тэги: водородная бомба, водородное оружие, вооружение россии 2013, стратегические вооружения, термоядерная бомба, термоядерное оружие. Мировое сообщество было разочаровано новостью о создании водородной бомбы, считает историк Клим Жуков.
Водородная бомба и ядерная бомба отличия
СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Водородная бомба (термоядерное оружие) — вид ядерного оружия, основанного на использовании энергии реакции ядерного синтеза легких элементов в более тяжелые. Первая советская водородная бомба в секретных документах называлась «Изделие РДС-6». Как теперь известно, американская водородная бомба начинает свою историю с 1946 года.
ВОДОРОДНАЯ БОМБА
Пепел и сажа, выброшенные в атмосферу во время ядерной войны, могут охладить климат, если будет сброшено достаточное количество бомб. Один или два ядерных взрыва не будут иметь глобальных последствий. Но детонация 100 боеприпасов размером с те, что были сброшены на Японию в 1945 году, снизит глобальные температуры до уровня ниже, чем в Малый ледниковый период с 1300 по 1850 год. Внезапное похолодание может повлиять на сельское хозяйство и снабжение продовольствием. Так, Малый ледниковый период стал причиной неурожая и голода тогда, когда население Земли было в семь раз меньше, чем сейчас. Кстати, ранее ученые решили выяснить, у каких государств больше шансов на выживание во время ядерной зимы. Подробнее об этом мы писали в материале « Какие пять стран переживут ядерную зиму ». Последствия, очевидно, будут катастрофическими. Поэтому важно не допустить такого сценария. Так выглядят ядерные взрывы:.
Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Слайд 5 Описание слайда: Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу.
С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.
Слайд 6 Описание слайда: Механизм действия водородной бомбы.
Ядерный гриб взрыва поднялся на высоту 67 километров для сравнения: современные пассажирские самолеты летают на высоте 8-11 километров. Ощутимая волна атмосферного давления, возникшая в результате взрыва, три раза обогнула земной шар, распространившись всего за несколько секунд, а звуковая волна докатилась до острова Диксон на расстоянии около 800 километров от эпицентра взрыва расстояние от Москвы до Санкт-Петербурга. Радиацией было заражено все на расстоянии двух-трех километров. Немного истории После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек.
Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более. Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1. Немного истории Испытания термоядерной бомбы После взрыва в Хиросиме и Нагасаки, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка.
Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной. Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать взрывы в Японии, можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой. Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно.
Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал.
Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Царь-бомба Мощнейшая водородная бомба была испытана Советами в 1961 году.
Для этого в апреле 1946-го на базе Лос-Аламосской национальной лаборатории начала работать группа специалистов, которую возглавил физик Эдвард Теллер. Теллер разработал схему прямолинейной реализации «зажигалки» — атомной бомбы в толще жидкого дейтерия. Для реализации проекта нужно было много трития. Пришлось построить ряд реакторов.
Термоядерное устройство его назвали Mike начали разрабатывать лишь полгода спустя. Американцы справились быстро.
Термоядерное оружие: Как устроена водородная бомба
Фото: Соцсети Многие эксперты солидарны в том, что нарочито громкое, демонстративное заявление советского лидера в Берлине имело целью подтолкнуть американцев к переговорам и заключению обязывающих соглашений. А чтобы так ставить вопрос - о переговорах между Москвой и Вашингтоном на равных, - надо было как минимум обеспечить фактический паритет СССР и США в ядерных вооружениях. Советский Союз вступил в эту гонку на исходе тяжелейшей для себя войны и первые пятнадцать лет был в роли догоняющего. Даже после того, как в СССР провели первое испытание своей атомной бомбы 29 августа 1949 года , говорить о преодолении атомной монополии США можно было лишь условно. Согласно рассекреченным документам Атомного проекта СССР в начале 1950 года наша страна располагала только единичными экземплярами ядерных устройств. А в арсенале США уже в 1950 году насчитывалось свыше четырехсот ядерных бомб, причем производили их серийно. Американцы объявили о таком испытании почти на год раньше. Но они, по выражению их же специалистов, взорвали "дом с тритием" - громоздкий лабораторный образец. А в СССР провели испытание компактного, практически готового к применению боевого устройства: бомбу РДС-6с испытали, сбросив с самолета.
В последующие 5-7 лет этот перелом удалось закрепить. Инициативные разработки конструкторов-ядерщиков обеспечили создание в СССР новейших систем вооружения для целей обороны и стратегического сдерживания. Поэтому заявление Хрущева в Берлине, сделанное 16 января 1963 года, отражало реальную расстановку сил и принципиально отличалось от того, что было сообщено от имени советского руководства в марте 1950-го.
Остров Элугелаб был полностью разрушен. Грибовидное облако поднялось на 41 километр. В историю американцы вошли как первые создатели водородной бомбы чем они, несомненно, очень гордятся , но это была не победа, а проигрыш. Русские оказались умнее. Всё дело в том, Ivy Mike был бесполезен с практической точки зрения. Он весил слишком много по разным источникам, 82 или 62 тонны , а поэтому не годился для транспортировки.
Андрей Сахаров с первой женой у своего дома на объекте. Начало 1950-х. Первая советская водородная бомба в секретных документах называлась «Изделие РДС-6». Источник: wikipedia. И снова важную роль сыграли идеи Сахарова.
А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии.
Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость. Тут протон со звуком замещается в ядре водорода на два элемента - дейтерий и тритий: Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород; Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза. Сначала взрывается атомный запал из двух кусков урана-235 или плутония-239.
Находятся они в хвостовой части бочки. При соединении они достигают критической массы и начинается цепная реакция. Это и есть атомный взрыв. За счет него выделяется тепло, которое начинает термоядерный синтез гелия из дейтерия. Подробнее о самых мощных атомных бомбах. Испытания термоядерной бомбы После взрыва в Хиросиме и Нагасаки , окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров.
Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной. Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать взрывы в Японии , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн.
Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой. Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт.
Что произойдет после взрыва ядерной бомбы?
Водородная бомба — ядерное оружие, которое использует процесс термоядерного синтеза для создания огромного количества энергии. Водородная (термоядерная) бомба: испытания оружия массового поражения. как действует водородная бомба и каковы последствия взрыва. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как термоядерная бомба, иногда называемой водородной.
Как устроена водородная бомба
Одним из типов ядерного оружия является термоядерное оружие, которое многим из нас более известно под названием водородная бомба. Водородная бомба. Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим. тип ядерного оружия, разрушительная сила которого Разработка водородной бомбы. Отметим, что реализация ключевого для водородной бомбы принципа сжатия термоядерной взрывчатки в «Слойке» был иным, чем в бомбе Теллера-Улама. Принцип термоядерной реакции: Водородная бомба использует термоядерную реакцию, при которой происходит слияние легких ядер (обычно изотопов водорода) при высоких температурах и давлениях.
Радиоактивные осадки
- Ядерная бомба — история появления ядерного оружия
- «Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия
- Что такое бомба?
- Публикации
«Отец» водородной бомбы
Во время испытаний в радиусе 1000 километров от эпицентра взрыва не раз было зафиксировано нарушение радиосвязи. В пределах 100 км от взрыва здания были полностью уничтожены. Ударная волна, создаваемая водородной бомбой, три раза проходила вокруг всего Земного шара, заставив весь мир содрогнуться, посеяв беспрецедентный страх. Ядерные бомбы идеальным образом уравновешивают мир на Земле. Также ядерное вооружение, которым владеют многие страны, позволяет избегать крупномасштабных военных действий между государствами. Хотя сила ядерного оружия чрезвычайно ужасна, нашей стране ядерное вооружение позволяет чувствовать себя в безопасности. Долгое время наличие ядерного арсенала России удерживало другие страны от соблазна напасть на наши территории. К сожалению, в последние годы некоторые страны как-то позабыли о нашем большом арсенале, считая, что многое вооружение устарело.
Но это не так. За последние 20 лет наша страна создала массу новых вооружений. В том числе и ядерных. Естественно, большинство технологий держится в секрете. Последние материалы.
Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов.
Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли , где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.
Отечественный аналог американской бомбы «Толстяк» Fatman имел плутониевый заряд мощностью 20—22 килотонны. Как известно, «конспиративная» аббревиатура РДС, которая впоследствии присваивалась и другим образцам советского ядерного оружия бомбам, боевым частям ракет и артиллерийским снарядам , означала «реактивный двигатель специальный», что, однако, охраняющими тайну режимщиками интерпретировалось как «реактивный двигатель Сталина», а учеными гораздо удачнее — «Россия делает сама». Масса РДС-1 достигала почти пяти тонн, что исключало его применение с каких-либо иных самолетов, кроме дальних бомбардировщиков. Систему, обеспечивающую использование «изделий 501» на тяжелых Ту-4А «А» — значит «атомный» разработал Александр Надашкевич. Но сами эти поршневые бомбардировщики, представлявшие собой «пиратские копии» американских В-29 «Суперфортресс» тех самых, что сожгли Хиросиму и Нагасаки , как отмечено выше, уже безнадежно устарели и из-за низкой скорости представляли собой легкую добычу для истребителей противника. Это, кстати, доказали советские летчики, легко расправлявшиеся на МиГ-15 с американскими В-29 во время войны в Корее. Дальнейшее развитие ядерного бомбового вооружения в СССР шло по пути повышения мощности зарядов с одновременным обеспечением их компактности, что позволило бы размещать боеприпас на легких реактивных бомбардировщиках и даже истребителях фронтовой авиации, решавшей тактические задачи. В некоторых ситуациях если особо важные цели на территории противника находились в пределах радиуса действия самолетов тактические крылатые машины приобретали определенный стратегический статус. В последующем были созданы и пущены в серию усовершенствованные ядерные авиабомбы типа РДС-2 38 килотонн с плутониевой и РДС-3 42 килотонны с уран-плутониевой начинкой, причем все ранее выпущенные бомбы типа РДС-1 переделали в РДС-2. Прогресс был налицо: мощность зарядов удалось увеличить в два раза, а массу, наоборот, уменьшить. Бомба РДС-3, получившая еще и женское имя «Мария», стала первым в нашей стране ядерным боеприпасом, испытанным не в экспериментальном наземном варианте, а сбросом с борта самолета Ту-4 18 октября 1951-го. По опубликованным материалам ветерана отечественного атомного проекта Е. Ударная волна Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда. Разработка самолёта-носителя[править править код] Основная статья: Ту-95 Для доставки бомбы коллективом под руководством Александра Надашкевича в 1955 г. Этот самолёт был изготовлен в единственном экземпляре[1]. Первые проработки по этой теме начались сразу после переговоров И. Курчатова осенью 1954 года с А. Туполевым, который назначил руководителем темы своего заместителя по системам вооружения А. Анализ показал, что подвеска такой большой бомбы потребует серьёзных изменений в самолёте. В первой половине 1955 года были согласованы габариты, вес и размещение АН202 в самолёте. Для подвески АН202 был разработан новый балочный держатель на основе БД-206. Разработанный новый БД7-95-242 БД-242 был значительно грузоподъёмнее БД-206, он имел три бомбардировочных замка Дер5-6 грузоподъёмностью 9 тонн каждый. Три замка создали проблему безопасного сброса бомбы и она была решена — электроавтоматика обеспечила синхронное открытие всех трёх замков[20]. Затем Ту-95В был принят заказчиком и передан для проведения лётных испытаний, которые велись включая сброс макета «супербомбы» под руководством полковника С. Куликова до 1959 года и прошли без особых замечаний[20]. Ту-95В перегнали на аэродром в Узин, где он использовался как учебный самолёт и уже не числился как боевая машина. В 1961 г. Самолёт был также покрыт специальной светоотражающей краской белого цвета[21]. Осенью 1961 года самолёт был доработан для испытаний АН602 на Куйбышевском авиазаводе[1]. Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров. Поражающими факторами при ее взрыве являются ударная волна, световое излучение, проникающая радиация и радиоактивное заражение.
«Настоящая водородная» (к 55-летию испытаний термоядерного заряда РДС-37)
Примерно в то же время они стали участниками Манхэттенского проекта и помогли создать бомбы, позднее сброшенные на Хиросиму и Нагасаки. Сконструировать термоядерный боеприпас оказалось намного сложнее. Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов.
Воздействие и последствия: Взрыв водородной бомбы имеет разрушительные последствия, включая огромный огненный шар, ударную волну и радиационное излучение. Последствия воздействия водородной бомбы могут быть катастрофическими, причиняя разрушения в радиусе нескольких километров и оставляя долгосрочное радиоактивное загрязнение. Международные соглашения: Существуют различные международные соглашения, направленные на контроль и ограничение использования ядерного оружия, включая водородные бомбы. Некоторые из них включают Договор об всеобъемлющем запрещении ядерных испытаний и Договор о нераспространении ядерного оружия. Важно отметить, что водородная бомба представляет собой чрезвычайно разрушительное оружие, и ее использование имеет потенциально катастрофические последствия для человечества. В настоящее время глобальное сообщество стремится к ядерному разоружению и созданию мира без ядерного оружия. Этот процесс освобождает огромное количество энергии по сравнению с ядерным расщеплением, которое используется в атомных бомбах.
Детонатор: Для инициирования термоядерной реакции в водородной бомбе используется атомная бомба в качестве детонатора.
Идея термоядерного оружия, где ядра атомов сливаются, а не расщепляются, как в атомной бомбе, появилась не позднее 1941 года. Она пришла в головы двум физикам: Энрико Ферми и Эдварду Теллеру. Примерно в то же время они стали участниками Манхэттенского проекта и помогли создать бомбы, позднее сброшенные на Хиросиму и Нагасаки. Сконструировать термоядерный боеприпас оказалось намного сложнее.
Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров.
Поражающими факторами при ее взрыве являются ударная волна, световое излучение, проникающая радиация и радиоактивное заражение. Бомбу разработала в середине 1950-х годов группа физиков под руководством академика Игоря Курчатова. У бомбы, помимо официального обозначения АН602, было еще кодовое «Ваня» или «Иван», а также есть широко распространенные неофициальные названия — «Царь-бомба» и «Кузькина мать». Название «Царь-бомба» подчеркивает, что это самое мощное оружие в истории. Название «Кузькина мать», как считается, появилось под впечатлением от известных слов советского лидера Никиты Хрущева, который в 1959 году заявил вице-президенту США Ричарду Никсону: «В нашем распоряжении имеются средства, которые будут иметь для вас тяжелые последствия. Мы вам покажем кузькину мать!
Фото: belushka. Изначально эта разработка была поручена новому ядерному центру на Урале НИИ-1011 ныне Российский Федеральный Ядерный Центр — Всероссийский научно-исследовательский институт технической физики имени академика Е. Но конструкторы Ту-95 который должен был доставлять бомбу до места падения отвергли эту идею сразу. Самолет с такой нагрузкой просто не смог бы долететь до полигона. Заданная масса «супербомбы» была уменьшена. В результате получился, по сути дела, новый, а не просто доработанный вариант старого самолета, получивший обозначение Ту-95-202 Ту-95В.
Самолет Ту-95-202 был оборудован двумя дополнительными пультами управления: один — для управления автоматикой «изделия», другой — для управления его системой обогрева. Очень сложной оказалась проблема подвески авиабомбы, так как из-за своих габаритов она не помещалась в бомбовый отсек самолета. Для ее подвески было сконструировано специальное устройство, обеспечивавшее подъем «изделия» к фюзеляжу и закрепление его на трех синхронно управляемых замках. В самолете заменили все электрические разъемы, крылья и фюзеляж покрыли светоотражающей краской. Для обеспечения безопасности самолета-носителя московские конструкторы парашютно-десантной техники разработали специальную систему из шести парашютов площадь самого большого равнялась 1,6 тысячи квадратных метров. Они выбрасывались из хвостовой части корпуса бомбы один за другим и замедляли снижение бомбы, так что самолет успевал к моменту взрыва отойти на безопасное расстояние.
Ту-95-202 сначала использовался как учебный на аэродроме в городе Энгельсе, а затем был списан за ненадобностью. Однако в 1961 году, с началом нового витка «холодной войны», испытания «супербомбы» вновь стали актуальными. После принятия постановления Правительства СССР о возобновлении испытаний ядерного заряда в июле 1961 года началась авральная работа в КБ-11 ныне Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, РФЯЦ-ВНИИЭФ , которому в 1960 году была поручена дальнейшая разработка супербомбы, где ей было присвоено обозначение «изделие 602». В конструкции самой супербомбы и ее заряда было применено большое число серьезных новшеств. Первоначально мощность заряда составляла 100 мегатонн тротилового эквивалента. По инициативе Андрея Сахарова мощность заряда была снижена вдвое.
Самолет-носитель из списанных возвратили в строй. На нем срочно заменили все разъемы в системе электроавтоматики сброса, сняли створки грузоотсека, так как реальная бомба по габаритам и массе оказалась несколько больше макета длина бомбы — 8,5 метра, ее масса — 24 тонны, парашютной системы — 800 килограмм. Особое внимание было уделено специальной подготовке экипажа самолета-носителя. Никто не мог дать летчикам гарантию благополучного возвращения после сброса бомбы. Специалисты опасались, что после взрыва может возникнуть неконтролируемая термоядерная реакция в атмосфере. Руководила испытаниями Государственная комиссия.
Следом взлетел самолет-лаборатория Ту-16 для записи явлений взрыва и полетел ведомым за самолетом-носителем. Весь ход полета и сам взрыв снимались с борта Ту-95В, с сопровождавшего Ту-16 и с различных точек на Земле. Фото: www.
Какую роль в истории СССР сыграло появление водородного оружия
- Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР
- Литературные дневники / Проза.ру
- Состоялось испытание первой Советской водородной бомбы
- Почему предпочтительнее слияние ядер?
- Презентация по физике на тему: "Термоядерные реакции. Водородная бомба"
- Читайте также
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
Наконец, можно использовать третью ступень того же типа, что и вторая, для создания гораздо более мощной водородной бомбы. Эта дополнительная ступень намного больше в среднем в десять раз больше , и ее синтез инициируется энергией, выделяемой при синтезе второй ступени. Таким образом, мы можем производить водородные бомбы очень высокой мощности, добавляя несколько ступеней. Мощность первичной ступени и ее способность вызывать взрыв вторичной повышаются подпитываются смесью трития , который вступает в реакцию ядерного синтеза с дейтерием. Синтез генерирует большое количество нейтронов , которые существенно увеличивают деление высокообогащенного плутония или урана, присутствующего в ступенях. Такой подход используется в современном оружии для обеспечения достаточной мощности, несмотря на значительное уменьшение габаритов и веса. Сама бомба окружена конструкцией, которая позволит сохранить массивный вклад рентгеновских лучей, возникающих при взрыве бомбы деления. Затем эти волны перенаправляются, чтобы сжать термоядерный материал, и тогда может начаться полный взрыв бомбы.
Архитектурная бомба Теллера-Улама - это то же самое, что и бомба деления-синтеза-деления. Самого по себе этого недостаточно для начала термоядерного взрыва, но его можно использовать для ускорения реакции: несколько граммов дейтерия и трития в центре делящейся активной зоны произведут большой поток нейтронов, что значительно увеличит скорость горения материал делящийся. Полученные нейтроны имеют энергию 14,1 МэВ , что достаточно, чтобы вызвать деление U-238, что приведет к реакции деления-синтеза-деления. Другие реакции могут продолжаться только тогда, когда первичный ядерный взрыв создал необходимые условия температуры и сжатия. Для реакции деления требуется 550 нс, а для реакции синтеза - 50 нс. После воспламенения химического взрывчатого вещества срабатывает бомба деления. Взрыв вызывает появление рентгеновских лучей , которые отражаются от оболочки и ионизируют полистирол, переходящий в плазменное состояние.
Рентгеновские лучи облучают буфер, сжимающий термоядерное топливо 6 LiD , и праймер из плутония, который под действием этого сжатия и нейтронов начинает трескаться. Сжатый и доведенный до очень высоких температур дейтерид лития 6 LiD запускает реакцию синтеза. Обычно наблюдается такой тип реакции синтеза: Когда термоядерный материал плавится при температуре более ста миллионов градусов, он выделяет огромное количество энергии. При данной температуре количество реакций увеличивается как функция квадрата плотности: таким образом, более высокое сжатие в тысячу раз приводит к образованию в миллион раз большего количества реакций.
Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6Li это связано с особенностями прохождения термоядерных реакций , а в природе он находится в смеси с изотопом 7Li. Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6Li. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн.
При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже.
При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже. После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны. Однако все, что мы могли почерпнуть из предыдущего текста, говорит о взрывном характере таких процессов. Тогда почему Солнце не взрывается как термоядерная бомба?
Дело в том, что ядра дейтерия сами образуются в результате слияния двух ядер водорода, да не просто слияния, а с распадом одного из протонов на нейтрон, позитрон и нейтрино т. При этом образующиеся ядра дейтерия распределены по объему солнечного ядра довольно равномерно. Поэтому при её огромных размерах и массе отдельные и редкие очаги термоядерных реакций относительно небольшой мощности как бы размазаны по всему его ядру Солнца.
Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году проект неофициально назывался Super , но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу.
О том, какие секреты хранит в себе это опаснейшее ядерное оружие, смотрите в сегодняшнем видео на канале NewSoldat. Также смотрите другие видео на нашем канале: 14 самых крупных ядерных взрывов. Показать больше.
Впоследствии именно первую модель выбрали для дальнейших испытаний. К моменту взрыва полигон быль тщательно подготовлен: 16 самолетов, 7 танков, орудий и минометов, 1300 измерительных, регистрирующих и киносъемочных приборов, 1700 различных индикаторов.
Специально для аппаратуры, регистрирующей термоядерные процессы, в 5 м от места подрыва соорудили бункер. Сам заряд установили на стальной башне, на высоте 30 м закрепили бомбу. Около 7:30 утра 12 августа 1953 года горизонт озарила вспышка света от взрыва. Мощность взрыва в 20 раз превысила показатели первой атомной бомбы. В то время "противник" не обладал ничем подобным.
Самое важное - в нашем Telegram-канале.
Спецработа
- Водородная бомба
- Что включает в себя ядерное оружие
- Содержание
- Что такое реакция слияния ядер?