Станок для сверления стволов пушек.
Что такое гаубица и почему она до сих пор на вооружении. Объясняем простыми словами
станок, на котором закрепляется ствол артиллерийского орудия. Предназначен для придания стволу вертикальных и горизонтальных углов (с помощью механизмов наводки), поглощения энергии отдачи прн выстреле (противооткатными устройствами). Позволяет быстро направить орудие в разных плоскостях, так как счет идет на секунды", – рассказал Евгений Лыжин, контролер. Главная. Новости. На марше станины складываются и закрепляются под стволом, что делает орудие довольно компактным. Но недостаточно только закрепить ствол на станке, ему необходимо обеспечить возможность перемещения в вертикальной и горизонтальной плоскостях. лучший источник, который предоставляет вам WOW Guru Станок, на котором закрепляется ствол артиллерийского орудия ответы и некоторую дополнительную информацию, такую как пошаговые руководства и советы.
Станок, на котором закрепляется ствол артиллерийского орудия WOW Guru Ответы
Запатентованный станок предназначен для пулемета Калашникова модернизированного (ПКМ), он позволяет вести огонь и поражать как наземные, так и воздушные цели. Для повышения качества за счет получения ствола без весового прогиба в пушке заготовку ствола устанавливают в горизонтально-расточном станке, снабженном вертлюжной бабкой с двумя четырехкулачковыми патронами и кольцевым люнетом, выверяют заготовку. Лафетом называют часть артиллерийского орудия, на которой закрепляется ствол. Механизмы лафета обеспечивают придание стволу требуемого положения в пространстве и передают на грунт возникающие при выстреле усилия. Верхний станок является основанием для качающейся части пушки и представляет собой стальную отливку, закрепленную на цапфах нижнего станка. Ответ на вопрос «Основание артиллерийского орудия, на котором крепится ствол «, 5 (пять) букв: лафет.
Станок на котором закрепляется ствол артиллерийского орудия
Казенник 2а46м. Пушка 2а46м чертеж. Ствол 2а46 Voyager. Гаубицы м-46. Пушка м-46 калибра 130. Пушка м-47. Лафет орудия 1812. Корабельная пушка 1812 года. Лафет пушки 1812 года чертежи. Лафет артиллерийского орудия Бородино.
Лафет пушки Бородино. Пушка Круппа 1870. Артиллерийский музей бронзовые пушки. Царь пушка-мортира. Пищаль Нерчинск 17 век музей артиллерии. Пушка 2а46м устройство. Танковая пушка 2а46м казенник. Пушка 2а82-1м. Танковая пушка 2а46 устройство.
Корабельная мортира. Пушки Петропавловской крепости в Санкт-Петербурге. Оружие Победы артиллерия. Скульптура пушка гаубица Пермь. Короткоствольное артиллерийское орудие. Гаубица Победы. Артиллерийский музей ствольная пушка. Древняя пушка. Пушка Артиллерийская старинная.
Пушка Грабина ЗИС-3. Противотанковая пушка 76мм ЗИС-3. Полевая лёгкая пушка обр 1877. Артиллерия второй половины 19 века. Пушка Круппа 1873. Казнозарядные пушки Ивана Грозного. Выстрел 30 мм пушки 3уор6. Пушка стреляет. Пушка стреляющая ядрами.
Выстрелы из пушек. Скорострельная пушка Барановского 1877 чертежи. Мортира 17 века лафеты. Потешная пушка Петра. Пушки Петра 1. Артиллерия 19 века в России. Исторические пушки Петра 1. Утолщения на стволах пушек. Пушка конец ствола.
Пушка с наконечником. Пушка с изогнутым стволом. Кривой ствол. Пушка с изогнутым дулом. Казнозарядные пушки 19 века. Казнозарядная пушка. Пушка-гаубица д-30. Калибр гаубицы д30. Д30 пушка Россия.
Противотанковая пушка ЗИС-2. Паровой пулемёт конфедератов. Пушки в Кронштадте. Форт пушечный. Артиллерия форта. Мортира артиллерийское орудие. Салютная пушка мортира. Пушка мортирка Корабельная. Царская пушка мортира.
Дело в том, что ещё до появления гаубиц для навесной стрельбы использовались мортиры — из них стреляли таким образом. У мортир в сравнении с гаубицами был более короткий и широкий ствол. Они вышли из использования после Второй мировой войны — другие орудия гаубицы, миномёты, системы залпового огня полностью заменили мортиры. Гаубицы сохранились до наших дней благодаря своей универсальности — они стреляли и гранатами, и ядрами, и картечью, а в мортиры, например, можно было заряжать только большие гранаты или бомбы. Гаубицу трудно спутать с миномётом: он отличается меньшими размерами, а также отсутствием противооткатных устройств и лафета опоры для ствола орудия — их заменяет опорная плита, через которую вся отдача уходит в грунт или самоходное шасси. Кроме того, миномёт стреляет быстрее, а снаряды летят по более крутой траектории. Существуют орудия-гибриды — гаубицы-миномёты и даже пушки-гаубицы-миномёты.
Как, например, 120-миллиметровая 2А51, стреляющая как артиллерийскими минами, так и осколочно-фугасными, кумулятивными, кассетными и термобарическими боеприпасами. В 1757 году русский артиллерист Михаил Данилов вместе с группой других офицеров изобрели орудие «Единорог», которое заняло промежуточное положение между пушками и тогдашними гаубицами. Кроме того, «Единороги» было проще заряжать, чем другие гаубицы, они стреляли в два раза быстрее и дальше. Дальность стрельбы — до 4 км. На вооружение новые орудия поставил граф Пётр Шувалов. От его фамильного герба, на котором был изображён единорог, эта гаубица и получила название. Существовала также «секретная гаубица» Шувалова — у неё был расширяющийся к дулу ствол для лучшего разлёта картечных пуль.
Она даже поучаствовала в Семилетней войне. Но так как это орудие стреляло только картечью а значит, не было универсальным его сняли с вооружения после смерти графа. А «Единороги» с незначительными модификациями держались на службе до середины XIX века. В 60-х годах XIX века произошёл переход от гладкостенных орудий к нарезным с насечками внутри для придания вращения снаряду — это коснулось и гаубиц.
Гидропневматический накатник: 1 - воздушный цилиндр; 2 - рабочий цилиндр; 3 — шток. Тормоз отката веретенного типа для обеспечения переменной длины отката: 1 — цилиндр; 2 — шток; 3 — веретено переменного сечения; 4- втулка с окнами. Верхний станок: а - гнездо под цапфу; б - гнездо для коренного вала; в — отверстие для крепления щитового прикрытия; 1 - щеки; 2 - основание; 3 - штырь; 4 - кронштейн уравновешивающего механизма; 5 - кронштейн прицельного устройства. Пружинный и пневматический уравновешивающий механизм Рис. Траектории полета снаряда: 1 - настильная; 2 и 3 — навесные. Схема работы безоткатного орудия Рис.
Классификация артиллерийских орудий Рис. Общий вид 122мм гаубицы Д-30 в боевом положении Рис.
Древесный материал особого рода. Смирнов 175. Через нем. Lafette с 1691 г. Шульц-Баслер 2, 4 из франц. ЛАФЕТ а, м.
Lafette, шв. Станок, на котором закрепляют артиллерийское орудие. Которыя мортиры с нами, также и пушечные лафеты в оковках, железо зело плохо и непрестанно ломается. ПБР 10 566. Несколько пушек, между коих я узнал и нашу, поставлены были на походные лафеты. Лошади были заменены другими из лафета, раненые убраны. Война и мир. ОЗ 1872 6 1 462.
Сортамент бруса. Аппарат можно делать также из дерева толстого лафета. ТЭ 1939 11 275. Толстый тес, идущий на подоконники, колоды окон и дверей. Тверь сл. Обтесанный брусок для плотничных поделок. Деулино сл. Пожарная установка, установленная на лафете.
В задачу «Геракла» входило погасить вызванной домовой шашкой пожар на тральщике. С помощью четырех лафетов, или «водных пушек», расположенных на спасателе, мы довольно быстро ликвидировали пожар. Неделя 1982 36 11. В сельском хозяйстве. О лафетной жатке. На книжном столе были разложены стреляные гильзы.. Броновый лафет для перьев. Октябрь 2001 5 106.
Станок на колесах, на котором устанавливается артиллерийское орудие. Жать при помощи лафетной жатки. Источник Способ изготовления ствола артиллерийского орудия Патент 2164202 Способ изготовления ствола артиллерийского орудия Изобретение относится к технологии изготовления деталей и узлов оружия, в частности к технологии изготовления орудийных стволов. Для повышения качества за счет получения ствола без весового прогиба в пушке заготовку ствола устанавливают в горизонтально-расточном станке, снабженном вертлюжной бабкой с двумя четырехкулачковыми патронами и кольцевым люнетом, выверяют заготовку, растачивают в ней канал.
«В день можем выпускать по 15—20 снарядов»: работа артиллерийского расчёта на Купянском направлении
В первом случае ось рамы располагается вертикально, а вращение рамы вместе с поршнем происходит в горизонтальной плоскости. Во втором случае ось рамы располагается горизонтально, а вращение поршня вместе с рамой производится в вертикальной плоскости. Мы уже говорили, что затвор предназначен не только для запирания канала ствола, поэтому в конструкцию современного затвора, кроме запирающего устройства, входит еще несколько механизмов. Основным механизмом любого затвора является запирающий механизм. В клиновых затворах запирающий механизм состоит в основном из клина, передвигающегося при помощи кривошипов и рукоятки, укрепленных на одной оси рис.
Ролики кривошипов входят в пазы на клине. При движении рукоятки вперед ролики кривошипов надавливают на грани пазов, заставляя опуститься клин, в результате чего канал ствола открывается. Чтобы закрыть затвор, рукоятку необходимо повернуть назад. В двухтактном поршневом затворе запирающий механизм состоит из поршня рис.
При повороте рукоятки назад шип рукоятки потянет гребенку, которая своими зубьями сцеплена с зубчатым сектором поршня. Поршень будет поворачиваться вокруг своей оси до тех пор, пока нарезные секторы его не расцепятся с нарезными участками поршневого гнезда. В момент полного расцепления выступ на оси рукоятки упрется в грань дугового паза на раме. Дальнейшее движение рукоятки будет связано с движением самой рамы, которая вместе с поршнем повернется вокруг оси рамы и выведет поршень из гнезда.
Закрывание затвора производится движением рукоятки в обратном направлении. В вертикальных затворах для устранения влияния веса клина или поршня при открывании и закрывании затвора применяется уравновешивающий механизм. При открывании затвора рычаг, насаженный на ось рукоятки, сжимает пружину механизма. Сила сжатой пружины уравновешивает вес затвора, поэтому закрывание его производится легко и без особых усилий.
В клиновых затворах сила сжатой пружины превышает вес затвора; в этом случае затвор закрывается автоматически. Для того, чтобы не произошло самопроизвольного открывания затвора, имеется специальное замыкающее устройство, которое входит в запирающий механизм. В клиновом затворе таким устройством является дуговой участок паза и выемка для ролика кривошипа. Клин не может сдвинуться с места до тех пор, пока рукоятка с кривошипами не повернется на некоторый угол и ролик не выйдет на прямолинейный участок паза.
В поршневом затворе запирание производится при помощи зуба ручки. Чтобы открыть затвор, необходимо надавить на ручку вниз, при этом зуб выйдет из зацепления с рамой и рукоятку можно будет повернуть. На рис. Для производства выстрела в затворе имеется стреляющее приспособление.
В клиновых затворах наибольшее распространение получили стреляющие приспособления, состоящие из ударного и спускового механизмов. Ударный механизм состоит из ударника, взвода, боевой пружины и крышки рис. Боевая пружина помещается между перегородкой ударника и крышкой, закрепленной в гнезде ударного механизма. Для производства выстрела ударник необходимо оттянуть назад и тем самым сжать боевую пружину; затем отпустить его.
Под действием разжимающейся боевой пружины ударник резко двинется вперед и ударит своим бойком по капсюлю гильзы. Стреляющее приспособление поршневого затвора помещается внутри патрубка рамы, вокруг которого вращается поршень рис. Главными частями приспособления являются ударник с бойком, взводом и опорной муфтой или гайкой, боевая пружина, трубка ударника и курок с роликом. Как же действует стреляющее приспособление?
Потяните на себя длинное плечо курка. Курок начнет поворачиваться вокруг своей оси и своим зацепом потянет ударник назад. Одновременно короткое плечо курка своим роликом начнет давить на хвост трубки ударника, посылая ее вперед. Боевая пружина, заключенная между опорной муфтой ударника и кольцевым уступом трубки, сжимается.
Но вот взвод ударника срывается с зацепа курка и ударник с муфтой под действием сжатой боевой пружины начинает двигаться вперед; встретив на своем пути уступ поршня, муфта останавливается. Ударник по инерции продвигается дальше, боек ударника выходит за передний срез поршня и разбивает капсюль гильзы. Если поршень не полностью сцепился с витками затворного гнезда, то есть затвор не вполне закрыт, произвести выстрел невозможно. В этом случае трубка ударника своим хвостом упирается в дуговой выступ поршня.
Оттягивание курка для производства выстрела производится при помощи спускового шнура или механизмом спускового стержня. Изредка бывают такие случаи: вы спускаете ударник, а выстрела нет. Через некоторое время совершенно неожиданно раздается выстрел. Что произошло?
Произошел, как говорят артиллеристы, затяжной выстрел. Преждевременное открывание затвора при затяжных выстрелах очень опасно и может привести к ранению номеров орудийного расчета или вывести из строя орудие. Во избежание этого в современных орудиях применяются предохранители инерционного типа на случай затяжных выстрелов. Основной частью такого предохранителя является массивное тело, которое помещается или в затворе, или в казеннике и может перемещаться в своем гнезде вдоль оси ствола.
При закрывании затвора предохранитель перемещается так, что связывает какую-либо часть затвора с казенником. Следовательно, обычным движением открыть затвор уже нельзя. Во время отката или наката вследствие инерции предохранитель освобождает ту часть затвора, которую он связал с казенником во время закрывания, и тогда затвор можно открыть простым движением. Но если выстрела не произошло, то открыть затвор можно только после выключения предохранителя.
Для выбрасывания стреляной гильзы после выстрела у затворов обоих типов имеются специальные выбрасывающие приспособления, действие которых основано на принципе рычага первого рода. Обычно выбрасыватель состоит из одной или двух ветвей, надетых на одну общую ось. Ось служит опорой при действии выбрасывателя. Кроме описанных выше механизмов, у затворов современных орудий имеются откидные лотки, которые служат для направления тяжелых снарядов при заряжании.
Чтобы при заряжании не задеть за выступы и неровности в затворном гнезде головной частью снаряда или ведущим пояском, имеются направляющие планки. Направляющая планка должна обеспечить свободное скольжение снаряда при заряжании; для того, чтобы убрать направляющую планку при закрывании затвора, не нужно дополнительных движений: поднимание и опускание планки производится при помощи рычага, надетого на ось, связанную с рукояткой затвора. При повороте рычага планка поднимается и подается несколько вперед. При обратном повороте рычага она опускается и не мешает закрыванию затвора.
В верхней части затворного гнезда иногда помещается удержник, назначение которого не допустить выпадения гильзы или патрона при заряжании под большими углами возвышения. При открывании затвора под действием собственного веса длинный конец удержника опускается и остается в наклонном положении, свободно пропуская снаряд и гильзу при заряжании, но не позволяя им выпасть. При закрывании затвора поршень поднимает удержник. Полуавтоматика В начале этой книги было указано, что энергия пороховых газов используется для выталкивания снаряда из канала ствола орудия.
Когда начала развиваться скорострельная артиллерия, возник вопрос: нельзя ли использовать часть энергии пороховых газов для выполнения всех или некоторых действий, необходимых для производства выстрела? Творческая мысль наших артиллеристов нашла несколько решений этого трудного вопроса. Теперь мы имеем ряд затворов автоматических и полуавтоматических. Если все действия открывание затвора, выбрасывание гильзы, заряжание, закрывание затвора, взведение ударника и производство выстрела совершаются в орудии за счет энергии газов при выстреле, то затвор называется автоматическим.
Если же только несколько действий или хотя бы одно из них выполняется за счет энергии газов, то затвор называется полуавтоматическим. В этом разделе мы остановимся лишь на полуавтоматических затворах. Благодаря простоте открывания и закрывания клиновых затворов полуавтоматика нашла широкое применение в затворах именно этого типа. Полуавтоматические затворы имеют весьма разнообразное устройство.
Действие полу-автоматики, грубо говоря, основывается на взведении каким-либо способом пружины и на использовании энергии взведенной пружины для выполнения того или иного действия. По принципу действия полуавтоматика обычно подразделяется на инерционную, механическую и полуавтоматику смешанного типа. Полуавтоматика инерционного типа основана на использовании силы инерции: во время отката тяжелое тело, стремясь остаться на месте, сжимает пружину. Такая полуавтоматика характеризуется совершенным отсутствием механической связи затвора с неподвижными частями орудия, Открывание и закрывание затвора в этом случае производится за счет энергии сжатой пружины, накопленной в результате движения тяжелого тела.
Недостатком полуавтоматики инерционного типа является сложность механизма. В настоящее время полуавтоматика, основанная на использовании только силы инерции, не применяется. Перейдем к рассмотрению полуавтоматики, использующей энергию наката рис. Схема полуавтоматики.
Чтобы открыть затвор при первом заряжании орудия, снабженного такой полуавтоматикой, необходимо вручную повернуть рукоять. При этом будет двигаться назад шарнирно связанный с ней стержень, шайба которого начнет сжимать пружину, заключенную в коробке на стволе орудия. Клин в открытом положении удерживается ветвями выбрасывателя. При досылке патрона ветви сбиваются ударом закраины гильзы и пружина, разжимаясь, посылает вперед стержень, который заставляет вращаться рукоять в обратном направлении и тем самым закрывает затвор.
При выстреле ствол вместе с коробкой и стержнем движется назад, упор же остается на месте, так как не укреплен на люльке. При накате стержень доходит до выступа упора и останавливается, а ствол продолжает накатываться. Вследствие этого стержень нажимает на рукоять, заставляет ее повернуться назад, в результате чего затвор открывается. Одновременно с этим шайба стержня сжимает пружину.
Когда ствол накатится на место, затвор уже будет открыт и ветви выбрасывателя, выбросив гильзу, своими захватами удержат клин в открытом положении. Пружина в этот момент будет сжата. Коническая часть коробки при накате, нажимая на ролик упора, опустит его вниз, и стержень освободится. При откате упор поднимается вверх под действием своей пружины.
Представьте себе, что упор не поднялся. В этом случае затвор не откроется, и стреляющему придется перед каждым выстрелом открывать затвор вручную. В современных полевых и зенитных орудиях среднего калибра наибольшее распространение получила полуавтоматика копирного смешанного типа. Применение полуавтоматики дало возможность увеличить скорострельность огнестрельного оружия и облегчило работу заряжающего.
Лафет и его механизмы Для того, чтобы можно было наводить орудие в цель и передвигать его с одного места на другое, орудийный ствол закрепляется на лафете. Лафет состоит из двух частей, связанных между собой: станка и повозки. Лафеты старых систем обычно состояли из одного станка. Они назывались лафетами однобрусного типа рис.
В этом случае станок принимал на себя всю силу отдачи выстрела. Лобовая часть такого однобрусного станка опиралась на боевую ось, а хоботовая часть при помощи сошника упиралась в грунт. Орудия с различными лафетами. Кроме того, на хоботовой части при стрельбе укреплялось правило для грубой горизонтальной наводки.
Большинство современных орудий изготовляется с раздвижными станинами рис. Это позволило увеличить угол горизонтального обстрела без перемещения станка. Каждая из раздвижных станин снабжена отдельным сошником. Станки зенитных орудий имеют четыре лапы откидные упоры , которые в боевом положении образуют крестовину.
На этой крестовине укреплена тумба станок , обеспечивающая круговой обстрел рис. Лафеты современных орудий имеют верхний и нижний станки. Таким устройством наиболее удачно разрешен вопрос о подвижности ствола орудия в горизонтальной плоскости при стрельбе по быстро движущимся целям. Нижний станок является основой всего орудия; он состоит из лобовой коробки и двух шарнирно соединенных с ней станин.
В лобовой коробке помещается боевая ось, на которую опирается орудие через систему подрессоривания. В хоботовой задней части станка имеется шворневая лапа для соединения орудия с передком или трактором. Верхний станок опирается на лобовую коробку нижнего станка. Для того, чтобы ствол устойчиво лежал на лафете, его накладывают на особую часть лафета — люльку.
Люлька своими цилиндрическими цапфами закрепляется в специальных гнездах верхнего станка. Таким образом, люлька со стволом составляет качающуюся часть артиллерийского орудия. Но недостаточно только закрепить ствол на станке, ему необходимо обеспечить возможность перемещения в вертикальной и горизонтальной плоскостях. Для этого каждый станок современного орудия обязательно снабжается поворотным и подъемным механизмами.
Само название этих механизмов говорит о том, что первый предназначается для наведения орудия в цель в горизонтальной плоскости, а второй — в вертикальной. Подъемные механизмы орудий по своей конструкции подразделяются на два типа: винтовой и секторный рис. Подъемные механизмы: а — винтовой; 6 — секторный. Наиболее простую схему имеет подъемный механизм винтового типа рис.
Непосредственно к стволу или к люльке шарнирно прикрепляется винт, который может качаться в плоскости качания ствола. На этот винт навинчена матка, закрепленная в станке. Вращательное движение маховика подъемного механизма через ряд промежуточных передач передается матке. В зависимости от направления ее вращения винт будет ввинчиваться или вывинчиваться.
В соответствии с этим казенная часть ствола будет опускаться или подниматься. Такой подъемный механизм применялся в старых системах, в современных же орудиях он применяется очень редко. В современных орудиях подъемные механизмы делаются секторного типа рис. К нижней части люльки прикрепляется зубчатый сектор, который сцепляется с цилиндрической шестерней, закрепленной на валу в станке орудия.
Вращательное движение маховика подъемного механизма через систему передач сообщается валу с боевой шестерней. Шестерня, перекатываясь по зубчатому сектору, заставляет поворачиваться ствол вокруг цапф люльки, обеспечивая наводку орудия в вертикальной плоскости. Поворот ствола в горизонтальной плоскости производится путем вращения всего орудия или части его. В первом случае обычно прибегают к помощи правила или длинных рычагов, подкладываемых под хоботовую часть.
Правило представляет собой откидной или съемный рычаг, укрепляемый на хоботовой части орудия. Оно предназначено для поворота легких орудий усилием одного человека. Для поворота тяжелых орудий, когда требуется усилие двух-трех человек, применяются длинные рычаги. В современных орудиях с раздвижными станинами для наведения орудия в цель производится поворот лишь верхнего станка рис.
Поворотные механизмы: а — винтовой; б — секторный. Поворот верхнего станка производится при помощи поворотного механизма с зубчатой или винтовой передачей. Верхний станок вращается вокруг боевого штыря. Для того, чтобы верхний станок не опрокинулся вместе со стволом при выстреле, имеется целый ряд приспособлений.
В настоящее время в орудиях крупного калибра и в зенитных применяется поворотный механизм с зубчатой передачей. Зубчатый сектор неподвижно укрепляется на нижнем станке. Сцепленная с ним шестерня вращается на одном валу с червячным колесом, которое сцепляется с червяком. Червячная передача с шестерней собраны в одной коробке, укрепленной на верхнем станке.
Вращение червяку от маховика передается через коническую передачу. При вращении шестерни ее зубья, обкатываясь по неподвижному сектору, заставляют вращаться верхний станок вместе со стволом вокруг штыря.
Буксируемая 152-мм пушка 2А36 «Гиацинт-6» на позиции Фото 2. Буксируемая 152-мм пушка 2А36 «Гиацинт-6» на марше Сегодня мы хотели бы рассмотреть некоторые особенности диагностирования в полевых условиях узлов и агрегатов основных образцов БАО, а именно: — 100-мм противотанковой пушки Т-12 инд. Сам процесс диагностирования в поле незначительно отличается от его проведения в пункте постоянной дислокации, однако имеется ряд особенностей, которые необходимо учитывать: — ограничение временных параметров; — ограничение количества и номенклатуры используемых технических средств; — недостаточное метрологическое обеспечение процесса; — низкий уровень обеспеченности эксплуатационными материалами. Напомним, что орудие состоит из трех основных частей: ствольно-затворной группы, противооткатных устройств и лафета. Рассмотрение вопросов диагностирования начнем со ствольно-затворной группы.
Особое внимание необходимо будет уделить износу канала ствола и параметрам работоспособности механизмов затвора. В отечественной артиллерии в качестве основных критериев, характеризующих степень износа канала ствола, принято считать удлинение зарядной каморы — для нарезных стволов и диаметральный износ канала ствола — для гладкостенных стволов [1].
Для предотвращения этого нежелательного явления каморные бронебойные снаряды снаряжаются флегматизированными ВВ — тротилом, тэном или гексогеном. Для придания снаряду зажигательной способности, в каморе снаряда помещают термит или алюминиевый порошок. На наружной поверхности некоторых бронебойных снарядов сделаны острые канавки, т. При пробивании толстой брони подрезы-локализаторы сохраняют корпус снаряда при разрушении его головной части и предохраняют камору с ВВ от вскрытия в момент удара по броне.
В острых подрезах концентрируются напряжения в металле, поэтому при ударе скалывание металла происходит по подрезам, а в глубину корпуса трещины не распространяются. Сплошной бронебойный снаряд состоит из прочного стального корпуса, баллистического наконечника и трассера. Проникновение снаряда в преграду происходит только за счет его кинетической энергии. Сплошные бронебойные снаряды применялись для стрельбы из противотанковых пушек калибра 31—125 мм. Бронебойные калиберные снаряды БКС имеют диаметр центрирующих утолщений или корпуса равный калибру орудия. Они применяются для стрельбы из пушек малых и средних калибров наземной артиллерии.
Бронебойный подкалиберный снаряд БПС , предназначен для поражения тяжело бронированных целей. Состоит из двух основных частей: активной жесткий неразрушающийся сердечник , имеющей диаметр менее калибра примерно в три раза , обеспечивающей пробитие брони, и пассивной поддона , выполненной по калибру пушки. ВВ снаряд не имеет. Сердечник обладает высокой прочностью и большой твердостью. По удельному весу он более чем в два раза превосходит стать. Он изготавливается из металлокерамических сплавов, представляющих собой механическую смесь карбидов вольфрама, молибдена, титана, тантала, ванадия с порошкообразными металлами кобальтом, никелем, хромом, железом.
Сердечник является основным поражающим элементом БПС. Он пробивает в броне отверстие небольшого диаметра. При этом выделяется большое количество тепла. Внутрь боевой машины расходящимся конусом летят осколки сердечника и брони, нагретые до высокой температуры. Эти осколки поражают экипаж, и внутреннее оборудование. Поддон выполнен по калибру пушки из мягкой стали, железа или алюминиевых сплавов.
Он может быть неотделяющимся катушечной и обтекаемой формы и отделяющимся. У БПС с неотделяющимся поддоном при ударе снаряда в броню несущий элемент корпус , полностью разрушается, а сердечник, имеющий большой вес, по инерции продвигается вперед и, выйдя из осколков корпуса снаряда, пробивает в броне отверстие небольшого диаметра. Сердечник прикрывается сверху баллистическим наконечником. У БПС с отделяющимся поддоном, как видно из названия, сердечник для получения хороших баллистических характеристик, помещается в поддоне, который отделяется после выхода снаряда из канала ствола. Отделение поддона, имеющего небольшой вес и плохую баллистическую форму, происходит под действием центробежной силы если пушка нарезная и силы сопротивления воздуха. Необходимо отметить, что отделяющийся поддон представляет опасность для своей пехоты.
Подкалиберные снаряды пробивают броню, толщина которой в 2—3 раза больше калибра снаряда, а калиберные снаряды — лишь в 1,2—1,3 раза. Высокая бронепробиваемость достигается прежде всего за счет увеличения начальной скорости БПС. Кроме того, при общем уменьшении веса БПС заметно увеличивается вес его активной части. Помимо высокой бронепробиваемости БПС обладают высокой вероятностью попадания в цель до 0,9. Этому способствует большая настильность траектории и малое время полета снаряда до цели. В качестве материала для БПС американские и британские конструкторы используют сплав из обедненного урана, названный «Стабилла».
Зажигательный снаряд — снаряд основного назначения зажигательного действия. Предназначен для создания очагов пожаров, а также для поражения живой силы и некоторых видов военной техники автомашин, тягачей и др. Действие этих снарядов определяется количеством и составом зажигательных элементов, которые должны иметь хорошую зажигательную способность, достаточное время горения и стойкость к тушению. Стрельба зажигательными снарядами, как правило, ведется из орудий среднего калибра. Кумулятивный снаряд — снаряд основного назначения кумулятивного действия, предназначен для поражения бронированных целей. Явление кумуляции взрыва или кумулятивный эффект было открыто почти одновременно в 1864 русским военным инженером генералом М.
Боресковым и в 1887 американским специалистом по ВВ Ч. Манро и применялось в саперном деле. Оно состоит в концентрации, фокусированном сосредоточении энергии взрыва, в заданном направлении. Кумулятивный снаряд состоит из корпуса, кумулятивного узла, головного или донного взрывателя и трассера. Внутри корпуса размещается разрывной заряд, в головной части которого сделана кумулятивная выемка, покрытая металлической облицовкой. В качестве разрывного заряда используются тротил, гексоген, тэн в различных пропорциях.
Принцип действия кумулятивного снаряда: при взрыве из материала облицовки выемки формируется тонкая кумулятивная струя, направленная вдоль оси выемки; при встрече с преградой струя создает большое давление, пробивающее последнюю. Столкновение и сжатие продуктов взрыва обеспечивает кумулятивному потоку высокие плотность, скорость, температуру и давление. Бронепробиваемость бронепрожигаемость определяется количеством и характеристиками ВВ, формой кумулятивной выемки наиболее выгодными считаются полусферическая и коническая формы , материалом ее облицовки и другими факторами. В отличие от бронебойных снарядов бронепробиваемость кумулятивных снарядов не зависит от расстояния до цели, степени износа ствола и других факторов. Дальность действительного огня при стрельбе этими снарядами ограничивается вероятностью прямого попадания в бронированную цель. Кумулятивные снаряды позволяют бороться с танками артиллерийским орудиям с малыми начальными скоростями снарядов, которые не приспособлены для стрельбы обычными бронебойными снарядами.
Недостатками кумулятивных снарядов являются сравнительно невысокие начальные скорости и, следовательно, небольшие дальности прямого выстрела; высокая стоимость; слабое действие по целям, защищенным экраном. Современные кумулятивные снаряды подразделяются на вращающиеся и оперенные могут выстреливаться как из гладкоствольных, так и из нарезных орудий. При этом лучшую бронепробиваемость имеют оперенные снаряды. Это вызвано тем, что вращение снаряда негативно влияет на процесс формирования кумулятивной струи. Кумулятивно-осколочный снаряд — снаряд основного действия кумулятивного и осколочного действия, предназначенный для поражения бронированных целей и живой силы. Иногда используется термин «многоцелевой снаряд».
Осколочно-фугасный снаряд — снаряд основного назначения осколочного и фугасного действия, предназначенный для поражения живой силы и военной техники противника, разрушения его полевых оборонительных сооружений, проделывания проходов в заграждениях и минных полях и решения других задач. Осколочное или фугасное действие снаряда в зависимости от свойств цели и характера выполняемой задачи определяется типом и установкой взрывателя. Контактный взрыватель может устанавливаться на осколочное для поражения живой силы , фугасное для разрушения легких полевых сооружений и замедленное для разрушения заглубленных полевых сооружений действие. Являясь универсальными, осколочно-фугасные снаряды уступают по осколочному действию осколочным снарядам, а по фугасному — фугасным снарядом того же калибра. Осколочный снаряд — снаряд основного назначения осколочного действия, предназначенный для поражения живой силы, небронированной и легкобронированной техники. Осколочные снаряды применяются в орудиях малых и средних калибров.
Его разновидностью является снаряд с готовыми поражающими элементами, внутренняя полость которого заполнена шариками, иголками, кубиками и т. Предназначен главным образом для поражения открытой живой силы. Основное требование к осколочным снарядам — эффективность осколочного действия, которое заключается в получении максимального количества убойных осколков при возможно большем радиусе поражающего действия. Корпуса осколочных снарядов изготовляются из стали малокалиберные или сталистого чугуна средних калибров и снаряжаются заполняются тротилом как в чистом виде, так и в смеси с другими ВВ. Максимальное количество убойных осколков получается в результате правильного сочетания механического качества металла корпуса и мощности ВВ разрывного заряда. Разрыв осколочных снарядов у цели обеспечивается срабатыванием головных взрывателей ударного или дистанционного действия.
Полубронебойный снаряд — снаряд основного назначения ударного и фугасного действия, предназначенный для поражения надводных морских целей. Фугасный снаряд — снаряд основного назначения фугасного действия, предназначенный для разрушения прочных небетонированных сооружений окопов, блиндажей, наблюдательных пунктов, каменных и кирпичных зданий, мостов и т. Фугасные снаряды применяются для стрельбы из орудий крупного калибра. Фугасное действие выражается в разрушении, которое производит сила взрывной волны ударная волна разрывного заряда в какой-либо среде. Могущество фугасных снарядов зависит главным образом от количества и мощности разрывного заряда и может быть повышено за счет увеличения калибра, а в пределах одного калибра — увеличения емкости заполнения и применения более мощных ВВ. Корпуса фугасных снарядов изготовляются из стали, благодаря чему обеспечивается достаточная их прочность при выстреле при незначительной толщине стенок корпуса и при ударе в преграду.
По сравнению с осколочными фугасные снаряды имеют более тонкие стенки корпусов, высокий коэффициент наполнения, большую массу разрывного заряда. Разрыв фугасных снарядов у цели обеспечивается головными или донными ударными взрывателями, которые могут иметь фугасное или замедленное действие. Химический снаряд — снаряд, предназначенный для поражения боевыми отравляющими веществами живой силы, заражения военной техники, продовольствия и местности. Ядерный снаряд — снаряд, оснащенный ядерным зарядом и предназначенный для решения тактических задач путем нанесения ядерного удара по объектам противника. Такие боеприпасы есть у большинства стран, имеющих ядерное оружия, в т. США, в частности, разработали 155-мм артиллерийские снаряды M-454 мощность ядерного заряда — 0,08 кт в тротиловом эквиваленте , XM-785 1,5 кт , 203-мм снаряды M-422 2 кт , M-753 10 кт и 2,2 кт.
Агитационный снаряд — снаряд специального назначения, применяемый для переброски агитационной литературы. Дымовой снаряд — снаряд специального назначения помехообразующего действия, предназначенный для постановки дымовых завес, пристрелки, сигнализации. Осветительный снаряд — снаряд специального назначения осветительного действия, предназначен для освещения местности в районе цели ночью. Снаряжается осветительным составом, запрессованным в металлический цилиндр. При срабатывании дистанционного взрывателя выбрасывается осветительный элемент, снижающийся, как правило, на парашюте. Пристрелочно-целеуказательный снаряд — снаряд специального назначения сигнального действия, предназначенный для целеуказания и пристрелки.
Противорадиолокационный снаряд — снаряд специального назначения помехообразующего действия, предназначенный для создания пассивных помех работе радиолокационных станций. Снаряжается радиолокационными отражателями, которые на траектории при срабатывании дистанционного взрывателя выбрасываются и рассеиваются встречным потоком воздуха. Боеприпасы несмертельного действия. Для проведения специальных полицейских операций с привлечением бронетанковой техники в различных странах ведутся разработки боеприпасов несмертельного действия. Действие таких боеприпасов не должно приводить к смерти либо серьезным увечьям людей. В частности, израильской компанией «Ай-Эм-Ай» созданы специальные выстрелы для танковых пушек калибров 105 и 120 мм.
Снаряды этих выстрелов при срабатывании создают очень сильный звук, что может вызвать нарушение звука у людей, находящихся недалеко от танка, а также оказать на них устрашающее воздействие. Взрыватель — устройство для приведения в действие боеприпаса в соответствии с его назначением. Безопасность взрывателя способность не срабатывать преждевременно обеспечивается предохранителями. По принципу действия взрыватели различают на дистанционные, контактные, неконтактные, комбинированного действия например, дистанционно-ударные. Дистанционный взрыватель — взрыватель, который срабатывает на траектории по истечении заданного времени без воздействия цели. Бывают пиротехнические с пороховым дистанционным составом , механические с часовом механизмом; наиболее распространены , электрические и комбинированные.
Применяются в осколочных, кассетных, дымовых артиллерийских снарядах. Применение дистанционных взрывателей при стрельбе по воздушным и наземным целям значительно увеличивает осколочное действие снарядов. Контактный взрыватель — взрыватель, который срабатывает при соприкосновении с целью. Различают ударные механические, пьезоэлектрические, конденсаторные и т. Бывают контактные взрыватели мгновенного осколочного действия или с 2—3 установками на мгновенное, инерционное фугасного и замедленное действие. Под временем действия понимают время от момента встречи снаряда с преградой до его разрыва.
Для взрывателей мгновенного действия оно не превышает 0,001 с, инерционного действия — в пределах 0,001—0,01 с, замедленного действия — 0,01—0,1 с. Неконтактный взрыватель — взрыватель, который срабатывает в результате взаимодействия с целью без соприкосновения боеприпаса с ней на расстоянии, наивыгоднейшем для поражения цели. Для приведения в действие используются различные физические поля — акустические, электромагнитные, магнитные и др. Взрыватели, воспринимающие энергию, излучаемую целью, называют взрывателями пассивного действия; взрыватели, излучающие энергию и реагирующие на нее после отражения от цели, называют взрывателями активного действия. По расположению в боеприпасе взрыватели различают на головные, донные, боковые, универсального расположения. У последних детонатор расположен в донной части, а элемент, воспринимающий реакцию преграды, — в головной части снаряда.
По способу возбуждения детонационной цепи взрыватели делят на механические и электрические. В механических взрывателях возбуждение передается перемещением ударника, вызывающего срабатывание капсюля, в электрических — электрической энергией. В состав взрывателя входят следующие обязательные элементы: капсюль-воспламенитель, капсюль-детонатор и детонатор. Капсюль-воспламенитель лат. Детонатор состоит из небольшого заряда ВВ 10—30 г , чувствительного к импульсу капсюля-детонатора. Он усиливает действие последнего и обеспечивает детонацию основного разрывного заряда снаряда.
В ряде конструкций между капсюлем-воспламенителем и капсюлем-детонатором вводится замедлитель из дымного пороха. В таких взрывателях луч огня может проходить в зависимости от установки непосредственно от капсюля-воспламенителя к капсюлю-детонатору или через замедлитель, время горения которого определяет время замедления взрыва снаряда. Снаряды, предназначенные для выброса на траектории зажигательных, осветительных, агитационных и других элементов или материалов, комплектуются дистанционными трубками, по устройству напоминающими дистанционные взрыватели. Отличие от взрывателей состоит в том, что огневая цепь у них не имеет ни капсюля-детонатора, ни детонатора, поскольку в таких снарядах нет разрывного заряда. Огневая цепь дистанционной трубки заканчивается пороховой петардой, которая воспламеняет вышибной заряд из дымного пороха, выбрасывающий содержимое корпуса снаряда. Метательный заряд — строго определенное весовое количество пороха, применяемое для каждого выстрела.
Бывают постоянные и переменные метательные заряды. Постоянные метательные заряды используются в орудиях, заряжаемых артиллерийским выстрелом унитарного заряжания. Здесь гильза закрывается самим снарядом, который соединен с ней путем обжима или закатки дульца. Не допускаются никакие изменения этих зарядов. Переменные метательные заряды применяются при раздельном заряжании артиллерийские выстрелы картузного и раздельно-гильзового заряжания. Они состоят из основного пакета и дополнительных пучков пороха.
Во время стрельбы можно изменять вес метательного заряда, удаляя нужное количество пучков пороха. Благодаря этому можно изменять начальную скорость, характер траектории и дальность полета снаряда. Кроме того, при стрельбе уменьшенными зарядами лучше сохраняется орудие и сокращается расход пороха. Масса и марка пороха определяются баллистическими расчетами из условия наивыгоднейшего использования энергии заряда для достижения требуемой начальной скорости при заданном давлении пороховых газов. В состав заряда, кроме бездымного пороха, включаются некоторые вспомогательные элементы: воспламенитель из дымного пороха , нормальная крышка обтюратор , усиленная крышка для герметизации заряда , пламегаситель для уменьшения дульного пламени , размеднитель для удаления частиц меди со стенок канала ствола от ведущего пояска , флегматизатор для уменьшения разгара ствола. Гильза нем.
Представляет собой тонкостенный стакан, предназначенный для помещения метательного заряда, вспомогательных элементов к нему пламегаситель и др. По наружному очертанию гильза соответствует зарядной каморе того орудия, для которого предназначена. Гильза состоит из дульца, конического ската, корпуса, фланца, дна, капсюльной втулки, очка под капсюль-воспламенитель. Чтобы облегчить экстракцию гильзы после выстрела, ее корпус делается слегка коническим. В заряженном состоянии гильза своим фланцем упирается в казенный срез трубы ствола. После выстрела выбрасыватель затвора захватывает гильзу за фланец и извлекает из ствола.
Гильзы для автоматических орудий вместо фланца или закраины имеют кольцевую выточку для зацепа выбрасывателя. В некоторых безоткатных орудиях гильза имеет перфорированные отверстия, через которые пороховые газы поступают в камору орудия и далее через затвор в атмосферу. От высыпания и попадания влаги заряд предохраняют обкладка, закрывающая перфорированные отверстия в гильзе, и разрывная диафрагма. Обычно гильзы изготовляются из латуни или малоуглеродистой стали. Металлические гильзы имеют ряд недостатков при их использовании внутри боевых машин, оснащенных артиллерийскими орудиями. Стреляные гильзы загромождают боевые отделения.
Кроме того, извлекаемые из ствола стреляные гильзы заполнены пороховыми газами, что сильно увеличивает загазованность боевых отделений и, несмотря на вентиляционную систему, снижает работоспособность экипажа. Для мощных танковых пушек с высоким давлением пороховых газов приходится делать металлические гильзы массивными, чтобы облегчить их экстракцию после выстрела, что приводит к дополнительным эксплуатационным неудобствам. Для устранения этих недостатков были созданы боеприпасы с частично сгорающей гильзой, использование которых возможно без каких-либо изменений в существующих орудиях. Частично сгорающая гильза, выполненная в основном из сгорающего материала, имеет укороченную металлическую донную часть высотой 50—60 мм, обеспечивающую обтюрацию пороховых газов. Такие гильзы легки по весу, сокращают проникновение вредных дымов в боевое отделение машин и менее громоздки по сравнению с обычными металлическими гильзами. Материалом для сгорающих гильз служат картон и мелкие древесные опилки, пропитанные нитроцеллюлозой, крафтбумага, магний, мелкозернистый порох, связующие вещества.
Средства воспламенения — устройства для возбуждения горения зарядов из порохов, ракетного топлива и пиротехнических составов. К средствам воспламенения относятся патронные капсюли-воспламенители накольного или ударного действия артиллерийских мин , капсюльные втулки и ударные воспламенительные трубки артиллерийских выстрелов, электровоспламенители и электрокапсюли, огнепроводный шнур, пиропатроны и воспламенители реактивных артиллерийских снарядов, ракет и ракетных двигателей. По способу приведения в действие средства воспламенения подразделяются на ударные, электрические и гальваноударные.
Также использование новой компоновки в Д-30 позволило значительно улучшить характеристики орудия по сравнению с гаубицей М-30: угол возвышения ствола увеличился с 63,5 до 70 градусов, а максимальная дальность стрельбы возросла с 11,8 до 15,3 км. Все это в сочетании со снарядом массой 21,7 кг позволяет легко уничтожать укрытые цели противника. Клиновой затвор с полуавтоматикой облегчил работу расчета и позволил увеличить скорострельность до 8 выстрелов в минуту — против 6 выстрелов у предшественницы, имевшей поршневой затвор. Гаубица состоит из ствола, противооткатных устройств, лафета и прицельных устройств. Ствол состоит из: трубы, дульного тормоза, захватов, казенника и затвора.
Затвор клиновой, вертикально перемещающийся с полуавтоматикой копирного типа. Для удержания снаряда от выпадения при заряжании и больших углах возвышения в затворе имеется специальный удерживающий механизм. Лафет состоит из люльки, верхнего станка, нижнего станка, уравновешивающего механизма, приводов вертикальной и горизонтальной наводки, колесного хода, механизмов подрессоривания, и механизма крепления орудия по-походному. Противооткатные устройства, состоящие из накатника и тормоза откатных частей, размещены в корытообразной люльке над стволом. Прицельные устройства состоят из панорамного прицела и телескопического прицела. Ствол, люлька, противооткатные устройства и прицельные устройства составляют качающую часть орудия, которая приводится во вращательное движение относительно оси цапф люльки ствола при наводке ствола в вертикальной плоскости.
Фундамент артиллерийского орудия 5 букв
Российская армия, к примеру, применяет тяжелую артиллерию типа 2С4 «Тюльпан», самоходный 240-мм миномет для уничтожения укрепленных пунктов в городе. Комплекс зданий Красногоровского огнеупорного завода взят, а это основной оборонительный комплекс ВСУ в населенном пункте. Понятно, что будут продолжаться встречные бои, будут контратаки ВСУ, будет проводиться зачистка, но это крупный успех русской армии. При этом взятие Красногоровки обеспечивает контроль за территорией в большом радиусе благодаря возвышению поселка и зданий над местностью. К югу, в районе Марьинки-Георгиевки, продолжаются встречные боевые действия.
В Харьковской области уничтожаются артиллерийские силы ВСУ: «Ланцетом» поражено очередное артиллерийское орудие украинской армии. В районе Крынок идут активные действия вблизи левого берега Днепра, оставшиеся силы украинских войск попадают под удары артиллерии и дронов ВС РФ. В районе Авдеевки продолжаются позиционные действия, ВСУ обстреливают позиции нашей армии в западной части Бердычей, есть продвижение в Семеновке. Под Очеретино освобождена Новобахмутовка, причиной является все та же 115-я мехбригада, о чем мы писали вчера.
Бегство с позиций 115-й бригады — лишь первый звоночек. В условиях дефицита техники, отсутствия подготовленных резервов и на фоне страшных потерь противник будет вынужден все чаще отправлять на фронт свежеотловленных неподготовленных мобилизованных. Следовательно, подобные провалы из разовых случайностей вскоре приобретут системный характер. Но это вообще не значит, что все решено и можно расслабиться.
Американская помощь лишь продлевает агонию ВСУ.
В XVIII веке появилась традиция отливать на пушках основанную на этом высказывании фразу «Ultima ratio regum» — «Последний довод королей».. Обладание осадными пушками в большинстве случаев действительно было привилегией централизованных монархий, способных оплатить их изготовление и содержание. Если же у противника артиллерии не было, судьба противостояния была практически предрешена. Именно этот фактор сыграл немалую роль в том расширении Московского царства на восток и юг, которое произошло при Иване Грозном; не менее значимыми пушки оказывались и в эпоху Великих географических открытий и утверждения европейского господства в разных регионах мира. XVI век Инструкции для мушкетеров.
Гравюры Якоба де Гейна. Впрочем, оружие того времени было еще довольно тяжелым и требовало времени для заряжания и применения. Для его эффективного использования в бою требовалась разработка особых методов взаимодействия с другими подразделениями. Одним из успешных экспериментов оказалось построение испанских терций — каре пикинеров, прикрывавшее расположенных в центре мушкетеров. Данная тактика превратила испанскую пехоту в одну из самых грозных сил на европейском поле боя почти на весь XVI век. Гравюра неизвестного художника.
Он впервые подошел к военным действиям как к набору элементарных приемов, которые должен совершать солдат. Результатом его разработок стала разбивка армии на систему небольших подразделений, таких как взвод и рота. Все подразделения должны были четко отрабатывать выполнение команд по построению и постоянно проводить занятия по строевой подготовке и обращению с оружием — фактически именно тогда была изобретена муштра. Солдаты должны были довести до автоматизма все движения по перестроению своих подразделений, которые могут применяться в бою. Точно так же методично обрабатывались и приемы обращения с мушкетом, также четко описанные Морицем Оранским с точки зрения практичности и эффективности. Результатом нововведений стало появление совершенно особого военного механизма.
Солдаты, включенные в этот механизм, четко и безукоризненно выполняли любую команду, а доведенные до автоматизма движения позволяли сохранять боевые порядки даже под огнем противника. Как и всякая автоматизация с четко разработанным протоколом действий, она привела к изменению отношения к воинскому ремеслу — фактически система, созданная Морицем, давала ощущение, что при помощи жесткой муштры сделать солдата можно из любого «человеческого материала». Во второй половине XVII века книга Оранского попала в Россию, где стала толчком для появления полков иноземного строя, а позже для военной реформы Петра. Идеал армии, в которой солдат прежде всего инструмент для выполнения четких приказов командира, фактически продержался до конца XVIII века. Середина XIX века Индустриализация войн Французская революция вывела на военную арену массовую армию, набираемую по общенациональному призыву. Однако и эта армия, при изменении методов управления и тактики, была снабжена оружием, остававшимся практически неизменным с XVII века если не считать скачка в развитии артиллерии, дальность и точность стрельбы которой в войнах революционной и наполеоновской эпохи значительно повысилась.
То, что в итоге Наполеон был разбит коалицией консервативных европейских держав, также на какое-то время остановило принципиальные изменения вооруженных сил. Британские солдаты 68-го пехотного полка с винтовками энфилд в Крыму в 1855 году. Их массовое применение высадившимися в Крыму в 1854 году французскими и английскими войсками против русской армии, в основном вооруженной мушкетами старого образца, обеспечила войскам антироссийской коалиции победу в открытых столкновениях и вынудила русских запереться в Севастополе. Вообще Крымская война, где небольшое отставание русских вооруженных сил во внедрении лишь только начинавших массово применяться изобретений — таких как паровой флот или нарезные винтовки — стало критическим фактором, фактически подстегнула гонку вооружений. Одним из этапов этой гонки стало перевооружение армии на новые нарезные винтовки, заряжающиеся с казенной части То есть не с дула, а с противоположной стороны ствола..
Тесты онлайн разработаны специально для повышения своего уровня знаний, и подходят для людей различных профессий, а также учащихся различных учебных заведений, как средних так и высших. Многие учащиеся школ, СПТУ, колледжей, институтов, академий воспользовались нашими тестами онлайн, для подготовки к успешной сдачи экзаменов. Грамотно и удобно разработанный интерфейс тестов позволяет отлично подготовится и успешно сдать экзамены.
В этом случае на быстро вращающийся вокруг своей оси артиллерийский снаряд действует сила сопротивления воздуха рис. Силы, действующие на снаряд, летящий в воздухе. Опять воспользуемся для опыта гироскопом. При быстром вращении маховика ось гироскопа сохраняет неизменное положение в пространстве. Для исследования движения вращающегося снаряда сообщим маховику быстрое вращение. Чтобы представить себе действие силы сопротивления воздуха на снаряд, надавим пальцем или палочкой на ось гироскопа рис. При быстром вращении маховика ось вовсе не будет изменять своего направления, как это было бы при невращающемся маховике. Вместо этого ось гироскопа начнет медленно поворачиваться так, что все точки этой оси будут двигаться по окружности, а сама ось начнет описывать фигуру, напоминающую правильный конус. Установим далее гироскоп так, чтобы его ось была почти горизонтальна, и снова приложим усилие к концу оси. Мы убедимся в том, что ось гироскопа по-прежнему, не опрокидываясь, будет описывать конус, но более узкий, чем ранее, мало отклоняясь от линии горизонта. Результаты такого опыта показывают, что ось вращающегося гироскопа под действием усилия не увеличивает своего первоначального наклона, гироскоп не опрокидывается и конец его оси остается вблизи от линии горизонта. Если теперь вместо гироскопа, к оси которого мы приложили усилие, будем рассматривать вращающийся снаряд, к оси которого приложена сила сопротивления воздуха, то мы увидим, что такой снаряд не будет кувыркаться в воздухе и его вершина, описывая конус вокруг касательной к траектории в данной точке, во все время полета останется близкой к траектории. Положение того «послушного» снаряда рис. Полет вращающегося снаряда в воздухе: а — ось снаряда описывает конус; б — вершина снаряда близка к траектории. Меткость стрельбы становится значительно большей. При выстреле пороховые газы давят внутри канала ствола по всем направлениям рис. Силы, действующие на снаряд и на ствол орудия при выстреле. Но при давлении в толще стенок ствола возникают упругие силы, которые сопротивляются действию пороховых газов. Давление пороховых газов, умноженное на площадь дна снаряда, представляет собой силу, приложенную к центру снаряда и направленную в сторону выстрела. Эта сила заставляет снаряд двигаться вперед. Сила, действующая на дно ствола, стремится вырвать дно или разорвать ствол в поперечном сечении. При достаточной прочности ствола эта сила производит откат орудия. Вследствие волнообразного движения газов в заснарядном пространстве давление газов на стенки ствола в различных точках неодинаково. Разделим внутреннюю поверхность ствола на небольшие участки. Будем считать давление в пределах каждого участка одинаковым. Умножим давление на каждом участке на площадь этого участка. Мы получим силы, направленные перпендикулярно к внутренней поверхности канала ствола. Эти силы стремятся разорвать ствол в продольном направлении. Таким образом, в результате действия всех этих сил при недостаточной прочности ствола может произойти поперечный или продольный разрыв его. Для того, чтобы ствол надежно сопротивлялся поперечному разрыву, нужно увеличить толщину его стенок, При этом, чем толще они будут, тем ствол будет прочней. Но достаточно ли этого для прочного сопротивления ствола продольному разрыву? Нет, недостаточно. Опытом установлено, что увеличение толщины стенок свыше одного калибра нецелесообразно, так как это утяжеляет ствол и ведет к нерациональному использованию металла. Для того, чтобы уяснить действие давления газов на поверхность стенок канала ствола, проделаем следующий опыт. Возьмем плоское резиновое кольцо рис. Опыт с резиновым кольцом. Если в канал кольца будем вдвигать деревянный конус, то легко заметим, что диаметры окружностей, прилегающих к каналу, увеличатся в значительно большей степени, чем диаметры окружностей, начерченных ближе к наружной поверхности. Если мы будем продолжать вдвигать конус, то сначала начнут рваться внутренние слои, а уже после них — наружные. Этот опыт наглядно показывает, что слои принимают не одинаковое участие в сопротивлении растяжению: внутренние — больше, наружные — меньше. При достаточной толщине кольца возможно, что внутренний слой разорвется, а наружный слой не разорвется. Ствол, в котором произойдет разрыв внутреннего слоя, уже не годится для дальнейшей стрельбы. Подобные явления происходят и в стенках ствола орудия. Таким образом, вопрос увеличения сопротивления ствола продольному разрыву не мог быть разрешен только путем увеличения толщины стенок ствола. Необходимо было создать такую конструкцию ствола, при которой все слои металла были бы равномерно напряжены, а напряжения, возникающие на его внутренней поверхности уменьшены. Этого можно достигнуть, составляя ствол из отдельных слоев. Такие стволы называются скрепленными. Процесс скрепления состоит в следующем: берут две трубы со стенками равной толщины рис. Идея скрепления ствола. Внутренний диаметр одной трубы несколько меньше наружного диаметра другой. Нагреем большую трубу до температуры 400—450 градусов, наденем ее на меньшую трубу и дадим остыть составной трубе- При остывании наружная труба будет стремиться принять свои первоначальные размеры, то есть она начнет сжиматься. Ее внутренний диаметр будет уменьшаться и сжимать внутреннюю трубу. Но так как внутренняя труба будет оказывать сопротивление, то наружная не примет своих первоначальных размеров. Таким образом, после охлаждения до нормальной температуры наружная труба окажется несколько растянутой, а внутренняя — сжатой. Такое состояние смежных слоев, где внутренний слой сжат наружным, называется взаимным натяжением. До выстрела в наружной трубе наиболее растянутыми будут внутренние слои, а наименее — наружные. Что касается внутренней трубы, то ее слои будут находиться в сжатом состоянии, при этом наружные слои будут менее сжаты, а внутренние — более сжаты. При выстреле под давлением пороховых газов внутренняя труба вначале приходит в нормальное состояние, а затем начинает растягиваться вместе с наружной трубой. С этого момента внутренняя и наружная трубы сильнее сопротивляются давлению пороховых газов. Ясно, что при этом в канале такого ствола может быть допущено большее давление, чем в сплошном стволе той же толщины. Такое расположение слоев металла позволяет увеличить допустимое давление в канале ствола по сравнению с нескрепленным стволом. Составив ствол орудия не из двух, а из четырех, пяти или более слоев, мы можем при заданном допускаемом давлении уменьшить вес ствола или при данном весе — увеличить допускаемое давление в канале ствола. Следовательно, при данной толщине ствола сопротивление его давлению пороховых газов растет с увеличением числа скрепляющих слоев; скрепленные стволы, имеющие такое же сопротивление, как и однослойные, будут иметь значительно меньшую толщину стенок, и из двух скрепленных стволов с одинаковой толщиной стенок будет больше сопротивляться давлению пороховых газов тот, который имеет большее число скрепляющих слоев. Вследствие того, что во время выстрела давление пороховых газов по длине ствола неодинаково, скрепление распространяется на ту часть ствола, в которой ожидается наибольшее давление. Начиная с сечения ствола, в котором должно находиться дно снаряда в момент конца горения порохового заряда, и далее до дула число скрепляющих слоев можно уменьшить. Скрепление орудийных стволов может быть произведено при помощи колец, проволоки, кожуха, путем самоскрепления автофретирование и смешанным способом. Увеличение прочности ствола не устраняет все же быстрого износа поверхности канала ствола. Износ поверхности канала ствола влечет за собой потерю боевых качеств всего орудия, хотя остальные механизмы и агрегаты его еще совершенно не изношены. Для того, чтобы отремонтировать или сменить ствол, необходимо целиком все орудие отправлять на завод, и, таким образом, орудие надолго выбывает из строя. Здесь возникает важный и интересный вопрос: какова же общая продолжительность жизни орудия? После определенного числа выстрелов ствол приходит в состояние, при котором дальнейшее его боевое использование невозможно. Для орудий крупных калибров это состояние наступает уже после 150—200 выстрелов, а для орудий средних и малых калибров — после 10—15 тысяч выстрелов. Кроме того, необходимо иметь в виду, что переплавка стволов, изготовленных из дорогостоящей стали, невыгодна экономически. Поэтому возникла мысль обновлять орудия, заменяя не весь ствол, а лишь тонкий внутренний слой металла. Для осуществления этой операции растачивают канал ствола. Вместо расточенной части вставляют тонкостенную трубу, называемую лейнером. Впервые эта идея была осуществлена в 8-дюймовой и 9-дюймовой русских гаубицах, которые участвовали в русско-турецкой войне 1877—1878 гг. В современных орудиях применяются два вида лейнеров: скрепленные лейнеры и свободные лейнеры. Скрепленные лейнеры обычно вставляются с очень малым натяжением. В этом случае натяжение создается не столько для скрепления, сколько для обеспечения плотного соприкосновения наружной поверхности лейнера с внутренней поверхностью ствола. Смену скрепленных лейнеров нельзя производить на огневой позиции; для этого орудие нужно отправлять в мастерскую. Для того, чтобы лейнер можно было заменить на огневой позиции, его обычно вставляют в ствол с зазором рис. Ствол со свободным лейнером. Наружный диаметр свободного лейнера должен быть меньше внутреннего диаметра ствола. При этом образуется зазор, равный 0,1—0,3 миллиметра. При выстреле лейнер прижимается плотно к внутренней поверхности ствола, который при этом тоже сопротивляется давлению пороховых газов. После выстрела зазор между свободным лейнером и стволом должен быть равен первоначальному зазору. Поэтому свободные лейнеры изготавливаются всегда из высококачественных легированных сталей. Лейнеры изготавливаются цилиндрической и конической формы. Цилиндрические лейнеры могут быть вставлены в ствол и с дульной части, и с казенной. Конические лейнеры вставляются в ствол только с казенной части. От перемещения в стволе лейнер удерживается специальными приспособлениями. Так, например, для того, чтобы цилиндрический лейнер, вставленный в ствол с дульной части, не вращался, ставится шпонка, одна часть которой находится в теле ствола, а другая в лейнере. От продольного перемещения назад лейнер удерживается кольцевым уступом ствола в казенной части, а от перемещения вперед — дульной гайкой и т. Кроме лейнеров, в современных артиллерийских орудиях широко применяются так называемые свободные трубы рис. Ствол со свободной трубой. Свободная труба, в отличие от свободного лейнера, имеет более толстые стенки и вставляется в ствол с большим зазором. Свободную трубу вставляют в ствол с казенной части до упора в кольцевой уступ ствола, затем ее зажимают казенником. Таким образом, исключается возможность перемещения ее в продольном направлении. Вращение трубы в стволе предотвращается шпонкой. Применение свободной трубы дает возможность использовать менее дорогую сталь, вследствие большей толщины ее стенок; кроме того, не требуется большой точности обработки наружной поверхности трубы. Основным недостатком свободной трубы по сравнению со свободным лейнером можно считать ее большой вес, затрудняющий перевозку запасных труб. Следовательно, по характеру устройства стволы делятся на нескрепленные, скрепленные, стволы со свободным лейнером и стволы со свободной трубой. По наружному устройству ствол обычно состоит из казенника, цилиндрической и конической частей. Для соединения с лафетом стволы старых систем снабжались цапфами. В современных артиллерийских орудиях устройство частей, служащих для соединения ствола с лафетом, зависит от конструкции и расположения противооткатных устройств. Говоря о канале ствола, мы имели в виду пока лишь цилиндрическую его форму. Но в настоящее время можно встретить орудия, стволы которых имеют канал конической формы рис. Ствол с коническим каналом. Кроме того, известны опыты по применению стволов с полигональными многоугольными каналами. В современной артиллерии преимущественно применяются стволы с цилиндрическим каналом. В этих стволах площадь поперечного сечения снаряда, на которую действует давление пороховых газов, постоянна на всем пути движения снаряда в канале ствола. Поэтому, для того, чтобы увеличить начальную скорость снаряда, нужно увеличить давление пороховых газов или удлинить путь, на котором пороховые газы действуют на снаряд. Увеличение давления производится путем увеличения веса заряда с одновременным увеличением объема зарядной каморы. Удлинение пути, на котором действуют пороховые газы, производится за счет удлинения ствола. Эти методы широко применялись при модернизации артиллерийских орудий. Противотанковой и зенитной артиллерии необходимо было иметь орудия с большой начальной скоростью, но притом такие орудия, у которых с увеличением начальной скорости не увеличился бы вес орудий, а следовательно, не уменьшилась их подвижность. Это привело к применению стволов с коническим каналом. Благодаря сужению нарезной части к дулу начальная скорость увеличилась до 1500 метров в секунду. Для стрельбы из таких стволов применяются специальные снаряды с мягкой оболочкой; диаметр такого снаряда по мере приближения к дульной части уменьшается. За счет чего же увеличивается начальная скорость снаряда при стрельбе из орудия, ствол которого имеет конический канал? Возьмем для примера ствол, калибр которого в казенной части равен 75 миллиметрам, а в дульной — 55 миллиметрам. При стрельбе из такого ствола применяется заряд, соответствующий калибру казенной части, в результате чего давление пороховых газов в начальный момент будет равно давлению газов в стволе 75-миллиметрового орудия. По мере продвижения снаряда по каналу ствола его поперечный размер площадь поперечного сечения будет уменьшаться и он приобретет большее ускорение. Но стрельба из такого орудия эффективна лишь на небольшие расстояния, так как легкий снаряд в результате большого сопротивления воздуха быстро теряет свою скорость. Конические стволы обычно состоят из трубы с цилиндрическим нарезным каналом и насадки с гладкими коническим и цилиндрическим участками, что облегчает их производство и улучшает качество рис. Ствол с цилиндро-коническим каналом. Насадка соединяется с трубой при помощи винтовой нарезки. Применение конического гладкостенного участка менее выгодно в отношении увеличения могущества орудия, чем применение нарезных цилиндрических каналов. Затвор Мы уже установили, что ствол современного орудия представляет собой трубу. Отверстие в дульной части остается всегда открытым. Отверстие в казенной части должно быть открыто лишь при заряжании; при выстреле оно должно быть плотно закрыто. Это закрывание производится затвором. Затворами снабжаются стволы орудий, заряжающихся с казенной части. Во время выстрела они принимают на себя давление пороховых газов. Поэтому затвор должен плотно закрывать канал ствола, чтобы не допускать прорыва газов наружу. Кроме того, затвор должен надежно запирать канал ствола, то есть в момент выстрела затвор не должен самопроизвольно открываться. Надежно запирая канал ствола при выстреле, затвор должен просто и легко открываться после выстрела для нового заряжания орудия и легко и плотно закрываться после заряжания. При этом открывание и закрывание затвора должно производиться или простым движением руки без затраты большого усилия, или автоматически. В орудиях крупного калибра для открывания и закрывания затворов используется энергия специальных двигателей, так как затворы имеют очень большой вес. Затвор предназначен не только для того, чтобы закрывать ствол. Он снабжен механизмами для производства выстрела и для выбрасывания гильзы после выстрела. Типы затворов весьма разнообразны. Наиболее широко применяются клиновые и поршневые затворы рис. Типы затворов: а — клиновой затвор с горизонтальным клиновым гнездом; б — клиновой затвор с вертикальным клиновым гнездом; в — поршневой затвор. Клиновой затвор имеет форму четырехгранной призмы. Передняя грань такой призмы перпендикулярна оси канала ствола, а задняя опорная грань наклонена по отношению к передней. Это делается для того, чтобы облегчить открывание и закрывание затвора и обеспечить наиболее плотное закрывание ствола. Клиновым гнездом называется сквозная прорезь в затворной части орудия. Форма гнезда в казеннике соответствует форме клина. При выстреле клин опирается на грани пазов клинового гнезда. В зависимости от своего направления клиновое гнездо называется горизонтальным или вертикальным.
Станок, на котором закрепляется ствол артиллерийского орудия WOW Guru Ответы
Самоходное артиллерийское орудие 2С35 на базе Т-90 "Коалиция-СВ" на 10-й международной выставке Russia Аrms Еxpo. Lafette), часть орудия (см. ОРУДИЕ АРТИЛЛЕРИЙСКОЕ), на которой закрепляется ствол артиллерийского орудия. это рама или крепление, которое поддерживает ствол артиллерийского орудия, позволяя им маневрировать и вести огонь. станок, на котором закрепляется ствол артиллерийского орудия. Ответ на вопрос: Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия. Конструкция ствола пушки. Лафет станок артиллерийского орудия.
Станок на котором закрепляется ствол артиллерийского орудия
Она содержит WOW Guru Станок, на котором закрепляется ствол артиллерийского орудия ответы и помощь, что вам может понадобиться. Станок артиллерийского орудия 5 букв сканворд. Ответы на сканворды, кроссворды в одноклассниках. Сканворды дня в контакте, моем мире, майл ру, АИФ. Первые артиллерийские орудия состояли из ствола и деревянного станка, часть из них имела затвор. л, последняя - т). станок, на котором устанавливается и закрепляется ствол артиллерийского орудия (лафет). Ответы на кроссворды. →. Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия, 5 букв.