Новости фрактал в природе

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. О природе ков Виталий7 (Высоцкий В С.). ПРОСТО ФРАКТАЛ. Фракталы в природе.

Молния фрактал

Примеры объектов в природе, которые приближённо являются Ф., дают кроны деревьев, кораллы, береговые линии, снежинки. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым». Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы.

Случайность как художник: учёные обнаружили первую фрактальную молекулу

Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика». О природе ков Виталий7 (Высоцкий В С.). А разнообразие видов фракталов в природе значительно больше того, что могут дать результаты компьютерных вычислений. Фракталы существуют не только в макро мире, но и на поверхности Земли.

Фракталы – Красота Повтора

Федер - осаждение кристаллов, например, коллоидного золота. Суть процесса в том, что в стакане осаждаются частички коллоидного золота, причем они могут "приклеиваться" как ко дну, так и к уже осадившимся частичкам. Первые частички на дно стакана падают практически произвольно - любая пылинка или неровность стакана может стать точкой, где начнется осаждение. Однако как только первая частичка подклеилась в какое-то место, площадь поверхности в этой области сразу увеличивается - а значит, шанс, что следующая частичка приклеиться к этой поверхности, значительно выше. Когда следующая частица садиться здесь, площадь поверхности увеличивается еще сильнее - еще больше увеличивая вероятность осаждения частиц именно в этой области. В результате процесса получается древовидная структура, обладающая фрактальными свойствами.

По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде. Посмотрите потрясающие примеры фракталов в природе.

Методы электронной микроскопии и эволюционной биохимии указывают, что этот фрактал может быть эволюционной случайностью. Подпишитесь , чтобы быть в курсе. Снежинки, листья папоротника, капуста романеско имеют общее свойство самоподобия: крупные элементы состоят из более мелких, но такой же структуры, и так далее. И все же в естественной природе истинные фракталы встречаются редко. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу Молекулы также обладают определенной регулярностью, но с большого расстояния этого не заметно.

Если не вглядываться, структура всей молекулы не похожа на структуру ее составных частей. В этом состоит их отличие от фракталов.

Фракталы в природе Что такое фрактал Фрактал — это фигура, обладающая свойством самоподобия. Объект называют самоподобным, если одна или более его частей похожа на его целое. При этом количество повторяющихся частей у фрактала стремится к бесконечности — этим он отличается от самоподобных геометрических фигур с конечным числом звеньев предфракталов. Дерево Пифагора — пример фрактала, о котором мы расскажем далее Изображение: Лев Сергеев для Skillbox Media Термин «фрактал» ввёл в 1975 году американский математик Бенуа Мандельброт. За основу он взял латинское слово fractus, означающее «разделённый на части».

Позже Мандельброт выпустил книгу «Фрактальная геометрия природы» The Fractal Geometry of Nature , в которой представил новый метод описания сложных природных объектов на основе фракталов. Обычные, или евклидовы, фигуры с этой задачей не справлялись, ведь в природе не существует прямых линий, треугольников, квадратов кругов и так далее. Однако о концепции фракталов было известно задолго до первых работ Мандельброта. Первую такую фигуру, которая вошла в историю как «множество Кантора» позже мы расскажем про неё подробнее , открыл Георг Кантор в 1883 году. На её основе математик продемонстрировал и самоподобие, и рекурсию. Позже учёные обнаружили рекурсию в объектах живой природы: деревьях, молниях, облаках и других. Оказалось, что структура таких объектов подобна структуре их частей, а значит, их можно описать неким математическим законом и не пытаться изобразить квадратами, кругами и другими классическими геометрическими фигурами.

Читайте также: Сегодня модели на основе фракталов применяются в физике, биологии, медицине и других науках. А учёные продолжают находить закономерности, связанные с ними, в самых разных явлениях нашей Вселенной. Виды фракталов Фракталы принято делить на геометрические, алгебраические и стохастические. Геометрические — строятся на основе исходной фигуры, которая определённым образом делится и преобразуется на каждой итерации. Алгебраические — строятся на основе алгебраических формул. Стохастические — образуются в том случае, если в итерационной системе случайным образом изменяется один или несколько параметров. Далее мы подробно разберём каждый класс.

Геометрические фракталы Эти фигуры основаны на прямых линиях, квадратах, кругах, многоугольниках и многогранниках. Рассмотрим несколько примеров от самого простого к сложному.

Фракталы в природе: красота бесконечности вокруг нас

Фрактальные структуры порождают процессы с обратной связью, когда одна и та же операция выполняется снова и снова, и результат одной операции является начальным значением для следующей. Проблемы, связанные с итерациями, возникают при изучении эволюции любой системы в любой области знания, от астрономии до биологии и экологии. Например, прочитать генетическую информацию ДНК человека в принципе возможно, не расшифровывая последовательно год за годом три миллиарда буквенных обозначений, а установив ключ, лежащий в основе кода. Несмотря на внешнее разнообразие встречающихся в природе самоподобных структур, все они обладают общей количественной мерой - фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается. Сложные биологические структуры и сигналы могут быть численно охарактеризованы всего лишь одним параметром - показателем фрактальной размерности 1993г.

Первая международная конференция "Фракталы в естественных науках". Как уже отмечалось, фрактальным строением обладает огромное число объектов и процессов в окружающем нас мире. Хрестоматийный пример фрактала - крона дерева. Крона имеет ветвящуюся многомасштабную структуру с отчетливо выраженным самоподобием: ветви разных масштабов похожи между собой и на дерево в целом.

Примерами фракталов являются поверхность облаков и гор, разветвленные системы рек, траектории броуновских частиц, турбулентные вихри в атмосфере и в воде, контуры электрических разрядов и многие другие объекты и явления. Наше ощущение прекрасного возникает под влиянием гармонии порядка и хаоса в объектах природы - тучах, деревьях, горных грядах и кристалликах снега. Их очертания - динамические процессы, застывшие в физических формах, и определенное чередование порядка и беспорядка характерно для них. В 1992 году вышла книга М.

Маковского "Лингвистическая генетика". В ней автор доказывает, что человеческие языки развиваются по законам Менделя. У многочисленных "братьев" и "сестер" родительские признаки расщепляются по закону Менделя в соотношении 3:1. Дурная наследственность порождает мутации - появляются слова уродцы.

Иногда часть слова перепрыгивает с места на место - происходит транспозиция. Лингвист Геннадий Гриневич писал, что языки мира подобны ветвям дерева, то есть имеют общий корень. Математик-лингвист Ноам Хомский доказал, что грамматики всех языков универсальны имеют общие стратегические черты. Эти и другие факты позволили лингвистам создать универсальную математическую модель человеческих языков, которая оказалась похожей на дерево.

Существует математическая модель генетических текстов кодов. Все они имеют общее происхождение и общие черты, которые можно изобразить в виде дерева. Интересно, что сравнение обнаруживает полное сходство деревьев языков и генетических текстов. Возможно, человек подобен памятной книге, в которой пишут отзывы все желающие, в том числе и он сам.

Эти тексты не только формируют его личность, но и впечатываются в ДНК. Говоря о микроэволюции часто пользуются широко принятой аналогией между филетической группой и деревом. Филетическое видообразование можно сравнить с ростом ветвей. Время от времени побеги дерева постригаются, лишая их дальнейшего роста, по некоторым правилам: убираются ветви расположенные на максимальной высоте, нередко отсекаются побеги одной крупной ветви, включающей в себя множество мелких ветвей и веточек.

Дерево научного знания в аксиоматической теории М. Эйдельмана - эквивалент библейского дерева познания добра и зла.

Последнее изменение: 2024-02-27 08:19 Бразильское растение араукария показывает фракталы в природе Когда вы думаете о фракталах, вы можете думать о плакатах и футболках Grateful Dead, пульсирующих всеми цветами радуги и закрученными сходствами.

Фракталы, впервые названные математиком Бенуа Мандельбротом в 1975 году, представляют собой специальные математические наборы чисел, которые демонстрируют сходство во всем диапазоне масштабов, то есть они выглядят одинаково независимо от того, насколько они велики или малы. Еще одна характеристика фракталов заключается в том, что они демонстрируют большую сложность, обусловленную простотой - некоторые из самых сложных и красивых фракталов можно создать с помощью уравнения, состоящего всего из нескольких членов. Подробнее об этом позже.

В середине 00-х годов один математик выдвинул гипотезу, что спиральный узор как на растениях, так и на отпечатках пальцев возникает по одной и той же причине — для снятия стресса. По его словам, силы, действующие в противоположных направлениях, заставляют кожу и ткани растений прогибаться внутрь по мере роста. Снежинка могла бы продолжаться так вечно, увеличиваясь до размеров самой Земли, если бы не перестала накапливать влагу и, в конце концов, не растаяла. Самый известный фрактальный узор снежинки известен как снежинка Коха, возникающая из одного равностороннего треугольника, образующего другой, третий и так далее. Это один из самых ранних описанных фракталов. По мере их роста от ствола отходят ветви, и каждая из этих ветвей сама по себе похожа на меньшее дерево, развивающее свои собственные ветви и свои собственные ответвления. Если вы посмотрите на сложное дерево, то заметите повторение Y-образной формы на всем его протяжении. Такой фрактальный дизайн, подобно спирали суккулентов, помогает деревьям оптимизировать воздействие солнечного света и не позволяет верхним ветвям затенять нижние.

Это явление мастерски продемонстрировано на примере кристаллов меди, которые разветвляются во всех направлениях, как ветви дерева. Каждая «веточка» является новой точкой роста — по мере разветвления она превращается в твердую металлическую медь.

Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств: Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур таких, как окружность, эллипс, график гладкой функции : если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину. Является самоподобной или приближённо самоподобной. Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. В движении Фракталы бесподобны!

Фракталы в природе презентация - 97 фото

Она начинается с чисел 1 и 1, а затем каждое последующее число получается путем сложения двух предыдущих чисел. Спирали в растениях наблюдаются в расположении листьев на стебле, а также в структуре бутона и семян цветка — например, у подсолнуха или структуры плода ананаса и салака. Последовательность Фибоначчи можно заметить и у сосновой шишки, где огромное количество спиралей расположено по часовой и против часовой стрелки. Эти механизмы объясняются по-разному — математикой, физикой, химией, биологией. Каждое из объяснений верно само по себе, но необходимо учитывать их все. С точки зрения физики, спирали — конфигураций низких энергий, которые возникают спонтанно путем самоорганизации процессов в динамических системах. С точки зрения химии, спираль может быть образована реакционно-диффузионным процессом с привлечением как активации, так и ингибирования. Филлотаксис контролируется протеинами, которые управляют концентрацией растительного гормона ауксина, который активирует рост среднего стебля наряду с другими механизмами контроля относительного угла расположения бутона к стеблю. С точки зрения биологии листья расположены настолько далеко друг от друга, насколько позволяет естественный отбор, так как он максимизирует доступ к ресурсам, особенно к солнечному свету, для фотосинтеза. Фракталы — бесконечное почти повторение Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Сам Фрактал — это самоподобная повторяющаяся форма, что означает, что одна и та же основная форма появляется снова и снова.

Другими словами, если вы увеличите или уменьшите масштаб, везде будет видна одна и та же. Эти самоподобные циклические математические конструкции, обладающие фрактальной размерностью, встречаются довольно часто, особенно среди растений. Самый известный пример — папоротник. Листья папоротников являются типичным примером самоповторяющегося ряда. Кстати, бесконечная повторяемость невозможна в природе, поэтому все фрактальные закономерности — это только аппроксимации приближения. Например, листья папоротников и некоторых зонтичных растений например, тмин являются самоподобными до второго, третьего или четвертого уровня.

Примеры природных фрактальных фигур. Слева — лист папоротника. Справа — капуста романеско. Однако на микроскопическом уровне фрактальные узоры никогда ранее не наблюдались. Тем более что так называемые "регулярные", в которых структуры повторяются почти в точности на всех масштабах, очень сложны с геометрической точки зрения. Это микробный фермент, отвечающий за клеточный метаболизм в цианобактериях Synechococcus elongatus, фотосинтезирующих бактериях, которые живут как в воде, так и на суше. Самостоятельная сборка треугольников Серпинского Исследователи объясняют, что фермент, точную форму которого им удалось обнаружить, спонтанно образует треугольники Серпинского. Это фрактальный объект, состоящий из основного треугольника, состоящего из более мелких треугольников Серпинского, каждый из которых сам делится на еще более мелкие варианты, и так далее.

Наша Вселенная «изменилась» — она «стала» фрактальной 7. А точнее, барьер в догматическом сознании научного сообщества был-таки преодолен. В итоге необратимо изменилась наша картина мира, в том числе — и астрономическая. Несомненно, какие бы с нею дальше ни происходили изменения, какие бы ни совершались научные революции, аспект фрактальности навсегда вошел в ее «твердое ядро» принципов-постулатов и не будет изъят ни при какой ревизии [ 6 ]. Патологические структуры, которые были изобретены математиками, желавшими оторваться от свойственного XDC веку натурализма, оказались основой множества хорошо знакомых, повсюду нас окружающих объектов», — констатировал выдающийся физик XX века Фримен Дайсон [4]. Концепция «раздувания» в космологии и фрактальность пространства Вселенной? В отличие от устойчивости, неустойчивость устойчива. Арнольд Все упоминавшиеся системы, сколь ни много их вокруг нас, от микромира до Метагалактики, — все эти материальные объекты, — находящиеся в трехмерном пусть искривленном пространстве, имеют фрактальную структуру, или же дробную размерность. А мыслимо ли, и какой смысл могло бы иметь само пространство такой дробной размерности? Или, в еще более общем случае, — комплексной дробной размерности? Лично меня этот вопрос интересует где-то с начала 50-х гг. Очень многозначительным представляется то, что буквально в последние годы появился в теории первый объект, в отношении которого можно думать, что он обладает именно пространством фрактальной структуры и, возможно, дробной размерности. История науки показывает, насколько принципиальным оказывается почти всегда такой первый шаг, открывая новую область явлений, хотя по единственному, уникальному объекту не удавалось, естественно, установить ни меру типичности, ни степень нетривиальности нового объекта. Вспомним из истории астрономии открытие первого кольца у планеты, первой периодической кометы, первого астероида, первого квазара и т. Вернемся, однако, к нашему, по самой своей сути уникальному и единственному известному да и то пока гипотетически объекту с фрактальной размерностью пространства во Вселенной. Этот объект — сама Большая Вселенная в модели хаотического раздувания Линде [ 1 ]. Фрактальную природу и структуру эта модель имеет «по построению», в силу стохастического по законам случая ветвления процесса раздувания в пространстве и времени 8. Композиция из фрактальных множеств Мандельброта Первые попытки численного моделирования подобного явления были проведены самим А. Имеющиеся последующие оценки пока не позволяют количественно указать размерность пространства стохастически раздувающейся Вселенной. Процесс этот «стабильно неустойчив». Размерность такой модели Вселенной может оказаться и не обязательно дробной подобно тому, как целочисленной, но более высокой, чем у обычной линии, оказывается размерность броуновской траектории — см. Через несколько лет после пионерской работы Линде фрактальность в космологии — нецелочисленность с изменением — от нормальной тройки в лаборатории до двойки на космологическом горизонте заподозрила А. Попова ГАИШ в цикле работ 90-х гг. Собственный оригинальный подход к этой проблеме развивает известный специалист по общей теории относительности ОТО и релятивистской космологии Р. Правда, еще несколькими годами ранее группа итальянских астрофизиков А. Грасси и др. По существу, проблема фрактальной размерности пространства Метагалактики лишь начинает входить в науку, и различные исследователи только еще нащупывают варианты существующих здесь возможностей. Какой же окажется размерность нашей локальной и, далее, «Большой Вселенной» в конце концов? Или 50610? Вопрос пока, насколько мне известно, открыт. Тем более, остается неясной проблема смысла и физической реализации во Вселенной комплексной в частном случае — чисто мнимой размерности пространства. И, пожалуй, совершенно не в наших силах представить себе, что могла бы значить дробная размерность да еще комплексная космологического времени! Впрочем, вспомним слова Л. Ландау о том, что мы, если надо, можем понять даже то, что не можем представить! Генрих Герц В математическом плане фрактальный подход отождествляется пока что почти исключительно с фрактальной геометрией. Это было заложено еще в основополагающих трудах Мандельброта, и ситуация не изменилась за два десятилетия интенсивного развития концепции фракталов. Геометрические изображения фракталов к тому же иногда весьма впечатляющи, а подчас и потрясающе красивы, бесконечно разнообразны и чрезвычайно эвристичны [ 7 ]. Кстати, эта красота — один из эмпирически и эвристически надежных критериев фундаментальности фракталов как объектов Природы, Космоса [ 8 ]. Компьютеры же, способные наглядно демонстрировать фрактальные геометрические объекты, открывают исследователям пока практически единственный путь в мир фракталов [ 4 ], [ 9 ] 10. Вспомним здесь упомянутые выше яркие провидения художника Эсхера, первым увидевшего фрактальный мир. Однако, сколь ни впечатляющи успехи компьютерной математики, обобщающая мощь аналитического подхода в самой математике, в физике, астрономии и в других науках не должна недооцениваться. Бесконечный спектр качественных возможностей, заложенный в единой аналитической формуле, алгоритме, — законе, в конце концов! Да и саму формулу «закона природы» компьютеры открывать не умеют. Наиболее перспективно сочетание этих двух математических подходов. Фракталы, по общему признанию специалистов, — пока самый результативный если не единственно эффективный, а то и единственно возможный путь к проникновению в «законы хаоса»! Сам Мандельброт подчеркивал, что здесь речь идет именно об «изучении порядка в хаосе». В частности, фрактальными оказываются фундаментальные свойства выходящих ныне на первый план как в математике, так и в физике «странных аттракторов» 11. Топология их, похоже, из всех современных методов математики под силу лишь фрактальному подходу. Между тем, нередки утверждения, что до сих пор эта область математики не имеет адекватного аппарата в традиционной математике. Такая позиция отражает то, что «фрактальная геометрия» и компьютерные исследования фракталов недостаточны на новом пути познания Мира. Правомерен вопрос: а не может ли быть создан соответствующий математический аналитический аппарат, по мощи и общности аналогичный дифференциальному и интегральному исчислениям, который «обслуживал» бы фрактальный аспект исследования Вселенной средствами не геометрии, а математического анализа? Когда меня очень давно осенила эта идея, «... Говоря откровенно, я задаю сей вопрос чисто риторически и даже в расчете на весьма вероятную недостаточную здесь информированность большинства читателей. Все дело в том, что такой аппарат уже давно существует, но незаслуженно мало известен. Основы его созданы точнее, завершены почти полтораста лет назад! Вспомним аполлониеву теорию конических сечений, две тысячи лет ждавшую Кеплера; тензорное исчисление Риччи и «воображаемую геометрию» Лобачевского — «заготовки» для будущей ОТО. Мы говорим об исчислении, обобщающем подобно дробным степеням в биноме Ньютона операции дифференцирования и интегрирования на дробные включая комплексные порядки производной и, соответственно, кратности интеграла. Масштаб этого обобщения грандиозен, даже в чисто количественном плане: от математического аппарата дифференциального и интегрального исчисления, пригодного построенного для счетного множества значений «аргумента», т. Поставлена задача столь широкого обобщения была еще 300 лет назад самим Лейбницем. Однако достаточно полное решение, в главных чертах, было найдено лишь во второй половине XIX в. Первый вариант указан в 1858 г.

Законы, управляющие созданием фракталов, похоже, встречаются во всем мире природы. Ананасы растут по фрактальным законам, а кристаллы льда формируются фрактальными формами, такими же, как в дельтах рек и венах вашего тела. Часто говорят, что Мать-Природа - чертовски хороший дизайнер, и фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи. Фракталы сверхэффективны и позволяют растениям максимально эффективно использовать солнечный свет и сердечно-сосудистую систему.

Откройте свой Мир!

Самым известным примером фракталов в природе является снежинка. Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения.

Физики нашли фракталы в лазерах

фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского». Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика». Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах.

Похожие новости:

Оцените статью
Добавить комментарий