Прогноз осадков на 2 часа (наукастинг). Сотрудники «Фобоса» предупредили россиян о мощнейшей за шесть лет вспышке на Солнце. Погода в Казахстане 16 февраля: ожидаются сильные морозы, на юго-востоке — осадки. Фобос – последние новости.
наукастинг осадков на 2 часа
Например, это может быть, когда размерность была сознательно уменьшена в целях облегчения данных для тестирования новых моделей и проверки гипотез. Для использования данного метода будет необходимо использовать данные в виде одномерного массива. Задача нейронной сети — спрогнозировать значения ошибок на основе входных данных радарных наблюдений. Рассмотрим применение второго типа нейронных сетей. Работа с данными В качестве исходных данных имеем следующее: Input — Объединенные поля радиолокационных наблюдений. Регион: Центральный федеральный округ. Период испытаний: июнь — сентябрь 2020 г. Рисунок 1.
Содержание файлов. Предварительная обработка файлов заключает в себя следующие этапы: Преобразование данных в виде матрицы в одномерные массивы длинной в 25 элементов Имена файлов преобразуются в формат ДД. ММ Для файлов из папки output к дате прибавляется три часа Далее из папки input удаляются все файлы, имен которых нет в папке output так как некоторые прогнозы отсутствуют.
Видеоурок по географии 6 класс 7 лет назад. Просмотры: 53241 Youtube - InternetUrok. География в действии! Распределение атмосферного давления и осадков на Земле 6 лет назад. Просмотры: 36658 Youtube - Образование. Обучение - Znaika TV.
Одна из главных целей Росгидромета на 2018 год - это повысить прогнозируемость опасных явлений до 98 процентов. Именно они в 2017 году подпортили статистику. В прошлом году синоптикам не удалось предсказать 22 опасных явления, что на пять больше, чем годом ранее. В результате оправдываемость прогнозов составила 93,8 процента, за год показатель снизился на 0,7 процента. Всего в стране за год было зафиксировано 907 опасных явлений, из которых 378 нанесли значительный ущерб отраслям экономики и жизнедеятельности населения. В основном это сильные морозы, дожди и ветер, а также крупный град. Росгидромет спрогнозировал и выпустил предупреждение о 1850 штормовых предупреждениях. Они имели предсказуемость от нескольких часов до нескольких суток. Но оправдываемость таких прогнозов составляет 94 процента.
Принципиально его можно взять всего из двух мест: либо проанализировав предыдущие радарные снимки и применив, скажем, алгоритмы оптического потока, либо из каких-то других источников. Например, можно воспользоваться метеомоделированием и результатом работы того же ОРФ или Метеума. Берем поле ветров и с его помощью переносим картинки, которые возвращает радар. Оба способа получения векторных полей имеют недостатки. Оптический поток нельзя посчитать в местах, где не летит облако. Там не от чего отражаться радарному лучу, и нет никаких данных о скорости воздуха и направлении движения. Метеомоделирование может не совпадать с реальностью. Поэтому если бы мы использовали только данные метеомодели, могло бы так получиться, что в исторических данных радара облако летит в одну сторону, а потом в прогнозе ветров резко разворачивается и летит в другую сторону. Третий компонент наукастинга — алгоритм применения векторного поля. Здесь наука умеет довольно многое. Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео. Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз. Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30. Требование было следующим: предсказывать радарные данные где-то на два часа вперед. Предсказания получались вот такие. Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте. Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем. Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты. Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок. Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4. Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически?
АИИС «МетеоТрасса» для автодорог
Live wind, rain, radar or temperature maps, more than 50 weather layers, detailed forecast for your place, data from the best weather forecast models with high resolution. Опасные явления — шквалистый ветер, сильные ливневые осадки, град — живут недолго, поэтому о них часто предупреждают лишь за несколько часов до возникновения. И снова про наукастинг Когда мы говорим о прогнозе погоды, то чаще всего подразумеваем температуру и осадки, например, на завтра или ближайшие выходные. Новости от 08.04.2024 10:31. Развивается новое направление в прогнозировании погоды — наукастинг, позволяющий выпускать сверхкраткосрочный прогноз об опасных явлениях погоды на ближайшие несколько часов. есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить.
Наукастинг осадков на 2 часа
По данным столичного Департамента транспорта, до конца дня в городе будет дождь с грозой и сильный ветер. В вечерний разъезд локальные затруднения ожидаются по направлению в область на шоссе Энтузиастов и на Ленинградском шоссе. Автомобилистам рекомендовали избегать резких маневров, соблюдать дистанцию и скоростной режим. Эта погода на 3-4 градуса превышает климатическую норму для Москвы, по словам специалиста.
Морозы немного ослабеют, в дальнейшем Центральный федеральный округ. Сибирский федеральный округ. На Сахалине 6-9 января аномально холодная погода, 7 января на юге сильный снег.
По результатам наблюдений метеорологи построили диаграмму выпадения осадков по месяцам. Рассмотрите диаграмму выпадения осадков и ответьте на вопросы. Воскресенье может стать самым дождливым днем в Москве за последние 75 лет. Больше всего осадков выпадало только в 1951 году. Следующую ступень по количеству ежегодных осадков занимает город Хокитика, который располагается вдоль реки Кропп. Этот новозеландский городишко страдает от дождей практически каждый день. Однажды за 48 часов на его территории выпало около 1000 мм воды. Больше всего Солнца в уходящем году увидели жители Краснодара 116 дней и Уфы 115 дней. Сентябрь в Москве побил 141-летний рекорд по наименьшему количеству осадков "Атмосфера": 14 градусов ожидается в столице вечером 8 февраля. Синоптики предупредили москвичей о резком похолодании 9 февраля. Сентябрь в Москве перевыполнил месячную норму осадков Также можно рассчитать самый дождливый город в мире по общему количеству осадков, выпадающих в нем за год. С помощью этого метода отслеживать количество осадков может быть немного сложнее, но информация помогает метеорологам и инженерам планировать. В Москве установлен суточный рекорд по количеству осадков - Парламентская газета Лето же достаточно влажное и дождливое. Сумма осадков за год составляет 864 мм. В городе Анива выпадает больше всего осадков — 990 мм. Он уже накрыл Москву и направляется к городам Поволжья Циклон «Ольга» придет в Центральную Россию Воскресенье может стать самым дождливым днем в Москве за последние 75 лет Рейтинг заснеженности городов России Погода в январе. Яндекс Погода Мавсинрам, Индия: самый высокий средний годовой уровень осадков Как называется самое дождливое место на земле? Прогноз дождей и снегопадов на ближайшие 14 дней. Прогноз погоды для Европейской части России. Пик расположен в округе Полк к западу от город Далласа. В 1997 году он был признан самым влажным местом в Орегон, а в 1996 году он установил абсолютный календарный год осадки рекорд для смежных Соединенных Штатов с 204,04 дюйма 5, 182,6 мм. Больше всего осадков выпало в центре и на востоке города — от 21 до 23 мм. Меньше всего на юго-западе. Кронштадт, Ломоносов, Петродворец — в районе 7-8 мм. Погода в Кировском районе В ожидании второго осеннего месяца эксперты проанализировали количество выпадающих осадков в российских миллионниках. Результаты исследования показали, что количество осадков в городах постоянно превышает количество осадков в пригородах во всех рассмотренных сценариях. В ближайшие дни снегопады продолжатся. В таблице ниже приведены данные о среднем количестве осадков в разных регионах мира в 2024 году и их отклонении от нормы за 1971-2000 годы. Найдите правильный ответ на вопрос«В каком из указанных городов выпадает наибольшее количество осадков?
Дает возможность сосредоточится только на необходимой информации. Высокая скорость работы комплекса и снижение объема передачи данных. Результаты расчетов отображаются в виде графиков с возможностью наложения друг на друга для удобного сравнения между собой и текущим фактическим состоянием погоды, а также в виде анимированных карт. Графики строятся по параметрам: температура, давление, относительная влажность, скорость и направление ветра, порывы ветра, количество осадков с указанием фазы осадков , накопленное количество осадков, облачность, высота снега.
Прогнозирование ошибок при помощи нейросетей как способ увеличения точности прогноза погоды
Наукастинг — это сверхкраткосрочный прогноз, на 2–5 часов вперёд. Это стало возможным благодаря технологии наукастинга — краткосрочного гиперлокального прогноза осадков. В настоящее время существует ряд алгоритмов по обнаружению осадков и приблизительной оценке их интенсивности, однако результаты их работы не применяются для решения задачи наукастинга. Смотрите карты погоды высокого разрешения с центром в Спутнике с почасовыми прогнозами погоды осадков, облачности, анимации ветра, температуры, атмосферного давления и индекса качества воздуха. Доля точно предсказанных случаев начала дождя — это отношение количества правильно предсказанных случаев начала первого дождя на рассматриваемом окне в два часа ко всем случаям начала первого дождя на двухчасовых окнах.
Росгидромет: в Москве за полтора часа выпала треть месячной нормы осадков
Актуальные новости о погоде и окружающей среде. Сопоставление прогностических и истинных значений продолжительности осадков Заключение Предложено уравнение множественной регрессии для текущего прогноза продолжительности осадков на срок до двух часов. Мы предсказываем на два часа вперёд с шагом 10 минут.
Наукастинг осадков на 2 часа
Такой прогноз называется наукастинг, обычно он делается на ближайшие часы (до 2-6 часов вперед). Анимация сверхкраткосрочного прогноза осадков на период до 2 часов (наукастинг). Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля. Прогноз осадков на 2 часа (наукастинг). За сутки выпадет около 20,7 мл осадков. Метеорологическая карта прогноза осадков в Европе. Грозовые дожди в Новгородской области.
Наукастинг осадков на 2 часа
This type of forecast therefore includes details that cannot be solved by numerical weather prediction NWP models running over longer forecast periods. Principle[ edit ] Nowcasting in meteorology uses surface weather station data, wind profiler data, and any other weather data available to initialize the current weather situation and forecast by extrapolation for a period of 0 to 6 hours. In this time range it is possible to forecast small features such as individual storms with reasonable accuracy. Weather radar echoes and satellite data, giving cloud coverage, are particularly important in nowcasting because they are very detailed and pick out the size, shape, intensity, speed and direction of movement of individual features of weather on a continuous basis and a vastly better resolution than surface weather stations. Different research groups, public and private, have developed such programs. The intensity of rainfall from a particular cloud or group of clouds can be estimated, giving a very good indication as to whether to expect flooding, the swelling of a river etc. Depending on the area of built-up space, drainage and land-use in general, a forecast warning may be issued.
Ночью 28 апреля ожидается плюс 10-15, преимущественно без осадков. Днем плюс 22-27, на севере местами кратковременные дожди, грозы. Ощутимо похолодает 29 апреля: ночью уже плюс 5-10, днем — не выше 12-17 градусов, в эти сутки кое-где небольшие дожди, на юге — умеренные. В Челябинске ночью 27 апреля плюс 7-9, 28 апреля — плюс 12-14, 29 апреля — плюс 6-8 градусов.
Результаты расчетов отображаются в виде графиков с возможностью наложения друг на друга для удобного сравнения между собой и текущим фактическим состоянием погоды, а также в виде анимированных карт. Графики строятся по параметрам: температура, давление, относительная влажность, скорость и направление ветра, порывы ветра, количество осадков с указанием фазы осадков , накопленное количество осадков, облачность, высота снега. Карты отображают следующие характеристики: количество осадков за период, количество осадков накопленное, температура воздуха и другие основные метеопараметры у поверхности земли и на основных изобарических поверхностях. Рекомендуемое применение Резервирование уборочной техники и работников для оперативного устранения последствий ожидаемых негативных погодных явлений ливни, снегопады, гололед, сильные порывы ветра, грозы Заблаговременная подготовка коллектива и рабочей инфраструктуры, зависимой от погоды, к эксплуатации при возникновении негативных погодных условий.
Погоды Nowcasting — это сверхкраткосрочный прогноз погоды до 2—6 часов с шагом в 5—15 минут, предсказывающий поведение погодных явлений с коротким жизненным циклом. Такой прогноз в той или иной степени сводится к задаче экстраполяции наблюдаемых метеорологических явлений, так как настоящие тяжёлые физические модели для него менее приспособлены и не могут оперативно учитывать быстро меняющие условия. Раз мы говорим о карте осадков, нам интересен источник данных об областях скопления влаги в воздухе, обладающий относительно высокой частотой обновления. Лучше всего для этого подходят метеорологические радары, предоставляющие такую информацию напрямую в виде изображений, и геостационарные спутники, снимки с которых надо предварительно обработать. Как решать Если исходить из того, что наукастинг сводится к задаче экстраполяции рисунок 2 , то формальное определение будет выглядеть так: где — количество кадров, на основе которых делается предсказание, — количество предсказываемых кадров. При этом можно интерпретировать кадр как обычную картинку и свести задачу к работе с видеоизображением. Рисунок 2. Пример изображений с метеорологического радара. Вверху: пример входных кадров для модели. Внизу: ожидаемые кадры во время предсказания. Здесь , а Мы предсказываем на два часа вперёд с шагом 10 минут. Это 12 кадров плюс ещё несколько про запас на случай перебоя в поставке данных с радара. Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1, 2, 3 , либо к нейросетевым методам 1, 2, 3, 4, 5, 6. Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3.
Карты погоды в Спутнике
Синоптик Вильфанд: около 30% месячной нормы осадков выпало в Москве за час | Во-первых, наукастинг осадков оказался полезным на интервале одного-полутора часов как в точках выделенной сетки, так и по областям сильных осадков. |
В Росгидромете назвали точную дату наступления весны | Мы предсказываем на два часа вперёд с шагом 10 минут. |
У вас отключён JavaScript
- Получить консультацию
- Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды -
- Ventusky - Wind, Rain and Temperature Maps
- В Москве за полтора часа выпала треть месячной нормы осадков - | Новости
- Прогнозирование ошибок при помощи нейросетей как способ увеличения точности прогноза погоды
- рПЗПДБ Ч НЙТЕ
Яндекс научился предсказывать осадки на ближайшие 2 часа
Что сейчас на улице | Прогноз осадков на 2 часа (наукастинг). На портале "Метеовести" центра погоды "Фобос" сообщается, что на Москву надвигается новая холодная и дождливая волна. |
А можно поточнее? Как делается прогноз погоды и можно ли его улучшить? | По прогнозу ведущего научного сотрудника центра погоды «Фобос» Михаила Леуса, в российской столице в четверг, 17 августа, ожидается переменная облачность, без осадков, воздух прогреется до + 29 °C, передаёт РИА Новости. |
Роман Вильфанд: вопрос использования "больших данных" обсуждается во всем метеорологическом мире
Нужны данные, радарные снимки. Нужно понимать, как в атмосфере движутся частицы, какие ветра дуют и как применять это движение к частицам. Расскажу про все три составляющих прогноза. Первое — радарные снимки. Они бывают очень разных форматов и поступают от очень разных поставщиков. Это и просто отдельные картинки в PNG, с договоренностью, что цветом с таким-то кодом обозначается такая-то интенсивность отраженного сигнала. Либо — научный формат NetCDF. Радары сильно отличаются по частоте обновления. Бывают радары, которые обновляются раз в 10 минут, раз в 15 минут.
Самое ужасное, что данные с радаров — в отличие от относительно чистых данных для соревнований — содержат артефакты. Радары работают на физических принципах, на отражении волны, так что у них бывают слепые зоны. Причем когда маленькие фрагменты зоны видимости радиально закрыты зданиями — это еще далеко не самый тяжелый случай. Бывают и сделанные людьми артефакты. Например, в период бета-тестирования мы столкнулись с человеком, который купил себе Wi-Fi-точку, неправильно настроил на ней частоту и номер канала, после чего выставил ее в окно. В результате у нас над Иваново висел огромный лазерный меч в виде облака. Мы видели его на карте и ничего не могли с ним поделать, пока не вызвали Частотнадзор. Пожалуйста, если покупаете Wi-Fi-точки где-то в Китае, настраивайте их на российские частоты.
Кроме радарных данных, надо еще откуда-то взять векторное поле. Принципиально его можно взять всего из двух мест: либо проанализировав предыдущие радарные снимки и применив, скажем, алгоритмы оптического потока, либо из каких-то других источников. Например, можно воспользоваться метеомоделированием и результатом работы того же ОРФ или Метеума. Берем поле ветров и с его помощью переносим картинки, которые возвращает радар. Оба способа получения векторных полей имеют недостатки. Оптический поток нельзя посчитать в местах, где не летит облако. Там не от чего отражаться радарному лучу, и нет никаких данных о скорости воздуха и направлении движения. Метеомоделирование может не совпадать с реальностью.
Поэтому если бы мы использовали только данные метеомодели, могло бы так получиться, что в исторических данных радара облако летит в одну сторону, а потом в прогнозе ветров резко разворачивается и летит в другую сторону. Третий компонент наукастинга — алгоритм применения векторного поля. Здесь наука умеет довольно многое. Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео. Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз.
Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30.
Примеров можно привести множество, суть ясна. Точность кратко- и среднесрочных прогнозов выше, чем долгосрочных. Да-да, именно такую! Здесь сейчас полетят яйца и помидоры в сторону гидрометеорологической службы. Начнутся возгласы: всё враньё, постоянно беру зонт, когда по прогнозу дождь, а его нет, а когда не беру, на улице град по макушке бьёт.
И где вообще нынче снег уже, синоптики-недоучки?
Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда. Рисунок 3.
Только для изображений из будущего, которые мы пока не знаем. В качестве функции потерь использовали ставшую классической сумму кросс-энтропии и dice: где — предсказанное значение. Результаты При сравнении новой модели с предыдущей мы смотрели как на стандартные метрики для задач сегментации и классификации F1, IoU , так и специально построили метрики, которые отражают пользовательское ощущение прогноза например, доля идеальных прогнозов. Это помогло улучшить в том числе и то, что видят в прогнозе наши пользователи, и как они получают информацию из него. Ниже приведена таблица с изменениями по сравнению с решением на базе optical flow: Если F1 и IoU — широко известные метрики, то на двух последних стоит задержаться, так как именно они характеризуют пользовательское восприятие прогноза.
Доля точно предсказанных случаев начала дождя — это отношение количества правильно предсказанных случаев начала первого дождя на рассматриваемом окне в два часа ко всем случаям начала первого дождя на двухчасовых окнах. А доля идеальных прогнозов показывает, какая часть двухчасовых последовательностей предсказана без ошибки на каком-либо шаге. Таким образом, эти метрики позволяют нам оценить пользовательский опыт использования наукастинга. Также посмотрим на зависимость метрик от дальности прогноза: Рисунок 4. График среднего IoU от дальности предсказанного кадра по времени Для расчёта optical flow мы использовали Dense Inverse Search с константным вектором переноса на графике показан лучший из полученных вариантов , который лучше всего себя показал среди других optical flow алгоритмов для задачи наукастинга и в наших экспериментах, и в экспериментах коллег.
Из графика видно, что optical flow лучше нейросеток только на первой десятиминутке. Потом его предсказания начинают сильно деградировать, и на втором часе он проигрывает всем вариантам.
На сим пока всё, на этом откланиваюсь... Кстати, не забудьте взять зонтик!..
АИИС «МетеоТрасса» для автодорог
Наукастинг — это сверхкраткосрочный прогноз, на 2–5 часов вперёд. это.> Анимация текущих данных радарных наблюдений. Развивается новое направление в прогнозировании погоды — наукастинг, позволяющий выпускать сверхкраткосрочный прогноз об опасных явлениях погоды на ближайшие несколько часов. Прогноз осадков на 2 часа (наукастинг). Ведущий специалист центра погоды «Фобос» Александр Синенков спрогнозировал резкие перепады температуры воздуха в ряде регионов России.