Новости спинной мозг новости

Израильские ученые разработали имплант спинного мозга из человеческих клеток для парализованных мышей. 40-летний мужчина смог снова ходить благодаря "цифровому мосту", который беспроводным способом соединяет головной мозг с участком спинного мозга, сообщает Sky News. Сам спинной мозг весит всего 30-35 грамм, имеет диаметр около 1 см и длину 40-45 см. В сравнении со многими другими органами, спинной мозг просто крохотный, но, тем не менее, он исключительно важен. Спинной мозг новости восстановления. MedAboutMe Новости. Целью исследователей было заставить расти в нужном направлении аксоны – отростки нервных клеток, которые и составляют спинной мозг.

Прорыв в лечении поврежденного спинного мозга

«Функциональность имплантов спинного мозга была изучена с использованием тестов in vivo на лабораторных животных, которые показали высокую эффективность предлагаемой технологии для мониторинга и стимуляции нейрональной активности у млекопитающих». Ученые предложили чаще использовать нейростимуляцию спинного мозга электричеством с помощью небольшого вживляемого стимулятора. Вести с полей: спинной мозг и движение. Нейроинтерфейс, соединяющий спинной и головной мозг, позволил пациенту с повреждением спинного мозга лучше ходить — сначала со стимуляцией, а потом и без нее. Z-новости. В РФ создали препарат со стволовыми клетками для лечения травмы спинного мозга. После нанесения этим подопытным мышам травм с повреждением спинного мозга в их эпендимальных клетках включалась программа превращения в олигодендроциты, которые затем мигрировали в места демиелинизации аксонов и ремиелинизировали их.

Ученые разработали новый метод лечения травмы спинного мозга

Когда участник исследования думает о движении руки или кисти, мы «перезаряжаем» его спинной мозг и стимулируем его мозг и мышцы, чтобы помочь восстановить связи, обеспечить сенсорную обратную связь и способствовать выздоровлению. По сути дела, спинной мозг — это нервная трубка, которая выросла, достигла размера 40–45 сантиметров и выполняет в нашем организме очень важные функции, связанные с управлением телом. Сам спинной мозг весит всего 30-35 грамм, имеет диаметр около 1 см и длину 40-45 см. В сравнении со многими другими органами, спинной мозг просто крохотный, но, тем не менее, он исключительно важен.

Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность

DOI: 10. Частичный разрыв спинного мозга привел к тетраплегии — потере функции конечностей. Ходить самостоятельно Герт-Ян Оскам не мог, но «верил, что это возможно», как он сказал на пресс-брифинге. Ранее он участвовал в клиническом испытании STIMO, которое включало пятимесячную программу нейрореабилитации с электростимуляцией спинного мозга. Удалось восстановить способность передвигаться с ходунками, но дальнейших улучшений не было. Установка имплантатов заняла немного времени, после каждой операции пациента выписывали в течение суток, и в последующие 20 месяцев наблюдений требовалась лишь нечастая повторная калибровка.

Уже после пятиминутной первичной калибровки BSI поддерживал непрерывный контроль активности мышц-сгибателей бедра нарушения затронули их в наибольшей степени. Мышечная активность увеличилась в пять раз по сравнению с попытками без BSI. Восстановился интуитивный контроль движений ног: Герт-Ян смог стоять, ходить, подниматься по лестнице и даже пересекать пешком сложные ландшафты. После программы нейрореабилитации определенные улучшения наблюдались и при выключенном BSI видео. Улучшились не только двигательные показатели, но и чувствительность к легким прикосновениям.

Он мог подниматься по лестнице и преодолевать некоторые препятствия. Ключевым моментом во всей этой системе являются ряд алгоритмов искусственного интеллекта, способных адаптироваться и обучаться. Пациент обучает модель, чтобы она могла расшифровывать, какие именно сигналы мозга соответствуют тем или иным движениям, и на удивление этот процесс происходит очень быстро. Несмотря на то, что этот тип системы работает только с определёнными видами травм спинного мозга и был протестирован только на одном человеке, учёные видят огромный потенциал для использования ИИ-технологий в решении подобных проблем. Пока разработка не может использоваться на постоянной основе, поскольку она слишком громоздкая.

Исследователи надеются усовершенствовать своё устройство, сделать его миниатюрным и в конечном счёте доступным многим людям, нуждающимся в помощи.

Герт-Ян Оскам С тех пор, после долгих тренировок, пациент смог ходить, подниматься по лестнице и преодолевать пандусы. Он также вновь открыл для себя походы с друзьями в бар.

Имплантаты оставались эффективными и через год, в том числе и тогда, когда Оскам находился дома без присмотра врачей. Его лечением занимались неврологи и нейрохирурги из швейцарской Университетской больницы Лозанны, Университета Лозанны и Швейцарского федерального технологического института Лозанны. Сами имплантаты разработала Французская комиссия по атомной энергии.

Как работает технология? Руководитель проекта в комиссии Гийом Шарве рассказал, что имплантаты используют "адаптивный искусственный интеллект" для декодирования намерений мозга о движении в режиме реального времени.

Программное обеспечение процессора анализирует декодированные сигналы с коры головного мозга. Серьёзная проблема всей бионики — это шум. Нервная система порождает огромное количество сигналов, и далеко не каждый из них имеет отношение к делу. Прежде чем декодировать сигнал, следует сперва отделить «мух от котлет».

Алгоритмы потоковой обработки данных сортируют поступившую информацию согласно её релевантности. За счёт использования современных материалов и правильного исполнения нейрохирургической операции величина входного приведённого шума составляет всего лишь 0,7 мкВ по среднеквадратичному отклонению. Схожие системы применяют для стимуляции головного мозга у пациентов, страдающих болезнью Паркинсона. Научная группа модифицировала устройство, добавив к нему модули беспроводной связи. Задержка между импульсом с головного мозга и эпидуральной стимуляцией составляет 100 мс. С учётом того, что технология предназначена для восстановления привычных движений, такой «лаг» не выглядит слишком долгим.

В конце концов, речь идёт не о спортивных рекордах, а возможности встать с койки. Аппаратный и программный модуль работают как единая интегрированная цепочка. Между головным и спинным мозгом образуется цифровой мост. Последний участник звена — имплантируемый генератор импульсов Specify 5-6-5, состоящий из массива на 16 электродов. Корковые сигналы проходят через процедуры модуляции, преобразуясь в аналоговые команды. Имплантат проводит их к задним корешкам спинного мозга.

Уже оттуда сформированная команда достигает мышц нижних конечностей. Программная часть. Аспекты декодирования Электрическую активность сенсомоторной коры головного мозга регистрируют по 32 каналам с частотой 586 Гц. Диапазоном полосовой фильтрации стал промежуток между 1 и 300 Гц. Именно в нём скрыты данные, необходимые для иннервации нижних конечностей. Как выявить намерение к движению?

Эту работу выполняет алгоритм рекурсивной экспоненциально-взвешенной мультилинейной модели марковского переключения. В её состав входит классификатор скрытой марковской модели и набор независимых регрессионных моделей. При возникновении намерения к движению происходит активация сенсомоторной коры головного мозга, которую возможно считать с помощью электродов. Каждая из регрессионных моделей осуществляет контроль над целыми группами степеней свободы конечностей. Дело в том, что нога или рука — не просто рычаг. В своей работе он подчиняется законам биомеханики.

Любое движение возможно лишь при согласованной работе множества звеньев. К ним относят суставы, мышцы, сухожилия и сенсорную иннервацию от механо- и проприорецепторов. Человек не смотрит на ноги, когда ходит. Мы и так знаем, какое положение занимает тело. Мы спокойно выполняем движения вслепую, не полагаясь на зрение. Это возможно благодаря тому, что на аппаратной части головного и спинного мозга непрерывно крутятся скрипты, отвечающие за восприятие схемы тела.

Подробнее мы рассказывали в предыдущей статье. Если коротко, мозг не контактирует с реальностью напрямую. Он создаёт абстрактную схему тела, которая выступает прокси-моделью организма. Чем активнее мы пользуемся тем или иным органом, тем ярче будут выражены соответствующие нейронные поля в коре. Классификатор на основе НММ выполняет важную работу. Он оценивает вероятность активации конечности под конкретное движение.

Гипотеза цепей Маркова выступает математическим аппаратом, благодаря которому возможно просчитывать непрерывные и динамические движения. Каждое новое состояние будет проистекать из предыдущего с внесением правок от коры головного мозга. Разумеется, это вполне возможно предсказать средствами современной математики. Классификатор НММ учитывает вероятность выброса и перехода нескольких переменных. К ним относится бедро, колено и лодыжка по отдельности, вместе или во всех возможных комбинациях плюс состояние покоя. Здесь модель немного упрощена, ведь человек не может одновременно шагать правой и левой ногой.

Калибровка декодера осуществляется в режиме онлайн, базируясь на прошлых состояниях массива данных. Модель, контролирующая сгибание бедренных суставов во время ходьбы, самообучалась гарантированно предсказывать статус нижних конечностей после 30 повторений стереотипного движения. Но даже этого мало. Чтобы эффективно выполнить движение, имплантат должен непрерывно держать контакт со скелетной мускулатурой. При спинальной травме головной мозг не получает сигналов от органов-исполнителей. Эта работа ложится на бионику.

Электрическую активность считывают методом электромиографии со множества мышц нижней конечности. Биполярные электроды Delsys Trygno устанавливают на подвздошно-поясничную, прямую, полусухожильную, латеральную широкую, переднюю большеберцовую и прочие мышцы ноги. Каждую пару электродов ставили на брюшко мышцы, ориентировав продольно по ходу волокон. Компьютер регистрирует непрерывные ЭМГ-сигналы на частоте 2 кГц с полосовой фильтрацией в диапазоне 20-450 Гц. Ещё одна пара электромиографических электродов стала над позвоночником между грудным и поясничным отделом. Она отсекает артефакты стимуляции, позволяя процессору работать с чистым сигналом.

Нейротехнологии в обычной жизни Используя спинномозговой интерфейс, участник эксперимента смог стоять и ходить. Разумеется, этот факт открыл дорогу к использованию нейроимплантатов не только в условиях лаборатории, но и дома. Интегрированная система состоит из умных «ходунков». На них расположен ноутбук, соединённый через USB с базовой станцией. От неё запитаны все имплантаты. Коннектор в гарнитуре интегрирован с антеннами, упомянутыми в предыдущих абзацах.

Человек общается с аппаратно-программной частью устройства с помощью адаптивного тактильного интерфейса. Время динамической калибровки занимает менее 5 минут с минимальным вмешательством человека. Запуск алгоритмов, калибровка и локальное изменение двигательной модели происходит средствами программной оболочки. ПО приняло на себя самую тяжелую работу, позволив пациенту не отвлекаться от самой важной задачи: реабилитации.

Российский нейроимплант поможет двигаться пациентам с травмами спинного мозга

Прорыв в лечении поврежденного спинного мозга Главная» Новости» Спинной мозг новости восстановления.
Регенерация нейронов: ученые вернули ходьбу мышам, парализованным после травмы 40-летний мужчина смог снова ходить благодаря "цифровому мосту", который беспроводным способом соединяет головной мозг с участком спинного мозга, сообщает Sky News.

Журнал Forbes Kazakhstan

  • Ученые создали имплант спинного мозга — он вылечил 80 процентов случаев хронического паралича мышей
  • Ученые вернули возможность ходить мышам с травмами спинного мозга — Нож
  • Прорыв в лечении поврежденного спинного мозга
  • Человеческому мозгу вернули контроль над парализованными ногами

Новое открытие учёных о спинном мозге

Он учитель физкультуры с 45 летним стажем. И всегда в движении. День, когда его почти парализовало, он запомнил на всю жизнь. Аллея на спуске, разогнался и начал тормозить, тормоза отказали, и пришлось искать место куда нырнуть, отклонился в сторону и в кусты вишни. Меня в спину опрокинуло», — вспоминает Юрий Киндеров. У пациента, как уже потом выяснят врачи, был стеноз — сужение канала позвоночника. После травмы состояние ухудшилось. Шейные позвонки зажали спинной мозг.

Я открывал глаза, видел над собой потолок и лампу, понимал, что голова зафиксирована, во рту трубка от аппарата ИВЛ, которая вставлена в трахею, и зафиксирована бинтами, в носу ещё одна трубка. Слышал звук работы аппарата ИВЛ - вдох, выдох, сигнал. Вдох, выдох, сигнал. Проваливался в бессознательное состояние, снова выплывал... Тяжко по-настоящему стало после того, как наркоз окончательно отпустил. Осознание полного отсутствия каких либо ощущений от тела меня пугал просто до усрачки. Точнее, левой рукой я чувствовал тонометр на плече в реанимации он прикреплен постоянно, и с какой то периодичностью накачивается, сжимая руку, и сдувается. Врачи во время обхода подходили, проверяли простыми вопросами, осознаю ли я реальность, но все общение сводилось к тому что я моргал в ответ, если да, и шевелил челюстью, если нет. Иногда ониговорили другим врачам слово "тетрапарез" двигательная дисфункция всех 4х конечностей. Я мог поднимать левую руку и сгибать ее в локте, а так же шевелить кистью. Пальцами я управлять нормально не мог - они хаотично шевелились, вместо того чтобы выполнять команды мозга. Вишенкой на торте было сильное воспаление лёгких, полученное, видимо, во время нахождения в приемнике, на сквозняке в одной футболке. Поясню: из-за трубки в трахее я не мог выкашлять мокроту, и она заполняла лёгкие, а когда она начинала лезть из меня пузырями, медсестра подходила, с каменным лицом отключала ИВЛ, включала вакуумный отсос, и засовывала его через дыхательную трубку мне в лёгкие и высасывала мокроту. Ощущения, мягко скажем, не очень. Так проходили дни. Течение времени я мог осознавать только по меняющемуся медперсоналу. Завотделением реанимации, молодая женщина, с невероятно красивыми глазами и в шапочке с лисичками иногда показывала мне распечатанную фотку семьи, которую передала моя любимая жена, а ещё говорила, что у них все хорошо, и они меня любят.

Исследователи смогли количественно оценить значительные улучшения в его сенсорном восприятии и двигательных навыках, даже когда цифровой мост был выключен. Это цифровое восстановление спинного мозга предполагает, что развились новые нервные связи.

В результате пациент смог ходить и даже подниматься по лестнице, пока на костылях, но уже без инвалидной коляски. Из-за повреждения позвоночника, а с ним и спинного мозга, нарушается связь между головным и спинным мозгом. Нейроны двух органов не могут обмениваться сигналами, поэтому человек перестает двигаться ниже места повреждения, возникает паралич. Теперь же с помощью цифрового моста — электродов, помещаемых между спинным мозгом и позвоночником и имитирующих сигналы, которые поступают от головного мозга — был совершен прорыв в медицине.

Прорыв в лечении поврежденного спинного мозга

С начала 2023 года в клинике реабилитации ФГБУ «НМХЦ им. Н.И. Пирогова» МЗ РФ проводится исследование: «Эффективность функциональных и силовых тренажеров Ильясова в реабилитации пациентов после травмы шейного отдела спинного мозга». Первых испытателей компания отберет из числа пациентов с параличом из-за травмы шейного отдела спинного мозга или бокового амиотрофического склероза, говорится в сообщении Neuralink. Новости Казахстана. — Исследования цитокинов при травме спинного мозга помогают лучше понять патофизиологию повреждения и могут предоставить ценную информацию для разработки новых методов лечения и диагностики, — цитирует ведущего научного сотрудникоа НИЛ «Генные и. Теперь же с помощью цифрового моста — электродов, помещаемых между спинным мозгом и позвоночником и имитирующих сигналы, которые поступают от головного мозга — был совершен прорыв в медицине.

Ученые восстановили разрушенный спинной мозг

Спинной мозг также может обучаться и запоминать Первых испытателей компания отберет из числа пациентов с параличом из-за травмы шейного отдела спинного мозга или бокового амиотрофического склероза, говорится в сообщении Neuralink.
Главный онколог «СМ-Клиника» об опухолях спинного мозга А в участок спинного мозга, контролирующий движения ног, был имплантирован электронный нейростимулятор, который, стимулируя спинной мозг, заставляет его активизировать мышцы нижних конечностей.
Травматическое повреждение спинного мозга (Continuum, февраль 2024) Читайте самые интересные и обсуждаемые посты по теме Спинной мозг.
Травматическое повреждение спинного мозга (Continuum, февраль 2024) Здесь Технологии Долголетия публикуют наиболее важные и актуальные новости о продлении жизни человека и событиях, связанных с этой тематикой.

Ученые восстановили разрушенный спинной мозг

Ученые Курчатовского института с коллегами из Казанского федерального университета разработали модель, которую можно использовать для создания нейропротезов для пациентов с повреждением спинного мозга. После нанесения этим подопытным мышам травм с повреждением спинного мозга в их эпендимальных клетках включалась программа превращения в олигодендроциты, которые затем мигрировали в места демиелинизации аксонов и ремиелинизировали их. Этот препарат призван помочь в лечении травм спинного мозга, устраняя воспалительный процесс и способствуя более эффективной реабилитации, пишет ТАСС. Z-новости. В РФ создали препарат со стволовыми клетками для лечения травмы спинного мозга.

Научный прорыв, ставший возможным благодаря инновационной методологии

  • Важная победа над природой: как скоро можно будет чинить спинной мозг
  • Нейроинтерфейс между спинным и головным мозгом позволил ходить паценту с травмой позвоночника
  • Прорыв в лечении поврежденного спинного мозга
  • Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность

Похожие новости:

Оцените статью
Добавить комментарий