Окончанием эпохи историки считают последнюю четверть XVI века и в некоторых случаях — первые десятилетия XVII века. В статье приведены разные способы обозначения веков в итальянском языке. Обозначение веков появилось в Европе в XVI веке и было связано с развитием календарной системы. Справочные таблицы соотношения столетий веков годов тысячелетий между собой и их обозначение римскими цифрами, информация приведена за период с 12-го тысячелетия до.
7. Даты и время дня
Система обозначения веков состоит из двух цифр — первая цифра указывает на номер века, а вторая цифра — на его десятилетия. Например, если событие произошло в XVI–XVII веках, прибавлять 10 дней, если в XVIII веке – 11, в XIX веке – 12, наконец, в XX и XXI веках – 13 дней. Расшифровка римских цифр в веках.
Римские цифры: как в них разобраться
Каждый век уникален своими вызовами и возможностями, он открывает новые горизонты и проливает свет на темные уголки прошлого. Каждый век уникален своими вызовами и возможностями, он открывает новые горизонты и проливает свет на темные уголки прошлого. Обозначение веков появилось в Европе в XVI веке и было связано с развитием календарной системы.
Как правильно определить век по году: таблица соотношения веков по годам
Рядом с датой по н. Допустимо, если публикуются письма не переписка между русским и зарубежным корреспондентами , при добавлении к дате слов н. Употребление слов до н. Если факт относится ко времени до исходного начального момента принятого у нас летосчисления, рядом с датой требуется ставить слова до н. Во избежание путаницы рекомендуется даты первых лет веков нашей эры сопровождать словами н. Годовщина событий, происходивших до нашей эры Чтобы правильно вычислить круглую юбилейную дату события, происходившего до н. Единицу приходится добавлять потому, что если просто сложить дату события, происшедшего до н. Требуется узнать в каком году исполнилось 2 000 лет со времени рождения Александра Македонского род. Не в 1654 г.
Другой способ подсчета: к современному году прибавить дату события, происшедшего до н. Овидий родился в 43 г. Допустим, у нас 1958 г. Значит, в 1958 г. Форма написания дат и периодов 7.
Позже они стали идентифицироваться с римскими буквами — так как были на них внешне похожи.
Альтернативная теория принадлежит Альфреду Куперу, который предположил рассмотреть римскую систему счета с точки зрения физиологии. V — это отставленный большой палец, образующий вместе с ладонью подобную букве V фигуру. Именно поэтому римские цифры суммируют не только единицы, но и складывают их с пятерками — VI, VII и т. Число 10 выражали с помощью перекрещивания рук или пальцев, отсюда пошел символ X. Еще один вариант — цифру V попросту удвоили, получив X. Большие числа передавали с помощью левой ладони, которая считала десятки.
Так постепенно знаки древнего пальцевого счета стали пиктограммами, которые затем начали отождествлять с буквами латинского алфавита. Современное применение Сегодня в России римские цифры нужны, в первую очередь, для записи номера века или тысячелетия. Римские цифры удобно ставить рядом с арабскими — если написать век римскими цифрами, а затем год — арабскими, то в глазах не будет рябить от обилия одинаковых знаков.
Это учение о конкретной абстрактной системе, которая исторически возникла в математике. И если заглянуть в прошлое, то можно увидеть, что есть три основные направления, из которых появилась математика в том виде, в котором мы сейчас её знаем — это арифметика, геометрия и логика. Все эти традиции довольно стары. Арифметика берёт своё начало со времён древнего Вавилона. Возможно, и геометрия тоже приходит из тех времён, но точно уже была известна в древнем Египте.
Логика приходит из древней Греции. И мы можем наблюдать, что развитие математической нотации — языка математики — сильно связано с этими направлениями, особенно с арифметикой и логикой. Следует понимать, что все три направления появлялись в различных сферах человеческого бытия, и это сильно повлияло на используемые в них обозначения. Арифметика, вероятно, возникла из нужд торговли, для таких вещей, как, к примеру, счёт денег, а затем арифметику подхватили астрология и астрономия. Геометрия, по всей видимости, возникла из землемерческих и подобных задач. А логика, как известно, родилась из попытки систематизировать аргументы, приведённые на естественном языке. Примечательно, кстати, что другая, очень старая область знаний, о которой я упомяну позднее — грамматика — по сути никогда не интегрировалась с математикой, по крайней мере до совсем недавнего времени. Итак, давайте поговорим о ранних традициях в обозначениях в математике.
Во-первых, есть арифметика. И самая базовая вещь для арифметики — числа. Так какие обозначения использовались для чисел? Что ж, первое представление чисел, о котором доподлинно известно — высечки на костях, сделанные 25 тысяч лет назад. Это была унарная система: чтобы представить число 7, нужно было сделать 7 высечек, ну и так далее. Конечно, мы не можем точно знать, что именно это представление чисел было самым первым. Я имею ввиду, что мы могли и не найти свидетельств каких-то других, более ранних представлений чисел. Однако, если кто-то в те времена изобрёл какое-то необычное представление для чисел, и разместил их, к примеру, в наскальной живописи, то мы можем никогда и не узнать, что это было представление чисел — мы можем воспринимать это просто как какие-то фрагменты украшений.
Таким образом, числа можно представлять в унарной форме. И такое впечатление, что эта идея возрождалась множество раз и в различных частях света. Но если посмотреть на то, что произошло помимо этого, то можно обнаружить довольно много различий. Это немного напоминает то, как различные виды конструкций для предложений, глаголов и прочее реализованы в различных естественных языках. И, фактически, один из самых важных вопросов относительно чисел, который, как я полагаю, будет всплывать ещё много раз — насколько сильным должно быть соответствие между обычным естественным языком и языком математики? Или вот вопрос: он связан с позиционной нотацией и повторным использованием цифр. Как можно заметить, в естественных языках обычно есть такие слова, как "десять", "сто", "тысяча", "миллион" и так далее. Однако в математике мы можем представить десять как "один нуль" 10 , сто как "один нуль нуль" 100 , тысячу как "один нуль нуль нуль" 1000 и так далее.
Мы можем повторно использовать эту одну цифру и получать что-то новое, в зависимости от того, где в числе она будет появляться. Что ж, это сложная идея, и людям потребовались тысячи лет, чтобы её действительно принять и осознать. А их неспособность принять её ранее имела большие последствия в используемых ими обозначениях как для чисел, так и для других вещей. Как это часто бывает в истории, верные идеи появляются очень рано и долгое время остаются в забвении. Более пяти тысяч лет назад вавилоняне, и возможно даже до них ещё и шумеры разработали идею о позиционном представлении чисел. Их система счисления была шестидесятеричная, а не десятичная, как у нас. От них мы унаследовали представление секунд, минут и часов в существующей ныне форме. Но у них была идея использования одних и тех же цифр для обозначения множителей различных степеней шестидесяти.
Вот пример их обозначений. Из этой картинки можно понять, почему археология столь трудна. Это очень маленький кусок обожжённой глины. Было найдено около полумиллиона подобных вавилонских табличек. И примерно одна из тысячи — то есть всего около 400 — содержат какие-то математические записи. Что, кстати, выше отношения математических текстов к обычным в современном интернете. Вообще, пока MathML не получил достаточного распространения, это является достаточно сложным вопросом. Но, в любом случае, маленькие обозначения на этой табличке выглядят слегка похожими на отпечатки лапок крошечных птиц.
Но почти 50 лет назад в конце концов исследователи определили, что эта клинописная табличка времён Хаммурапи — около 1750 года до н. Что ж, эти вавилонские знания были утеряны для человечества почти на 3000 лет. И вместо этого использовались схемы, основанные на естественных языках, с отдельными символами для десяти, ста и так далее. Так, к примеру, у египтян для обозначения тысячи использовался символ цветка лотоса, для сотни тысяч — птица, ну и так далее. Каждая степень десяти для её обозначения имела отдельный символ. А затем появилась другая очень важная идея, до которой не додумались ни вавилоняне, ни египтяне. Она заключалась в обозначении чисел цифрами — то есть не обозначать число семь семью единицами чего-то, а лишь одним символом. Однако, у греков, возможно, как и у финикийцев ранее, эта идея уже была.
Ну, на самом деле, она была несколько отличной. Она заключалась в том, чтобы обозначать последовательность чисел через последовательность букв в их алфавите. То есть альфе соответствовала единица, бете — двойка и так далее. Вот как выглядит список чисел в греческом обозначении [вы можете скачать Wolfram Language Package, позволяющий представить числа в различных древних нотациях здесь — прим. Думаю, именно так сисадмины из Академии Платона адаптировали бы свою версию Mathematica; их воображаемую -600-ю или около того версию Mathematica. С этой системой счисления сопряжено множество проблем. Например, есть серьёзная проблема управления версиями: даже если вы решаете удалить какие-то буквы из своего алфавита, то вы должны оставить их в числах, иначе все ваши ранее записанные числа будут некорректными. То есть это значит, что есть различные устаревшие греческие буквы, оставшиеся в системе счисления — как коппа для обозначения числа 90 и сампи для обозначения числа 900.
Однако я включил их в набор символов для Mathematica, потому здесь прекрасно работает греческая форма записи чисел. Спустя некоторое время римляне разработали свою форму записи чисел, с которой мы хорошо знакомы. Пускай сейчас и не совсем ясно, что их цифры изначально задумывались как буквы, однако об этом следует помнить. Итак, давайте попробуем римскую форму записи чисел. Это тоже довольно неудобный способ записи, особенно для больших чисел. Тут есть несколько интересных моментов. К примеру, длина представляемого числа рекурсивно возрастает с размером числа. И в целом, подобное представление для больших чисел полно неприятных моментов.
К примеру, когда Архимед писал свою работу о количестве песчинок, объём которых эквивалентен объёму вселенной Архимед оценил их количество в 1051, однако, полагаю, правильный ответ будет около 1090 , то он использовал обычные слова вместо обозначений, чтобы описать столь большое число. Но на самом деле есть более серьёзная понятийная проблема с идеей о представлении цифр как букв: становится трудно придумать представление символьных переменных — каких-то символьных объектов, за которыми стоят числа. Потому что любую букву, которую можно было бы использовать для этого символьного объекта, можно будет спутать с цифрой или фрагментом числа. Общая идея о символьном обозначении каких-то объектов через буквы известна довольно давно. Евклид, по сути, использовал эту идею в своих трудах по геометрии. К сожалению, не сохранилось оригиналов работ Евклида. Однако имеются на несколько сот лет более молодые версии его работ. Вот одна, написанная на греческом языке.
И на этих геометрических фигурах можно увидеть точки, которые имеют символьное представление в виде греческих букв. И в описании теорем есть множество моментов, в которых точки, линии и углы имеют символьное представление в виде букв. Так что идея о символьном представлении каких-то объектов в виде букв берёт своё начало как минимум от Евклида. Однако эта идея могла появиться и раньше. Если бы я умел читать на вавилонском, я бы, вероятно, смог бы сказать вам точно. Вот вавилонская табличка, в которой представляется квадратный корень из двух, и которая использует вавилонские буквы для обозначений. Полагаю, обожжённая глина более долговечна, чем папирус, и получается, что мы знаем о том, что писали вавилоняне больше, чем о том, что писали люди вроде Евклида. Вообще, эта неспособность увидеть возможность вводить имена для числовых переменных есть интересный случай, когда языки или обозначения ограничивают наше мышление.
Это то, что несомненно обсуждается в обычной лингвистике. В наиболее распространённой формулировке эта идея звучит как гипотеза Сепира-Уорфа гипотеза лингвистической относительности. Разумеется, для тех из нас, кто потратил некоторую часть своей жизни на разработку компьютерных языков, эта идея представляется очень важной. То есть я точно знаю, что если я буду думать на языке Mathematica, то многие концепции будут достаточно просты для моего понимания, и они будут совсем не такими простыми, если я буду думать на каком-то другом языке. Но, в любом случае, без переменных всё было бы гораздо сложнее. Например, как вы представите многочлен? Ну, Диофант — тот самый, что придумал диофантовы уравнения — сталкивался с проблемой представления многочленов в середине 2 века н. В итоге он пришёл к использованию определённых основанных на буквах имён для квадратов, кубов и прочего.
Вот как это работало. По крайней мере сейчас нам показалось бы чрезвычайно трудным понять обозначения Диофанта для полиномов. Это пример не очень хороших обозначений. Полагаю, главная причина, помимо ограниченной расширяемости, состоит в том, что эти обозначения делают математические связи между полиномами неочевидными и не выделяют наиболее интересные нам моменты. Есть и другие схемы задания полиномов без переменных, как, например, китайская схема, которая включала создание двухмерного массива коэффициентов. Проблема здесь, опять-таки, в расширяемости. И эта проблема с основанными на графике обозначениями всплывает снова и снова: лист бумаги, папирус или что бы то ни было — они все ограничены двумя измерениями. Хорошо, так что насчёт буквенного обозначения переменных?
Полагаю, что они могли бы появиться лишь после появления чего-то похожего на нашу современную нотацию. И она до определённого времени не появлялась. Были какие-то намёки в индо-арабских обозначениях в середине первого тысячелетия, однако установилось всё лишь к его концу. А на запад эта идея пришла лишь с работой Фибоначчи о вычислениях в 13 веке. Фибоначчи, разумеется, был тем самым, кто говорил о числах Фибоначчи применительно к задаче о кроликах, однако в действительности эти числа известны были уже более тысячи лет, и служили они для описания форм индийской поэзии. И я всегда находил случай с числами Фибоначчи удивительным и отрезвляющим эпизодом в истории математики: возникнув на заре западной математики, столь привычные и фундаментальные, они начали становиться популярными лишь в 80-е. В любом случае, также интересно заметить, что идея разбивки цифр в группы по три, чтобы сделать большие числа более читаемыми, имеется уже в книге Фибоначчи 1202 года, хотя я думаю, что он говорил об использовании скобок над числами, а не о разделяющих запятых. После Фибоначчи наше современное представление для чисел постепенно становится всё популярнее, и ко времени начала книгопечатания в 15 веке оно уже было универсальным, хотя ещё и оставались несколько чудных моментов.
Но алгебраических переменных в полном их смысле тогда ещё не было. Они появились лишь после Виета в конце 16 века и обрели популярность лишь в 17 веке. То есть у Коперника и его современников их ещё не было. Как в основном и у Кеплера. Эти учёные для описания каких-то математических концепций использовали обычный текст, иногда структурированный как у Евклида. Кстати, даже несмотря на то, что математическая нотация в те времена была не очень хорошо проработана, системы символьных обозначений в алхимии, астрологии и музыке были довольно развиты. Так, к примеру, Кеплер в начале 17 века использовал нечто, похожее на современную музыкальную нотацию, объясняя свою «музыку сфер» для отношений планетарных орбит. Со времён Виета буквенные обозначения для переменных стали привычным делом.
Обычно, кстати, он использовал гласные для неизвестных и согласные — для известных. Вот как Виет записывал многочлены в форме, которую он называл "zetetics", а сейчас мы бы это назвали просто символьной алгеброй: Можно увидеть, что он использует слова для обозначения операций, в основном так, чтобы их нельзя было спутать с переменными. Так как раньше представляли операции, в каком виде? Идея о том, что операции есть нечто, что можно в какой-то форме представить, добиралась до умов людей довольно долго. Вавилоняне обычно не использовали символы для операций — для сложения они просто записывали слагаемые друг за другом. И в целом они были предрасположены записывать всё в виде таблиц, так что им не требовалось как-то обозначать операции. У египтян были некоторые обозначения для операций: для сложения они использовали пару идущих вперёд ног, а для вычитания — идущих назад. А вот кое-что из 1579 года, что выглядит весьма современным, написанное в основном на английском, пока не начнёшь понимать, что те забавные загогулины — это не иксы, а специальные небуквенные символы, которые представляют различные степени для переменных.
В первой половине 17 века произошла своего рода революция в математической нотации, после которой она практически обрела свой современный вид. Было создано современное обозначение квадратного корня, который ранее обозначался как Rx — это обозначение сейчас используется в медицинских рецептах. И в основном алгебраическая нотация приобрела свой современный вид. Уильям Отред был одним из тех людей, кто серьёзно занимался этим вопросом. Изобретение логарифмической линейки — одна из вещей, которая сделала его известным. На самом деле о нём практически ничего неизвестно. Он не был крупным математиком, однако сделал много полезного в области преподавания, с такими людьми, как Кристофер Рен и его учениками. Странно, что я ничего не слышал о нём в школе, особенно если учесть, что мы учились в одной и той же школе, только он на 400 лет ранее.
Однако изобретение логарифмической линейки было недостаточным для того, чтобы увековечить своё имя в истории математики. Но, в любом случае, он серьёзно занимался нотацией. Он придумал обозначать умножение крестиком, и он продвинул идею о представлении алгебры посредством обозначений вместо слов — так, как это делал Виет. И, фактически, он изобрёл довольно много других обозначений, подобно тильде для таких предикатов, как IntegerQ. После Отреда и его сотоварищей эти обозначения быстро установились. Были и альтернативные обозначения, как изображения убывающей и растущей лун для обозначения арифметических операций — прекрасный пример плохого и нерасширяемого дизайна. Однако в основном использовались современные обозначения. Вот пример.
Это фрагмент рукописи Ньютона Principia, из которой ясно, что он в основном использовал современные алгебраические обозначения. Думаю, именно Ньютон придумал использовать отрицательные степени вместо дробей для обратных величин и прочего. Principia содержит весьма мало обозначений, за исключением этих алгебраических вещей и представления разного материала в стиле Евклида. И в действительности Ньютон не особо интересовался обозначениями. Он даже хотел использовать точечные обозначения для своих флюксий. Чего не скажешь о Лейбнице. Лейбниц много внимания уделял вопросам нотации. В действительности, он считал, что правильные обозначения есть ключ ко многим человеческим вопросам.
Он был своего рода дипломат-аналитик, курсирующий между различными странами, со всеми их различными языками, и т. У него была идея, что если создать некий универсальный логический язык, то тогда все люди смогли бы понимать друг друга и имели бы возможность объяснить всё что угодно. Были и другие люди, которые размышляли о подобном, преимущественно с позиции обычных естественных языков и логики. Один из примеров — довольно специфичный персонаж по имени Раймонд Лул, живший в 14 веке, который заявлял, что изобрёл некие логические колёса, дающие ответы на все вопросы мира. Но так или иначе, Лейбниц разработал те вещи, которые были интересны и с позиций математики. То, что он хотел сделать, должно было так или иначе объединить все виды обозначений в математике в некоторый точный естественный язык с подобным математике способом описания и решения различных проблем, или даже больше — объединить ещё и все используемые естественные языки. Ну, как и многие другие свои проекты, Лейбниц так и не воплотил это в жизнь. Однако он занимался самыми разными направлениями математики и серьёзно относился к разработке обозначений для них.
Наиболее известные его обозначения были введены им в 1675 году. Для обозначения интегралов он использовал "omn. Но в пятницу 29 октября 1675 года он написал следующее. На этом фрагменте бумаги можно увидеть знак интеграла. Он задумывал его как вытянутую S. Несомненно, это и есть современное обозначение интеграла. Ну, между обозначениями интегралов тогда и сейчас почти нет никакой разницы. Затем в четверг 11 ноября того же года он обозначил дифференциал как "d".
На самом деле, Лейбниц считал это обозначение не самым лучшим и планировал придумать ему какую-нибудь замену. Но, как мы все знаем, этого не произошло. Что ж, Лейбниц вёл переписку касательно обозначений с самыми разными людьми. Он видел себя кем-то вроде председателя комитета стандартов математических обозначений — так бы мы сказали сейчас. Он считал, что обозначения должны быть максимально краткими. К примеру, Лейбниц говорил: "Зачем использовать две точки для обозначения деления, когда можно использовать лишь одну? Некоторые из продвигаемых им идей так и не получили распространения.
И хотя от древних времен до наших дней было составлено множество различных календарей древнеегипетский, китайский, вавилонский, вьетнамский, мусульманский, еврейский, римский, греческий , ни один из них нельзя назвать достаточно точным, удобным, надежным. Високосного, то есть состоящего из 366 суток, года в природе не бывает. За четыре года набираются целые сутки — добавочный день в високосном году. Судя по многим источникам, первым до этого додумался египетский грек Созиген. В календарь високосный год впервые был введен римским императором Юлием Цезарем с 1 января 45 года до Р. Этот календарь стали называть юлианским. Он прочно вошел в жизнь в начале нашей эры и действовал на протяжении многих веков. По этому календарю жили не только Римская империя и Византия откуда он в Х веке с принятием христианства пришел на Русь , но и все страны Европы, Америка, многие государства Африки и Азии. В IV веке понадобилось внести ряд изменений в юлианский календарь. Укреплялось христианство, и церковь считала необходимым отрегулировать даты религиозных праздников. Было установлено твердое соответствие для IV века солнечного юлианского календаря лунному иудейскому. Так, чтобы христианская пасха в IV веке никогда не могла совпасть с иудейской. В VI веке римский монах Дионисий Малый задумал ввести новую христианскую эру, начало которой идет от Рождества Христова, а не от сотворения мира, как в иудейской эре, или от каких-либо других событий, как в разных языческих эрах. Дионисий обосновал дату от Рождества Христова. По его расчетам она пала на 754-й год от основания Рима или на 30-й год правления императора Августа. На Руси, как и в Византии, еще долго, несколько веков, продолжали считать годы от сотворения мира. А между тем в результате неточного определения продолжительности юлианского года — 365 суток и 6 часов, тогда как в действительности год на 11 мин и 14 сек короче — к концу XVI века после поправок, внесенных в календарь в IV веке набежала разница в 10 суток. Поэтому весеннее равноденствие, которое в 325 году приходилось на 21 марта, наступало уже 11 марта. Кроме того, праздник христианской Пасхи стал приближаться к еврейской Пасхе. Они могли сойтись, что по церковным канонам совершенно недопустимо. Католическая церковь пригласила астрономов, и те более точно измерили продолжительность тропического года, разработали изменения, которые необходимо внести в календарь. По указу папы Григория XIII с 1582 года в католических странах стали вводить календарь, который получил название — григорианский. Счет дней передвинули на 10 суток вперед. День после четверга 4 октября 1582 года предписывалось считать пятницей, но не 5, а 15 октября. Весеннее равноденствие снова возвратилось на 21 марта. Чтобы в дальнейшем избежать подобных ошибок, было решено каждые 400 лет выбрасывать из числа високосных 3 дня. Чтобы за 400 лет было не 100 високосных, а 97. Для этого надо не считать високосными те столетние годы годы с двумя нулями на конце , в которых число сотен две первые цифры не делится без остатка на 4. Таким образом, годы 1700, 1800, 1900 не были високосными. Год 2000 — будет високосным, а 2100 — нет. Длина года по григорианскому календарю хоть немного, на 26 сек, но все же длиннее истинного.
Анонсы. XX век. Знаки времени - Россия Сегодня
Основная цель съезда заключалась как раз в решении всех споров. Присутствующие утвердили основные догматы христианской веры, в частности — празднование Пасхи ежегодно в 1-е воскресенье после весеннего равноденствия и последующего за ним первого полнолуния. Вместе с этим составили и Пасхалии — рассчитали, на какие дни будет припадать Пасха в последующие года. Все это непосредственно связано с темой изменения летоисчисления. В дальнейшем к теме Пасхалий возвращались неоднократно, чтобы откорректировать или дополнить таблицы.
Он поручил римскому аббату Дионисию Малому, у которого уже был подобный опыт, работу над Пасхалиями. Интересно: Почему античные статуи белые? Дионисий с заданием справился, однако обнаружил, что в писаниях все еще используется эра Диоклетиана. Продолжать летоисчисление по данной системе, с учетом антихристианских настроев императора, сторонника язычества, было бы неразумно.
Интересный факт: в России переход на новое летоисчисление произошел благодаря указу Петра I 1699 г. С момента его издания новый год начинался 1 января 1700 вместо 1 марта 7208. Другие методы также оказались неподходящими, поскольку требовалась исключительно христианская система. Поэтому Дионисий Малый предложил вести счет лет совершенно иначе — от даты рождения Иисуса Христа.
Проблема была только в том, что ее никто не знал. Аббат решил вычислить эту дату самостоятельно. Как именно он это сделал, неизвестно. В распоряжении Дионисия было лишь множество евангельских писаний, где, тем не менее, точных сведений тоже никто не называл.
Лента времени Для правильного ведения счёта времени в истории необходимо уметь пользоваться лентой времени. Лента времени — линия, на которой в хронологической последовательности отмечаются исторические события. Лента времени На ленте времени вертикальной разделительной чертой отмечено начало нашей эры. Слева от черты располагаются годы до нашей эры, справа — нашей эры.
В обоих направлениях время отмечается по возрастанию. Чем больше дата слева от вертикальной черты, тем раньше было это историческое событие. Справа от черты наоборот — чем больше число года, тем позже произошло событие. Например, по легенде, Рим был основан в 753 г.
Получается, что этот год размещается слева от разделительной черты. Первые Олимпийские игры проводились в 776 г. Согласно легенде, Рим был основан в 753 г. Ромулом и Ремом, которых воспитала волчица Таким образом, счёт лет до нашей эры идёт в обратном направлении, а события нашей эры отмечаются в привычной для нас прямой последовательности — сначала 10-й год н.
Нулевого года при этом не существует: 1-й год до н. Если необходимо вычислить, сколько лет прошло от одного события до наших дней, обычно из современной даты вычитают дату события.
Век до нашей эры Древняя история человечества На протяжении веков человечество сталкивалось с различными вызовами и трудностями. Во времена до нашей эры, люди еще только начинали осваивать мир. Египет, Греция, Рим — это лишь несколько известных цивилизаций, которые оставили свой след в истории. Они создавались и разрушались, а вместе с ними менялся и мир в целом. Период до нашей эры характеризовался не только научным прогрессом, но и массовыми конфликтами. Войны, насилие и распад государств — это лишь несколько из тех проблем, которые можно выделить из богатой истории.
Наука и культура древности Несмотря на конфликты и напряженные отношения между государствами, древние цивилизации внесли большой вклад в развитие науки и культуры. В Эгейском бассейне появились первые греки и они создали свою собственную культуру, работали над математическими задачами и доказали, что планеты вращаются вокруг Солнца. Наследие древнеримской культуры видно и сегодня во многих аспектах нашей жизни, включая право, политику, инженерию и архитектуру. Значение века до нашей эры Век до нашей эры является периодом научного и культурного прогресса, а также периодом массовых конфликтов. Мир разрушался и создавался заново, формировалась жизнь и смерть цивилизаций. Однако, наследие древних народов до сих пор является источником вдохновения и знаний. Оно помогает понять, как наш мир становился тем, чем он является сегодня, и как его развитие будет продолжаться в будущем. Средние века: краткий экскурс в историю Средние века — период в европейской истории, охватывающий примерно тысячу лет с 5-6 веков до конца 15 века.
Термин «средневековье» часто ассоциируется с варварством, невежеством и темными веками, но на самом деле этот период имел свои достижения и особенности. Средние века начались с распада Римской империи, когда на ее территории возникли различные государства и королевства, такие как Франция, Германия, Италия и др. В этот период появились новые религии, такие как христианство и ислам, которые оказали сильное влияние на культуру и общественную жизнь. Одной из особенностей средневековой жизни было феодальное землевладение, когда земельные участки принадлежали феодалам, а крестьяне работали на них. В это время появились новые профессии, например, ремесленники и торговцы, и начали развиваться города. Важнейшие события Средних веков: Падение Римской империи 476 год Крестовые походы 1096-1270 годы Великая Шизма 1054 год Хундредлетняя война 1337-1453 годы Конец средневековья отмечен различными историческими событиями в разных странах. В Испании это было падение Гранады 1492 год , в Германии — начало Реформации 1517 год , в Италии — захват Рима французами 1527 год.
Так, например, от 2019-го до 184-го года до н.
Века и года соотношение узнать также нетрудно, помня, что в веке — сто лет. Разделим на 2203 на 100 и получим 22 полных столетия. Какое соотношение существует между веком и годом? Если мы знаем, в каком году произошло то или иное событие, то определить соответствующий ему век достаточно просто. Достаточно всего лишь год разделить на 100, а потом получившуюся целую часть частного увеличить на единицу. К примеру, нам нужно узнать, к какому веку относится 1243-й год. Делим 1243 на 100 и получаем 12,43. Целая часть — 12.
Добавляем к ней 1 и получаем 13. Таким образом, мы получили, что 1243-й год — это 13-й век. Если деление на сто происходит без десятых частей, то целую часть оставляем без изменений.
Анонсы. XX век. Знаки времени - Россия Сегодня
Он задумывал его как вытянутую S. Несомненно, это и есть современное обозначение интеграла. Ну, между обозначениями интегралов тогда и сейчас почти нет никакой разницы. Затем в четверг 11 ноября того же года он обозначил дифференциал как "d". На самом деле, Лейбниц считал это обозначение не самым лучшим и планировал придумать ему какую-нибудь замену. Но, как мы все знаем, этого не произошло. Что ж, Лейбниц вёл переписку касательно обозначений с самыми разными людьми. Он видел себя кем-то вроде председателя комитета стандартов математических обозначений — так бы мы сказали сейчас. Он считал, что обозначения должны быть максимально краткими. К примеру, Лейбниц говорил: "Зачем использовать две точки для обозначения деления, когда можно использовать лишь одну? Некоторые из продвигаемых им идей так и не получили распространения.
К примеру, используя буквы для обозначения переменных, он использовал астрономические знаки для обозначения выражений. Довольно интересная идея, на самом деле. Так он обозначал функции. Помимо этих моментов и некоторых исключений наподобие символа пересечения квадратов, который Лейбниц использовал для обозначения равенства, его обозначения практически неизменными дошли до наших дней. В 18 веке Эйлер активно пользовался обозначениями. Однако, по сути, он следовал по пути Лейбница. Полагаю, он был первым, кто всерьёз начал использовать греческие буквы наравне с латинскими для обозначения переменных. Есть и некоторые другие обозначения, которые появились вскоре после Лейбница. Следующий пример из книги, вышедшей через несколько лет после смерти Ньютона. Это учебник алгебры, и он содержит весьма традиционные алгебраические обозначения, уже в печатном виде.
А вот книга Лопиталя, напечатанная примерно в то же время, в которой уже практически современная алгебраическая нотация. И, наконец, вот пример от Эйлера, содержащий весьма современные обозначения для интегралов и прочего. Эйлер — популяризировал современное обозначение для числа пи, которое первоначально было предложено Уильямом Джонсом, который рассматривал его как сокращение от слова периметр. Предложенная Лейбницем и сотоварищами нотация довольно долго оставалась неизменной. Происходили небольшие изменения, как, к примеру квадрат x x получил написание x2. Однако практически ничего нового не появилось. Однако в конце 19 века наблюдается новый всплеск интереса к математической нотации, сопряжённый с развитием математической логики. Были некоторые нововведения, сделанные физиками, такими как Максвелл и Гиббс, в основном для векторов и векторного анализа, как следствие развития абстрактной алгебры. Однако наиболее значимые изменения были сделаны людьми, начиная с Фреге и приблизительно с 1879 года, которые занимались математической логикой. Эти люди в своих устремлениях были близки к Лейбницу.
Они хотели разработать нотацию, которая представляла бы не только математические формулы, но и математические выводы и доказательства. В середине 19 века Буль показал, что основы логики высказываний можно представлять в терминах математики. Однако Фреге и его единомышленники хотели пойти дальше и представить так как логику высказываний, так и любые математические суждения в соответствующих математических терминах и обозначениях. Фреге решил, что для решения этой задачи потребуются графические обозначения. Вот фрагмент его так называемой "концептуальной нотации". К сожалению, в ней трудно разобраться. И в действительности, если посмотреть на историю обозначений в целом, то часто можно встретить попытки изобретения графических обозначений, которые оказывались трудными для понимания. Но в любом случае, обозначения Фреге уж точно не стали популярными. Потом был Пеано, самый главный энтузиаст в области математической нотации. Он делал ставку на линейное представление обозначений.
Вот пример: Вообще говоря, в 80-х годах 19 века Пеано разработал то, что очень близко к обозначениям, которые используются в большинстве современных теоретико-множественных концепций. Однако, как и Лейбниц, Пеано не желал останавливаться лишь на универсальной нотации для математики. Он хотел разработать универсальный язык для всего. Эта идея реализовалась у него в то, что он назвал интерлингва — язык на основе упрощённой латыни. Затем он написал нечто вроде краткого изложения математики, назвав это Formulario Mathematico, которое было основано на его обозначениях для формул, и труд этот был написал на этой производной от латыни — на интерлингве. Интерлингва, подобно эсперанто, который появился примерно в это же время, так и не получил широкого распространения. Однако этого нельзя сказать об обозначениях Пеано. Сперва о них никто ничего толком и не слышал. Но затем Уайтхед и Рассел написали свой труд Principia Mathematica, в котором использовались обозначения Пеано. Думаю, Уайтхед и Рассел выиграли бы приз в номинации "самая насыщенная математическими обозначениями работа, которая когда-либо была сделана без помощи вычислительных устройств".
Вот пример типичной страницы из Principia Mathematica. У них были все мыслимые виды обозначений. Частая история, когда авторы впереди своих издателей: Рассел сам разрабатывал шрифты для многих используемых им обозначений. И, разумеется, тогда речь шла не о шрифтах TrueType или о Type 1, а о самых настоящих кусках свинца. Я о том, что Рассела можно было встретить с тележкой, полной свинцовых оттисков, катящему её в издательство Кембриджского университета для обеспечения корректной вёрстки его книг. Но, несмотря на все эти усилия, результаты были довольно гротескными и малопонятными. Я думаю, это довольно ясно, что Рассел и Уайтхед зашли слишком далеко со своими обозначениями. И хотя область математической логики немного прояснилась в результате деятельности Рассела и Уайтхеда, она всё ещё остаётся наименее стандартизированной и содержащей самую сложную нотацию. Но что насчёт более распространённых составляющих математики? Какое-то время в начале 20 века то, что было сделано в математической логике, ещё не произвело никакого эффекта.
Однако ситуация резко начала меняться с движением Бурбаки, которое начало разрастаться во Франции в примерное сороковые года. Бурбаки придавали особое значение гораздо более абстрактному, логико-ориентированному подходу к математике. В частности, они акцентировали внимание на использовании обозначений там, где это только возможно, любым способом сводя использование потенциально неточного текста к минимуму. Где-то с сороковых работы в области чистой математики претерпели серьёзные изменения, что можно заметить в соответствующих журналах, в работах международного математического сообщества и прочих источниках подобного рода. Изменения заключались в переходе от работ, полных текста и лишь с основными алгебраическими и вычислительными выкладками к работам, насыщенными обозначениями. Конечно, эта тенденция коснулась не всех областей математики. Это в некотором роде то, чем занимаются в лингвистике обычных естественных языков. По устаревшим используемым математическим обозначениям можно заметить, как различные области, их использующие, отстают от основной магистрали математического развития. Так, к примеру, можно сказать, что физика осталась где-то в конце 19 века, используя уже устаревшую математическую нотацию тех времён. Есть один момент, который постоянно проявляется в этой области — нотация, как и обычные языки, сильно разделяет людей.
Я имею в виду, что между теми, кто понимает конкретные обозначения, и теми, кто не понимает, имеется большой барьер. Это кажется довольно мистическим, напоминая ситуацию с алхимиками и оккультистами — математическая нотация полна знаков и символов, которые люди в обычной жизни не используют, и большинство людей их не понимают. На самом деле, довольно любопытно, что с недавних пор в рекламе появился тренд на использование математических обозначений. Думаю, по какой-то причине математическая нотация стала чем-то вроде шика. Вот один актуальный пример рекламы. Отношение к математическим обозначениям, к примеру, в школьном образовании, часто напоминает мне отношение к символам секретных сообществ и тому подобному. Что ж, это был краткий конспект некоторых наиболее важных эпизодов истории математической нотации. В ходе исторических процессов некоторые обозначения перестали использоваться. Помимо некоторых областей, таких как математическая логика, она стала весьма стандартизированной. Разница в используемых разными людьми обозначениях минимальна.
Как и в ситуации с любым обычным языком, математические записи практически всегда выглядят одинаково. Компьютеры Вот вопрос: можно ли сделать так, чтобы компьютеры понимали эти обозначения? Это зависит от того, насколько они систематизированы и как много смысла можно извлечь из некоторого заданного фрагмента математической записи. Ну, надеюсь, мне удалось донести мысль о том, что нотация развивалась в результате непродуманных случайных исторических процессов. Было несколько людей, таких как Лейбниц и Пеано, которые пытались подойти к этому вопросу более системно. Но в основном обозначения появлялись по ходу решения каких-то конкретных задач — подобно тому, как это происходит в обычных разговорных языках. И одна из вещей, которая меня удивила, заключается в том, что по сути никогда не проводилось интроспективного изучения структуры математической нотации. Грамматика обычных разговорных языков развивалась веками. Без сомнения, многие римские и греческие философы и ораторы уделяли ей много внимания. И, по сути, уже примерно в 500 года до н.
Панини удивительно подробно и ясно расписал грамматику для санскрита. Фактически, грамматика Панини была удивительно похожа по структуре на спецификацию правил создания компьютерных языков в форме Бэкуса-Наура , которая используется в настоящее время. И были грамматики не только для языков — в последнее столетие появилось бесконечное количество научных работ по правильному использованию языка и тому подобному. Но, несмотря на всю эту активность в отношении обычных языков, по сути, абсолютно ничего не было сделано для языка математики и математической нотации. Это действительно довольно странно. Были даже математики, которые работали над грамматиками обычных языков. Ранним примером являлся Джон Уоллис, который придумал формулу произведения Уоллиса для числа пи, и вот он писал работы по грамматике английского языка в 1658 году. Уоллис был тем самым человеком, который начал всю эту суматоху с правильным использованием "will" или "shall". В начале 20 века в математической логике говорили о разных слоях правильно сформированного математического выражения: переменные внутри функций внутри предикатов внутри функций внутри соединительных слов внутри кванторов. Но не о том, что же это всё значило для обозначений выражений.
Некоторая определённость появилась в 50-е годы 20 века, когда Хомский и Бакус, независимо разработали идею контекстно-свободных языков. Идея пришла походу работы над правилами подстановки в математической логике, в основном благодаря Эмилю Посту в 20-х годах 20 века. Но, любопытно, что и у Хомского, и у Бакуса возникла одна и та же идея именно в 1950-е. И он заметил, что алгебраические выражения могут быть представлены в контекстно-свободной грамматике. Хомский применил эту идею к обычному человеческому языку. И он отмечал, что с некоторой степенью точности обычные человеческие языки так же могут быть представлены контекстно-свободными грамматиками. Конечно, лингвисты включая Хомского, потратили годы на демонстрацию того, насколько всё же эта идея не соответствует действительности. Но вещь, которую я всегда отмечал, а с научной точки зрения считал самой важной, состоит в том, что в первом приближении это всё-таки истина — то, что обычные естественные языки контекстно-свободны. Однако никто из них не рассматривал вопрос разработки более продвинутой математики, чем простой алгебраический язык. И, насколько я могу судить, практически никто с тех времён не занимался этим вопросом.
Но, если вы хотите посмотреть, сможете ли вы интерпретировать некоторые математические обозначения, вы должны знать, грамматику какого типа они используют. Сейчас я должен сказать вам, что считал математическую нотацию чем-то слишком случайным для того, чтобы её мог корректно интерпретировать компьютер. В начале девяностых мы горели идеей предоставить возможность Mathematica работать с математической нотацией. И по ходу реализации этой идеи нам пришлось разобраться с тем, что происходит с математической нотацией. Нил Сойффер потратил множество лет, работая над редактированием и интерпретацией математической нотации, и когда он присоединился к нам в 1991, он пытаться убедить меня, что с математической нотацией вполне можно работать — как с вводом, так и с выводом. Вопрос заключался во вводе данных. На самом деле, мы уже кое-что выяснили для себя касательно вывода. Мы поняли, что хотя бы на некотором уровне многие математические обозначения могут быть представлены в некоторой контекстно-свободной форме. Поскольку многие знают подобный принцип из, скажем, TEX, то можно было бы всё настроить через работу со вложенными структурами. Но что насчёт входных данных?
Один из самых важных моментов заключался в том, с чем всегда сталкиваются при парсинге: если у вас есть строка текста с операторами и операндами, то как задать, что и с чем группируется? Итак, допустим, у вас есть подобное математическое выражение. Чтобы это понять, нужно знать приоритеты операторов — какие действуют сильнее, а какие слабее в отношении операндов. Я подозревал, что для этого нет какого-то серьёзного обоснования ни в каких статьях, посвящённых математике. И я решил исследовать это. Я прошёлся по самой разнообразной математической литературе, показывал разным людям какие-то случайные фрагменты математической нотации и спрашивал у них, как бы они их интерпретировали. И я обнаружил весьма любопытную вещь: была удивительная слаженность мнений людей в определении приоритетов операторов. Таким образом, можно утверждать: имеется определённая последовательность приоритетов математических операторов. Можно с некоторой уверенностью сказать, что люди представляют именно эту последовательность приоритетов, когда смотрят на фрагменты математической нотации. Обнаружив этот факт, я стал значительно более оптимистично оценивать возможность интерпретации вводимых математических обозначений.
Один из способов, с помощью которого всегда можно это реализовать — использовать шаблоны. То есть достаточно просто иметь шаблон для интеграла и заполнять ячейки подынтегрального выражения, переменной и так далее. И когда шаблон вставляется в документ, то всё выглядит как надо, однако всё ещё содержится информация о том, что это за шаблон, и программа понимает, как это интерпретировать. И многие программы действительно так и работают. Но в целом это крайне неудобно. Потому что если вы попытаетесь быстро вводить данные или редактировать, вы будете обнаруживать, что компьютер вам бикает beeping и не даёт делать те вещи, которые, очевидно, должны быть вам доступны для реализации. Дать людям возможность ввода в свободной форме — значительно более сложная задача. Но это то, что мы хотим реализовать. Итак, что это влечёт? Прежде всего, математический синтаксис должен быть тщательно продуманным и однозначным.
Очевидно, получить подобный синтаксис можно, если использовать обычный язык программирования с основанным на строках синтаксисом. Но тогда вы не получите знакомую математическую нотацию. Вот ключевая проблема: традиционная математическая нотация содержит неоднозначности. По крайней мере, если вы захотите представить её в достаточно общем виде. Возьмём, к примеру, "i". Что это — Sqrt[-1] или переменная "i"? В обычном текстовом InputForm в Mathematica все подобные неоднозначности решены простым путём: все встроенные объекты Mathematica начинаются с заглавной буквы. Но заглавная "I" не очень то и похожа на то, чем обозначается Sqrt[-1] в математических текстах. И что с этим делать? И вот ключевая идея: можно сделать другой символ, который вроде тоже прописная «i», однако это будет не обычная прописная «i», а квадратный корень из -1.
Можно было бы подумать: Ну, а почему бы просто не использовать две «i», которые бы выглядели одинаково, — прям как в математических текстах — однако из них будет особой? Ну, это бы точно сбивало с толку. Вы должны будете знать, какую именно «i» вы печатаете, а если вы её куда-то передвинете или сделаете что-то подобное, то получится неразбериха. Итак, значит, должно быть два "i". Как должна выглядеть особая версия этого символа? У нас была идея — использовать двойное начертание для символа. Мы перепробовали самые разные графические представления. Но идея с двойным начертанием оказалась лучшей. В некотором роде она отвечает традиции в математике обозначать специфичные объекты двойным начертанием. Так, к примеру, прописная R могла бы быть переменной в математических записях.
А вот R с двойным начертанием — уже специфический объект, которым обозначают множество действительных чисел. Таким образом, "i" с двойным начертанием есть специфичный объект, который мы называем ImaginaryI. Вот как это работает: Идея с двойным начертанием решает множество проблем. В том числе и самую большую — интегралы. Допустим, вы пытаетесь разработать синтаксис для интегралов. Один из ключевых вопросов — что может означать "d" в интеграле? Что, если это параметр в подынтегральном выражении? Или переменная? Получается ужасная путаница. Всё становится очень просто, если использовать DifferentialD или "d" с двойным начертанием.
И получается хорошо определённый синтаксис.
Иное дело, что в гражданском «новом стиле» этот день обозначается как «7 января». При исторических датировках приоритет должен отдаваться юлианской дате, так как именно на нее ориентировались современники. Примеры Русский флотоводец Федор Федорович Ушаков скончался 2 октября 1817 года. Бородинская битва произошла 26 августа 1812 года.
В этот день Церковь празднует Сретение Владимирской иконы Божией Матери в память чудесного избавления от полчищ Тамерлана. Поэтому, хотя в XIX веке 12 юлианское августа соответствовало 7 сентября и именно этот день закрепился в советской традиции как дата Бородинской битвы , для православных людей славный подвиг русского воинства был совершен в день Сретения — то есть 8 сентября по н.
Очевидно, из этих сокращений могли возникнуть принятые сегодня обозначения веков: XI - одиннадцатый век, XII - двенадцатый век и т. Однако в современном прочтении прежняя буква X трактуется уже как цифра "десять". Наша гипотеза хорошо согласуется с тем фактом, что средневековые "итальянцы обозначали века по сотням: Треченто трехсотые годы - XIV век, Кватроченто четырехсотые - XV век, Чинквеченто пятисотые - XVI век" Эти названия веков абсолютно ясно указывают на начало отсчета лет именно от XI веке н. Возможно, это также согласуется с обнаруженным нами наложением легенд о Гильдебранде на легенды об Иисусе Христе. Аналогично, запись 1300 год например могла первоначально означать I.
Главный прием фальсификации был гениально прост и состоял в следующем. Первую букву Х то есть Христос объявили в датах обозначением "десяти веков", а первую букву I то есть Иисус объявили обозначением "тысячи".
Вся история поделилась на два больших периода или эры — до рождения Христа и после.
Время после рождения Христа называется нашей эрой, а время с глубокой древности до Р. Х называется временем до нашей эры. Для того чтобы было удобнее представить очерёдность событий, произошедших в разное время, мы используем «ленту времени».
Время на этой линии движется вперед слева направо. Поперечной разделительной линией отмечено начало нашей эры. Исторические события, которые произошли до нашей эры, находятся на ленте времени слева от разделительной линии.
События, расположенные справа от этой линии, относятся к нашей эре. Не перепутайте — счёт лет до нашей эры ведётся в обратном порядке, а время движения всегда направлено по направлению к нашим дням. Давай разберём на примерах.
Нам известно, что Рим был основан за 753 до Р. Мы видим, что годы до н. Нулевого года не существует и после 1 г.
С помощью ленты времени можно посчитать количество лет, прошедших от одного события до другого. Даты, которые находятся в одной эре вычитают, а в разных — складывают. Так, со времени образования Рима в 753 г.
Какими цифрами лучше обозначать века – арабскими или римскими?
Даты в средние века по «ЮЛИАНСКОМУ» и «ГРИГОРИАНСКОМУ» календарям, ведущих летоисчисление от «РОЖДЕСТВА ХРИСТОВА», записывались буквами и цифрами. одно из обозначений года, используемых для григорианского календаря (и его предшественник, юлианский календарь. Новый век, именуемый XXII век, принес с собой важные изменения в различных сферах жизни общества. с помощью римских.
История Славянского летоисчисления
Век 20-й и век 21-й. В чём отличия, какие знаки времени можно выделить? В середине XIX века аристократы наряжали рождественскую елку и соревновались, чья выше и богаче украшена. Расшифровка римских цифр в веках. Чтобы понимать, как определить, с какого года начался 21 век, как и любой другой, необходимо знать один небольшой нюанс общепринятого летоисчисления.