацией. И по ходу реализации этой идеи нам пришлось разобраться с тем, что происходит с математической нотацией. Нил Сойффер потратил множество лет, работая над редактированием и интерпретацией математической нотации, и когда он присоединился к нам в 1991, он пытаться убедить меня, что с математической нотацией вполне можно работать — как с вводом, так и с выводом. Вопрос заключался во вводе данных. На самом деле, мы уже кое-что выяснили для себя касательно вывода. Мы поняли, что хотя бы на некотором уровне многие математические обозначения могут быть представлены в некоторой контекстно-свободной форме. Поскольку многие знают подобный принцип из, скажем, TEX, то можно было бы всё настроить через работу со вложенными структурами. Но что насчёт входных данных? Один из самых важных моментов заключался в том, с чем всегда сталкиваются при парсинге: если у вас есть строка текста с операторами и операндами, то как задать, что и с чем группируется? Итак, допустим, у вас есть подобное математическое выражение. Чтобы это понять, нужно знать приоритеты операторов — какие действуют сильнее, а какие слабее в отношении операндов. Я подозревал, что для этого нет какого-то серьёзного обоснования ни в каких статьях, посвящённых математике. И я решил исследовать это. Я прошёлся по самой разнообразной математической литературе, показывал разным людям какие-то случайные фрагменты математической нотации и спрашивал у них, как бы они их интерпретировали. И я обнаружил весьма любопытную вещь: была удивительная слаженность мнений людей в определении приоритетов операторов. Таким образом, можно утверждать: имеется определённая последовательность приоритетов математических операторов. Можно с некоторой уверенностью сказать, что люди представляют именно эту последовательность приоритетов, когда смотрят на фрагменты математической нотации. Обнаружив этот факт, я стал значительно более оптимистично оценивать возможность интерпретации вводимых математических обозначений. Один из способов, с помощью которого всегда можно это реализовать — использовать шаблоны. То есть достаточно просто иметь шаблон для интеграла и заполнять ячейки подынтегрального выражения, переменной и так далее. И когда шаблон вставляется в документ, то всё выглядит как надо, однако всё ещё содержится информация о том, что это за шаблон, и программа понимает, как это интерпретировать. И многие программы действительно так и работают. Но в целом это крайне неудобно. Потому что если вы попытаетесь быстро вводить данные или редактировать, вы будете обнаруживать, что компьютер вам бикает beeping и не даёт делать те вещи, которые, очевидно, должны быть вам доступны для реализации. Дать людям возможность ввода в свободной форме — значительно более сложная задача. Но это то, что мы хотим реализовать. Итак, что это влечёт? Прежде всего, математический синтаксис должен быть тщательно продуманным и однозначным. Очевидно, получить подобный синтаксис можно, если использовать обычный язык программирования с основанным на строках синтаксисом. Но тогда вы не получите знакомую математическую нотацию. Вот ключевая проблема: традиционная математическая нотация содержит неоднозначности. По крайней мере, если вы захотите представить её в достаточно общем виде. Возьмём, к примеру, "i". Что это — Sqrt[-1] или переменная "i"? В обычном текстовом InputForm в Mathematica все подобные неоднозначности решены простым путём: все встроенные объекты Mathematica начинаются с заглавной буквы. Но заглавная "I" не очень то и похожа на то, чем обозначается Sqrt[-1] в математических текстах. И что с этим делать? И вот ключевая идея: можно сделать другой символ, который вроде тоже прописная «i», однако это будет не обычная прописная «i», а квадратный корень из -1. Можно было бы подумать: Ну, а почему бы просто не использовать две «i», которые бы выглядели одинаково, — прям как в математических текстах — однако из них будет особой? Ну, это бы точно сбивало с толку. Вы должны будете знать, какую именно «i» вы печатаете, а если вы её куда-то передвинете или сделаете что-то подобное, то получится неразбериха. Итак, значит, должно быть два "i". Как должна выглядеть особая версия этого символа? У нас была идея — использовать двойное начертание для символа. Мы перепробовали самые разные графические представления. Но идея с двойным начертанием оказалась лучшей. В некотором роде она отвечает традиции в математике обозначать специфичные объекты двойным начертанием. Так, к примеру, прописная R могла бы быть переменной в математических записях. А вот R с двойным начертанием — уже специфический объект, которым обозначают множество действительных чисел. Таким образом, "i" с двойным начертанием есть специфичный объект, который мы называем ImaginaryI. Вот как это работает: Идея с двойным начертанием решает множество проблем. В том числе и самую большую — интегралы. Допустим, вы пытаетесь разработать синтаксис для интегралов. Один из ключевых вопросов — что может означать "d" в интеграле? Что, если это параметр в подынтегральном выражении? Или переменная? Получается ужасная путаница. Всё становится очень просто, если использовать DifferentialD или "d" с двойным начертанием. И получается хорошо определённый синтаксис. Вот как это работает: Оказывается, что требуется всего лишь несколько маленьких изменений в основании математического обозначения, чтобы сделать его однозначным. Это удивительно. И весьма здорово. Потому что вы можете просто ввести что-то, состоящее из математических обозначений, в свободной форме, и оно будет прекрасно понято системой. И это то, что мы реализовали в Mathematica 3. Конечно, чтобы всё работало так, как надо, нужно разобраться с некоторыми нюансами. К примеру, иметь возможность вводить что бы то ни было эффективным и легко запоминающимся путём. Мы долго думали над этим. И мы придумали несколько хороших и общих схем для реализации подобного. Одна из них — ввод таких вещей, как степени, в качестве верхних индексов. Наличие ясного набора принципов подобных этому важно для того, чтобы заставить всё вместе работать на практике. И оно работает. Вот как мог бы выглядеть ввод довольно сложного выражения: Но мы можем брать фрагменты из этого результата и работать с ними. И смысл в том, что это выражение полностью понятно для Mathematica, то есть оно может быть вычислено. Из этого следует, что результаты выполнения Out — объекты той же природы, что и входные данные In , то есть их можно редактировать, использовать их части по отдельности, использовать их фрагменты в качестве входных данных и так далее. Чтобы заставить всё это работать, нам пришлось обобщить обычные языки программирования и кое-что проанализировать. Прежде была внедрена возможность работать с целым «зоопарком» специальных символов в качестве операторов. Однако, вероятно, более важно то, что мы внедрили поддержку двумерных структур. Так, помимо префиксных операторов, имеется поддержка оверфиксных операторов и прочего. Если вы посмотрите на это выражение, вы можете сказать, что оно не совсем похоже на традиционную математическую нотацию. Но оно очень близко. И оно несомненно содержит все особенности структуры и форм записи обычной математической нотации. И важная вещь заключается в том, что ни у кого, владеющим обычной математической нотацией, не возникнет трудностей в интерпретации этого выражения. Конечно, есть некоторые косметические отличия от того, что можно было бы увидеть в обычном учебнике по математике. К примеру, как записываются тригонометрические функции, ну и тому подобное. Однако я готов поспорить, что StandardForm в Mathematica лучше и яснее для представления этого выражения. И в книге, которую я писал много лет о научном проекте, которым я занимался, для представления чего бы то ни было я использовал только StandardForm. Однако если нужно полное соответствие с обычными учебниками, то понадобится уже что-то другое. Любое выражение я всегда могу сконвертировать в TraditionalForm. И в действительности TraditionalForm всегда содержит достаточно информации, чтобы быть однозначно сконвертированным обратно в StandardForm.
буквы Vn - в математике что обозначает?
На, это значит плюс или минус, а в, это значит умножить или разделить | Статья находится на проверке у методистов Skysmart. |
Что обозначает буква в в задаче | Переменная – это значение буквы в буквенном выражении. |
Что обозначает этот знак в математике в | Вы помните, что физические величины обозначают буквами, латинскими или греческими. |