Одно из мест, где можно найти информацию о первичной структуре белка, это генетический код. Где и в каком виде хранится информация о структуре белка. 1.в ДНК. зашифрована в последовательности четырёх азотистых оснований. попадать посредством отшнуровываний выпячиваний и выростов ядерной оболочки. рипция. Главная» Новости» Где хранится информация о структуре белка. Информация о структуре белка закодирована в ДНК. Дезоксирибонуклеиновая кислота имеет очень сложную структуру, которую не до конца удалось раcшифровать ученым в наши дни.
Где хранится информация о структуре белка?и где осуществляется его синтез
Правильный ответ здесь, всего на вопрос ответили 1 раз: где хранится информация о структуре белка?и где осуществляется его синтез. Как информация из ядра передаются в цитоплазму? Следовательно, одна молекула ДНК хранит информацию о структуре многих белков.
Важнейшее открытие за 50 лет: алгоритм DeepMind научили определять структуру белка
DeepMind выпускает расширенную базу данных воссозданных ИИ структур всех известных белков, об этом объявила материнская компания Google Alphabet. Где хранится информация о структуре белка? (ДНК). Строение желудка у НЕжвачных парнокопытных. ДНК несет информацию о: 1) последовательности аминокислот в молекуле белка 2) месте определенной аминокислоты в белковой цепи 3) признаке конкретного организма 4) аминокислоте, включаемой в белковую цепь 4. Код ДНК вырожден потому, что: 1). Информация о структуре белка хранится в базах данных и репозиториях, специально созданных для этой цели. Понимание механизма фолдинга белка — процесса, благодаря которому каждая белковая молекула приобретает уникальную структуру и свойства — является необходимым условием для создания надёжного и точного алгоритма теоретического предсказания пространственной.
Где хранится генетическая информация в клетке?
Белки являются сложными молекулами, и их первичная структура часто состоит из большого количества аминокислотных остатков. С использованием электронного хранения, ученые могут легко найти и анализировать информацию о конкретном белке или конкретном аминокислотном остатке, используя поисковые запросы и фильтры. Во-вторых, электронное хранение позволяет эффективно организовывать и структурировать информацию. Белки могут иметь сложные взаимодействия и функции, и информация о их первичной структуре должна быть систематизирована и связана с другими данными.
С использованием электронного хранения, ученые могут создавать базы данных, связывать информацию и строить отношения между различными структурами белков, что облегчает анализ и исследования. В-третьих, электронное хранение позволяет улучшить сохранность и долговечность информации. Бумажные записи могут быть подвержены физическому повреждению или утрате со временем.
В электронном хранении, информация о первичной структуре белков может быть сохранена на надежных серверах и регулярно резервирована, что обеспечивает ее сохранность и доступность в течение длительного времени. В целом, электронное хранение информации о первичной структуре белка предоставляет множество преимуществ, включая удобный доступ, организацию и связывание данных, а также сохранность и долговечность информации. Это делает его незаменимым инструментом для исследования белков и понимания их структуры и функций.
Безопасность и конфиденциальность информации о первичной структуре белка Обеспечение безопасности данных о первичной структуре белка имеет несколько аспектов, которые нужно учитывать. Одним из них является защита доступа к информации. Ограничение доступа к базам данных и другим источникам информации о белковых структурах позволяет предотвратить несанкционированный доступ к конфиденциальным данным.
Системы авторизации и аутентификации, а также протоколы шифрования информации являются основными инструментами в обеспечении безопасности данных. Кроме того, важно обеспечить целостность информации о первичной структуре белка. Любые изменения или искажения данных могут привести к неправильным интерпретациям и ошибкам в исследованиях.
Одним из основных источников информации о первичной структуре белка является база данных белков, такая как Банк белков Protein Data Bank — PDB , где хранятся данные о множестве экспериментально определенных структур белков. В базе данных PDB можно найти информацию о последовательности аминокислот в белке, а также о его структуре, свойствах и взаимодействиях с другими молекулами. Другим источником информации являются научные статьи и публикации, в которых описываются результаты экспериментов по определению первичной структуры белков. Экспериментальные методы исследования, такие как рентгеноструктурный анализ, ядерный магнитный резонанс ЯМР , масс-спектрометрия и другие, позволяют установить последовательность аминокислот в белке.
Найдите три ошибки в приведенном тексте «Реакции матричного типа». Ответ 367 3. Найдите три ошибки в приведенном тексте «Расшифровка генетического кода». Укажите номера предложений, в которых сделаны ошибки. Ответ 346 4.
Таким образом, ДНК является своего рода архивом, в котором хранится информация о последовательности аминокислот в белке. Эта информация передается от поколения к поколению и определяет нашу генетическую информацию и уникальные черты. Описание механизма передачи информации Первичная структура белка, также известная как последовательность аминокислот, кодируется в генетической информации ДНК в форме нуклеотидов.
Информация о первичной структуре белка хранится в генетическом коде, который состоит из тройных нуклеотидных последовательностей, называемых кодонами. Передача информации о первичной структуре белка происходит по механизму трансляции. Затем мРНК перемещается из ядра клетки в цитоплазму, где осуществляется трансляция.
Трансляция происходит на рибосомах — структурах, состоящих из большой и малой субъединиц. В результате, рибосома считывает последовательность кодонов на мРНК и добавляет соответствующие аминокислоты к полипептидной цепи. Трансляция продолжается до достижения стоп-кодона, при котором полипептидная цепь заканчивается и отделяется от рибосомы.
Далее, полипептидная цепь может подвергаться посттрансляционным модификациям, таким как свертывание, гликозилирование или фосфорилирование, чтобы приобрести свою конечную функциональную форму. Этот механизм передачи информации обеспечивает создание белков с определенными последовательностями аминокислот, что является основой для их функционирования в клетке. В процессе репликации ДНК образуется две комплементарные цепочки, каждая из которых содержит одну из оригинальных цепочек материнской молекулы ДНК и новую синтезированную цепочку.
Где хранится информация о структуре белка?и где осуществляется его синтез
В этом случае однозначность присоединения кофактора определяется пространственной! Про ферменты написано конечно интересно, НО конкретные ферменты создавались в эволюции для выполнения катализа конкретных реакций, а не наоборот - появился фермент и с ним функция..... Ссылка на комментарий.
Идентификация белков: Зная первичную структуру белка, можно точно определить его идентичность и распознать его в разных организмах. Это необходимо для помощи в диагностике и лечении заболеваний, а также для понимания эволюционных процессов. Понимание функций белков: Первичная структура белка содержит информацию о последовательности аминокислот, из которой он состоит.
Эта информация позволяет установить возможные функции белка и его взаимодействие с другими молекулами в организме. Таким образом, изучение первичной структуры белков помогает разобраться в их роли в клеточных процессах и биохимических путях. Дизайн и модификация белков: Изучение первичной структуры белков позволяет разработать новые способы создания и изменения белков для использования в различных областях науки и технологии. Это может включать создание белковых лекарственных препаратов, а также дизайн новых белков с улучшенными свойствами, такими как стабильность или активность. Эволюционные исследования: Сравнение первичной структуры белков разных организмов позволяет изучать эволюционные связи и предсказывать генетические изменения, происходящие в ходе эволюции. Диагностика болезней: Аномалии в первичной структуре белков могут свидетельствовать о наличии определенных заболеваний.
Изучение этих аномалий может помочь в ранней диагностике и предотвращении развития болезней. Прогнозирование свойств и структуры белков: Изучение первичной структуры белков позволяет предсказывать их свойства и трехмерную структуру. Это имеет большое значение для понимания механизмов действия белков и дальнейшего исследования их функциональных особенностей. Области применения информации о первичной структуре белка 1.
Одной из самых популярных геномных баз данных является «UniProt». В ней хранится огромное количество информации о белках, включая их первичную структуру. Вы можете найти нужную вам информацию, используя поисковую строку на главной странице сайта. В PDB доступны данные о трехмерной структуре белков, а также о последовательностях аминокислот. Если вы ищете информацию о специфическом белке, то можно воспользоваться базами данных, посвященными конкретным видам организмов.
Например, база данных «Ensembl» содержит информацию о геноме различных видов, включая данные о протеинах этих организмов. Не забывайте использовать поиск по конкретным базам данных, так как информация о первичной структуре белков может варьироваться в различных источниках. Отметим, что разные базы данных обладают разной полнотой и достоверностью информации, поэтому рекомендуется сопоставлять результаты из нескольких источников. Структурные аналоги и гомологи Для более глубокого понимания структуры белков и поиска информации о первичной структуре, полезно обратить внимание на структурные аналоги и гомологи. Структурные аналоги — это белки, у которых структура и функции схожи или сходны. Они обладают похожими аминокислотными последовательностями и обычно имеют схожие пространственные структуры. Поиск структурных аналогов может помочь понять, как определенные участки белка взаимодействуют с другими молекулами и какие функции они выполняют. Гомологи — это белки, которые имеют общего предка и соответственно схожую структуру и функции.
В зависимости от этого в живом объекте светятся разные части. Генный инженер создал конcтрукцию, схематическая карта которой приведена ниже. Промотор условно изображён в форме пятиугольника, кодирующие части генов — в форме серых прямоугольников, сайты Lox P и FRT — в виде стрелок, показывающих направление асимметричной части. Чёрными ромбами обозначены терминаторы транскрипции. Считайте, что в этом месте матричный синтез и-РНК прекращается. Каким цветом должны светиться клетки, в которых содержится данная генно-инженерная конструкция? Считайте, что при этом рекомбинация произошла только один раз! Изменится ли после этого свечение клеток? Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия флиппазы Flp. Предположим, что на исходную последовательнось ДНК в генно-инженерной конструкции сначала подействовали рекомбиназой CRE, а после этого — флиппазой Flp. Нарисуйте схему строения ДНК для этого случая. Каким будет свечение клеток? В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов показана серой стрелкой на рисунке. По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов выделены на рисунке как пунктирные блоки. Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно друг другу. Аналогично работает и другая система гомологичной рекомбинации — Flp-FRT, обнаруженная у пекарских дрожжей. При рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Предварительное доказательство лемма к задаче 9 5 баллов. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» инвертированным повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. Затем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами «перевернулась». Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов точка С шли точки D, E, F, а потом начинался новый повтор в точке G. Будем считать, что кольцевая ДНК как бы «исчезает» не может реплицироваться в клетке. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом: Свечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом: Клетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»: В этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP. Задание ollbio09101120172018в2 У одного из представителей семейства Колокольчиковые Campanulaceae — платикодона крупноцветкового Platycodon grandiflorum пентамерные цветки, состоящие из круга чашелистиков, круга лепестков, круга тычинок и круга плодолистиков см. Иногда среди платикодонов можно найти махровые цветки, у которых на месте тычинок развиваются лепестки. Нарисуйте диаграмму махрового цветка платикодона. На диаграмме обозначьте части цветка. Предложите для него формулу. Предположим, что в природной популяции платикодона крупноцветкового возникла форма с махровыми цветками по остальным признакам форма не отличается от нормы. Образование махровых цветков определяется одной рецессивной мутацией. Ученые пересадили из природы на экспериментальный участок два мутантных и одно нормальное растение.
Цель хранения информации о первичной структуре белка
- Биосинтез белка. Генетический код
- Где находится информация о первичной структуре белка: места хранения
- Определение первичной структуры белка
- Основные источники информации
Где хранится информация о структуре белка (89 фото)
Информация о первичной структуре белка, то есть о последовательности аминокислот в полипептидной цепи, может быть получена из различных источников и с использованием различных методов исследования. Информация о первичной структуре белка закодирована в. Первичная структура белка закодирована в молекуле. Информация о структуре белка хранится в базах данных, таких как Protein Data Bank (PDB) и RCSB PDB.
Найден ключ от замка жизни: биолог Северинов о главном прорыве года
Одно из мест, где можно найти информацию о первичной структуре белка, это генетический код. Хранится в ядре, синтез РНК. Программа с открытым исходным кодом предсказывает трехмерную структуру белка на основе последовательности его аминокислот — строительных блоков, из которых состоят протеины.
Где и в каком виде хранится информация о структуре белка?
Строение активного центра Стоп-стоп-стоп. Это тиво еще такое? Ты про это ничего не говорил. Точно, помните мы сказали, что с этого уровня белок начинает пахать? А задача глобулы — это связать что-то, опять же грубо. Так вот, как она все это делает? Да-да, через активный центр, такие вы умные конечно… В чем прикол активного центра? Он должен соответствовать молекуле, с которой будет взаимодействовать.
Это называется комплементарностью. Не путать с комплиментами. Активный центр — это замок, а другая молекула — ключ, которые должны подходить друг другу. Такие вот соулмейты. Хотя к некоторым активным центрам могут подходить много ключиков. Связи, которые образуются в активном центре — слабые: чаще всего ионные, водородные и Ван-дер-Вальсовы. Но иногда могут быть и ковалентными, но не будем забегать вперёд — об этом мы поговорим, когда будем разбирать ферменты.
Ну а теперь, как все это работает. В активном центре располагается уникальная последовательность аминокислот, допустим там будет две положительнозаряженных и две отрицательнозаряженных аминокислоты. А у молекулы, с которой происходит взаимодействие, будет: две отрицательных группы и две положительных. Форма молекулы совпадает с формой активного центра. Кстати, у молекулы, которая взаимодействует с активным центром тоже есть свое название — лиганд. Надоели уже эти названия? Мне тоже… Строение активного центра и его взаимодействие с лигандом Ах, да — вся третичная структура определяется первичной….
Я знаю, что вы запомнили, но хочу немного понадоедать. Эти связи образуются между радикалами. Четвертичная структура белка Последняя, но самая большая! Не пугайтесь, только по размеру. Она есть не у всех белков, некоторые прекрасно работают в виде третичной структуры и не парятся. Но представьте, что мы возьмем несколько третичных структур и как соединим их вместе. Пусть их будет 4 штуки, берем 4 шарика и соединяем их.
Получаем четвертичную, но не из-за того, что мы взяли 4 шарика…. Эти шарики комплементарны друг другу в участках связывания — не активный центр, но чем-то похоже. Таких участков связывания много, поэтому ошибиться и не узнать своего товарища очень трудно. Каждая глобула, которую мы взяли — это отдельная полипептидная цепь. Прочитай это еще раз. До этого все касалось только одной полипептидной цепи, а теперь их несколько. Такая цепь называется мономером или субъединицей , а при соединении мономеров образуется олигомер.
Так что вся большая молекула — это олигомер. Четвертичная структура белка Какие связи все это стабилизируют? Чаще всего это водородные, ионные и Ван-дер-Вальсовы, так как каждый мономер прячет свои гидрофобные остатки вглубь молекулы, то они образуются редко. Получается, что четвертичную структуру стабилизируют силы слабого взаимодействия, ковалентных связей здесь почти никогда не бывает — очень редко могут быть дисульфидные. Поэтому можем спокойно забить на них. В чем отличие четвертичной структуры от третичной? Ну кроме того, что тут объединено несколько полипептидных цепей.
А вот какое — у олигомерных белков есть не только активный центр, но и другой — аллостерический центр. К этому замку не подойдут лиганды от активного центра, у него есть свои собственные ключики. Это очень важно, нужно запомнить! Господи, я превращаюсь в препода…. Аллостерические центры в четвертичной структуре Проведем аналогию с нашим домиком, только теперь их будет несколько. У каждого будет по главному и черному входу! Главный вход — активный центр, а черный ход — это аллостерический центр.
Аллострические центры дают кое-что важное — регуляцию. Маленькая молекула, которая соединится с аллостерическим центром может остановить работу целого огромного белка. Получается, что размер не важен — не удержался. Но каким образом одна молекула останавливает работу целого белка? Очень просто — хотел бы я так сказать. Присоединение молекулы к мономеру изменяет его конформацию. А это ведет к тому, что мономер изменяет конформацию других мономеров — происходят конформационные изменения всей структуры белка.
В результате этих изменений закрывается активный центр — лиганд не может к нему подойти. У всех этих изменений есть, как и всегда, свое название — кооперативный эффект. Кооперативный эффект И опять я про дом, если открыть черный ход, то нельзя открыть главный вход, ну и наоборот. Не всегда регуляция работает в таком ключе: черный ход может, наоборот, открывать парадную дверь. Но сейчас это не суть, главное понять смысол. Кстати, на самом деле чаще одна субъединица несет на себе аллостерический центр, а другая активный. Я решил запихнуть все в одну — думаю, что так будет нагляднее.
Кроме этого, присоединение к активному центру также изменяет конформацию остальных мономеров, что приводит к облегченному присоединению лигандов. Хоть на картинке этого и не видно, но поверьте на слово! Кооперативный эффект В четвертичной структуре взаимодействуют несколько полипептидных цепей! Стабилизируется молекула силами слабого взаимодействия.
Нейросети достаточно «скормить» последовательность аминокислот, а на выходе она покажет расстояние и углы связей между ними, что позволяет восстановить структуру белка. Разработчики продолжили работу над алгоритмом, и 30 ноября 2020 года показали AlphaFold 2 , который стал еще более точным. Идея в том, чтобы рассмотреть последовательность аминокислот в виде графа: его вершины — это аминокислотные остатки, а ребра — связи между ними. А затем дать задачу нейросети с блоком внимания исследовать его, учитывая уже известных похожих и эволюционно родственных белков. После этого из получившихся связей алгоритм выстраивает конечную трехмерную структуру белка.
Структуры белка, созданные алгоритмом DeepMind Но любой нейросети нужны входные данные, на которые она может опираться, и в этом случае ученые загрузили информацию о структурах примерно 170 тысяч белков. Весь процесс обучения занял несколько недель — по сравнению с тысячами лет, о которых велась речь в начале статьи, это настоящий прорыв. Алгоритм представили на недавней конференции CASP, где AlphaFold2 занял первое место, набрав 92,4 из 100 возможных баллов исходит из правильности расположенных аминокислотных остатков в цепочке белка. Прошлая версия алгоритма набирала максимум 60 баллов. Исследования точности алгоритмов по определению структуры белка больше — лучше Зачем нужно определять структуру белка? Это открытие позволит создать новые лекарственные препараты против болезней, поскольку с помощью структуры ученые будут знать, как работает белок, как он сворачивается и взаимодействует с другими элементами, чтобы его можно было безболезненно использовать в лекарствах. Также структура белка позволяет понять, как болезни распространяются и влияют на организм человека. Например, болезнь Паркинсона развивается из-за накопления в организме белка альфа-синуклеина: он скручивается и образует внутри нейронов токсичные клубки — тельца Леви.
При синтезе белка, информация из генетического кода транслируется в белковую молекулу на рибосоме. Рибосома считывает последовательность триплетов нуклеотидов кодонов и связывает с ними соответствующие аминокислоты. Таким образом, формируется последовательность аминокислот, которая и определяет первичную структуру белка. Первичная структура белка является основой для формирования вторичной, третичной и кватернической структур. Она определяет пространственное расположение и взаимодействие аминокислотных остатков белка, которые влияют на его функцию, свойства и активность. Информация о первичной структуре белка, то есть последовательности аминокислот, может быть найдена в различных источниках. В этих базах данных можно найти информацию о первичной структуре белка, а также о различных атрибутах и свойствах белков. Биоинформатические инструменты: Существуют различные биоинформатические инструменты, которые позволяют проводить анализ последовательности белка и определять его первичную структуру.
Простые мотивы могут объединяться и образовывать мотивы посложнее. Я использовал в иллюстрациях прошлые картинки, но помните, что эти альфа-спирали и бета-тяжи отличаются друг от друга аминокислотными остатками — они очень разные! Просто перерисовывать все это не хочется. Третичная структура белка Вот этот уровень уже повыше, на нем белок начинает выполнять свою функцию — впахивать, как проклятый. Но сначала нужно остановиться ненадолго и поговорить. Спокойно, я же сказал — ненадолго. Согласитесь, что у белков очень много функций. Какой-то переносит кислород, а другой входит в состав кости и обеспечивает ее прочность. Белки мышечной ткани вообще обеспечивают движение. Давайте попробуем выделить две глобальные, но не совсем верные, функции: структурная и связывания. Одни белки входят в структуру мышц, костей, волос и так далее. А другие что-то связывают: ферменты связываются с субстратом, а гемоглобин с кислородом. А где-то бравое антитело падает на амбразуру для того, чтобы не пропустить бактерию в организм. Это конечно все очень грубо, но пусть будет так. И все это я к чему. Существует два больших класса белков: фибриллярные — коллаген, эластин, кератин. Эти ребята занимаются поддержкой, такие вот суппорты. Фибрилла — это нить. Так что они очень длинные, а когда огромное количество нитей связывается в одну, то они становятся очень прочными. Фибриллярные белки — это атланты, которые держат наш организм на своих плечах. А мы не особо благодарные ребята, потому что забьем на них. Но только в этой статье. В основном биохимия занимается другим классом — глобулярными белками. Эти ребята не только связывают — у них огромное количество функций. С этими функциями и пытается разобраться биохимия. Глобула — шар. Вроде это все, теперь можем приступать. Классы белков На прошлом этапе мы собрали разные вторичные структуры в мотивы, ну а дальше то что? Теперь нам нужно скрутить все это в компактный шарик — глобулу. Здесь, наконец-то, пригодятся наши лентяи — радикалы. Вспоминаем, что радикалы бывают полярные и неполярные. Когда глобула скручивается, то она прячет гидрофобные остатки аминокислот внутрь этого шарика, а гидрофильные выставляет наружу. Оно и понятно, все-таки глобулы находятся в организме, а у нас почти везде вода. Строение глобулы Скручивание — удивительный процесс. Здесь начинают взаимодействовать очень очень-очень! Представьте, что тридцатый остаток взаимодействует с триста семидесятым. При этом все настолько предопределено первичной структурой, что радикалы взаимодействуют максимально точно. А взаимодействий ведь не мало! Кстати о них, какими они бывают: Водородные связи — куда уж без них. Гидрофобное слипание — ведь глобула прячет свои гидрофобные остатки, так что они взаимодействуют друг с другом. Ионные связи — между разнозаряженными радикалами. Ковалентная связь между остатками цистеина дисульфидная — самая прочная. Связи, которые стабилизируют глобулу Про все эти связи у меня есть статейка ;] Ещё раз сказу, что здесь взаимодействуют только радикалы. Когда глобула сложилась в пространстве, то всю эту сложную структуру называют конформацией получается, что конформация — это положение атомов друг относительно друга в пространстве. Есть еще кое-что интересное: посмотрите на связи, которые образуют эту структуру. Большая часть из них — это силы слабого взаимодействия между молекулами. Это значит, что они очень легко рвутся, даже простого повышения температуры на несколько градусов хватит для того, чтобы эти связи разорвались. Как выйти из такого положения такой большой молекуле? Дело в том, что таких связей настолько много, что существует конформационная лабильность. По сути это означает, что некоторые связи могут рваться, а другие тут же образовываться. Какой можно сделать вывод из всего этого? Не стоит думать о третичной структуре белка, как о чем-то статичном. Представьте ее как дом, который меняет свой цвет при повышении или понижении температуры, еще он может менять свой размер в зависимости от того идет дождь или нет. Какой странный дом…. В таком долго не проживешь. Некоторые участки глобулы такие чсвшники, что собираются отдельно от всей остальной молекулы. Эти части называются доменами. Домен собирается в мини-третичную структуру самостоятельно, их даже может быть несколько. Чаще всего они имеют какую-то важную задачу, например, входят в состав активного центра. Строение активного центра Стоп-стоп-стоп. Это тиво еще такое? Ты про это ничего не говорил. Точно, помните мы сказали, что с этого уровня белок начинает пахать? А задача глобулы — это связать что-то, опять же грубо. Так вот, как она все это делает? Да-да, через активный центр, такие вы умные конечно… В чем прикол активного центра? Он должен соответствовать молекуле, с которой будет взаимодействовать. Это называется комплементарностью.
Биосинтез белка. Генетический код
Как информация из ядра передаются в цитоплазму? Понимание механизма фолдинга белка — процесса, благодаря которому каждая белковая молекула приобретает уникальную структуру и свойства — является необходимым условием для создания надёжного и точного алгоритма теоретического предсказания пространственной. Информация о таких структурах хранится в банке данных Protein Data Bank, который уже сейчас содержит почти 90 тыс. моделей биологических макромолекул, включая не только сами белки, но и ДНК, РНК, а также их комплексы. Где и в каком виде хранится информация о структуре белка. Как информация из ядра передаются в цитоплазму? Также информацию о первичной структуре белка можно найти в научных статьях и публикациях.
Другие новости
- Программа нашла все 200 млн белков, известных науке: как это возможно
- Генетический код. Биосинтез белка | теория по биологии 🌱 основы генетики
- Что такое первичная структура белка?
- Где хранится информация о первичной структуре белка
- Домашний очаг