Российские новости. Спинной мозг новости. Спинной мозг был полностью просмотрен, в результате нами был поставлен диагноз – острый миелит, – рассказала врач-невролог Кировской областной детской клинической больницы Ирина Крутихина. Исследователи разработали и внедрили «мозго-спинномозговой интерфейс» (BSI), который образует неврологическую связь с использованием беспроводного цифрового моста между спинным мозгом и головным мозгом человека.
Ученые вернули возможность ходить мышам с травмами спинного мозга
Новости 16 апреля. Российские новости. Однако, новое исследование — это настоящий прорыв. Немецкие ученые научились восстанавливать спинной мозг: последние новости 2021 года Немецкие ученые в значительной степени продвинулись в вопросах генной инженерии. Шейные позвонки зажали спинной мозг.
В России проведена операция по установке нейростимулятора в спинной мозг
Вести с полей: спинной мозг и движение. Повреждения спинного мозга представляют собой серьезную медицинскую проблему, часто означающую паралич и необратимую функциональную потерю для пострадавших. РИА Новости: Бойцы ВС РФ спаслись от дронов ВСУ на машине с "Волнорезом". Теперь нейробиологи восстановили связи так, чтобы волокна соединялись с поврежденными зонами. Исследователи провели опыт на мышах с относительно легкими травмами, а также на грызуне с серьезным повреждением спинного мозга. Российские новости.
Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19
В течение двух дней специалисты из Восточного-Казахстана читали лекции и делились своим опытом с коллегами соседней области непосредственно во время операций. В рамках мастер-класса 10-ти жителям области Абай были выполнены высокотехнологичные виды операции под руководством заведующего отделением инновационной медицины, нейрохирурга, доктора PHD Жандоса Уап. Впервые в области Абай пациенту имплантировали нейростимулятор в спинной мозг, тем самым купировав выраженный хронический болевой синдром. Пациент делится, что последние три года от жутких болей не мог ночью спать, а обезболивающие препараты перестали действовать. Сейчас, после операции его состояние улучшилось, вернулось качество жизни. Напомним, ранее мы писали о том, что врачи инновационного отделения ВКО Специализированного медицинского центра выполнили уникальную операцию на спинном мозге установив пациентке 47 лет нейростимулятор в спинной мозг, которую на протяжении многих лет мучили нестерпимые боли.
Сейчас исследователи из Японии и Бельгии разработали похожую экспериментальную схему, где подопытными были уже не насекомые, а млекопитающие — лабораторные мыши. При тестировании задние лапы подопытных мышей свободно свисали, и если лапа слишком сильно опускалась вниз, то подвергалась удару электрического тока. Лапы контрольных мышей также стимулировали током, но делали это неупорядоченно. Всего через 10 минут после начала эксперимента лапы мышей оставались высоко поднятыми, чтобы избежать удара током, — животные обучились. Это доказывает, что спинной мозг и без участия головного может связать неприятное ощущение с определенным положением конечности и скорректировать свою работу. Через сутки ученые повторили тест, и оказалось, что спинной мозг сохранил память о прошлом опыте — лапы мышей быстрее поднимались, принимая позу избегания.
Для оценки рисков возникновения заболевания необходимо ввести в разработанную компьютерную программу результаты анализа элементного профиля по заданным параметрам. Анализ проводится с помощью масс-спектрометрии с индуктивно-связанной плазмой. После ввода показателей анализа система, основанная на статистических моделях, просчитывает риск наличия патологического процесса и предоставляет результат. В дальнейшем в соответствии с этим результатом врач может принять решение о целесообразности проведения углубленного обследования. Сейчас ученые Центра биоэлементологии и экологии человека продолжают исследования иономных профилей совместно с ведущими врачами из России и других стран. В частности, одно из таких исследований, посвященное изучению рисков развития заболеваний опорно-двигательного аппарата, проводится в рамках крупного российско-китайского проекта при поддержке РНФ.
Как говорят ученые, современные методы лечения ТСМ часто являются обобщенными и могут не учитывать уникальные биохимические изменения, происходящие у каждого пациента. Их подход может предложить более персонализированный подход, потенциально снижая риск осложнений и улучшая прогноз для пациентов. В дальнейшем можно будет более эффективно выстраивать прогноз выздоровления и лучше проводить терапию, исходя из состояния конкретного пациента, — объяснил младший научный сотрудник НИЛ «Генные и клеточные технологии» Ильяс Кабдеш.
Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность
При этом он обратимый и исключает побочные эффекты и клинически значимые осложнения. Нейростимуляция осуществляется с помощью небольшого прибора-генератора электрических импульсов, который имплантируется в область спинного мозга. Вся система внешне не видна, так как находится под кожей и не стесняет движений пациента. Перед постановкой постоянной нейростимулирующей системы обязательно проводится тестовая стимуляция, при которой врач и сам пациент могут убедиться в эффективности стимуляции с помощью тестового электрода.
Особенно влияние клеток микроглии найдено при травме спинного мозга тяжелой степени. В этом случае отсутствие значимого восстановления нервной ткани связано, по всей видимости, с недостаточным количеством иммунных клеток чем меньше таких клеток — тем длиннее период восстановления после травмы. Помимо этого, решающую роль играет пролонгированная активация клеток микроглии, которая не дает стабилизировать микроокружение в области травмы. Они выяснили, что клетки иммунной системы мозга играют значительную роль в процессах воспаления и восстановления при тяжелой травме спинного мозга. После травмы происходит активация множества биохимических реакций и взаимодействий между клетками, результаты которых определяют возможность восстановления нервной ткани и сохранения ее функций. Важнейшими участниками этих процессов являются клетки микроглии — иммунные клетки центральной нервной системы», — пояснила первый автор статьи, младший научный сотрудник НИЛ «Генные и клеточные технологии» Эльвира Ахметзянова.
Для этого им восстановили аксоны — нервные волокна, которые передают электрические сигналы по всему телу. Эксперименты в этом направлении велись давно, однако работоспособность некоторых двигательных функций не возвращалась. Теперь нейробиологи восстановили связи так, чтобы волокна соединялись с поврежденными зонами.
Изображение: источника. Цифровой мост позволил ему восстановить естественный контроль над движением его парализованных ног, что позволяет ему стоять, ходить и даже подниматься по лестнице. Эти устройства, разработанные CEA, позволяют декодировать электрические сигналы.
Вести с полей: спинной мозг и движение
Это не слишком похоже на естественный контроль движения, а ходить пациенты могут если вообще могут только с опорой и только по беговой дорожке или ровным поверхностям. Устройство испытали на мужчине 38 лет, который десять лет назад упал с велосипеда и получил неполную травму спинного мозга и перестал ходить. Несколько лет назад пациент уже участвовал в клиническом испытании: это была пятимесячная программа нейрореабилитации, основанная на все той же эпидуральной стимуляции спинного мозга. Тогда стимуляция помогла ему снова начать ходить — с помощью ходунков с колесом.
Также удалось восстановить частичную подвижность без стимуляции. Еще три года мужчина применял стимуляцию дома, но ходить он мог только по плоским поверхностям, и ему было трудно останавливаться и снова начинать движение. Подниматься и спускаться по пандусам или лестницам он не мог.
Тогда он решил поучаствовать в новом исследовании. Сначала ученые выяснили, какие именно области коры мозга пациента больше всего вовлечены в попытки двигать ногами — это нужно было, чтобы понять, где размещать имплантаты, которые будут считывать сигналы. Имплантаты — это 2 титановых круглых корпуса диаметром 5 сантиметров, внутри которых сетка из 64 электродов.
Врачи встроили их в череп пациента, присоединив электроды к твердой мозговой оболочке левого и правого полушария.
Разработка уже доказала свою эффективность на клеточных культурах. Сейчас начались испытания на животных.
На стендах показали бионические протезы, роботизированную систему УЗИ, квантовые очки с in vitro диагностикой и другие новинки отрасли. Ранее президент Владимир Путин заявил о важности ИИ-технологий, генетики и геномики, нейротехнологии для современной медицины.
Дата публикации: 29 мая 2023 г. Изображение: источника. Цифровой мост позволил ему восстановить естественный контроль над движением его парализованных ног, что позволяет ему стоять, ходить и даже подниматься по лестнице.
По его словам, препарат разработали на основе стволовых клеток, он помогает устранить воспалительный эффект в месте травмы или значительно его снизить. Ученые выяснили, что сочетание нейромодуляции с новым препаратом существенно увеличивает эффективность восстановления функции ходьбы. Мы как раз устраняем этот воспалительный эффект или снижаем его существенно", - сказал Белоусов. Он добавил, что таких серийных препаратов с использованием стволовых клеток нет, но несколько похожих находятся на этапе клинических исследований, в том числе в Израиле.
Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19
Все новости Лента новостей Hardware Software События в мире В мире игр IT рынок Новости сайта. Что происходит во время травмы? Россиянин Спиридонов оценил новость о пересадке мозга хирургом Канаверо. Теперь нейробиологи восстановили связи так, чтобы волокна соединялись с поврежденными зонами. Исследователи провели опыт на мышах с относительно легкими травмами, а также на грызуне с серьезным повреждением спинного мозга. Ученые Курчатовского института с коллегами из Казанского федерального университета разработали модель, которую можно использовать для создания нейропротезов для пациентов с повреждением спинного мозга. Новости науки и техники/.
Регенерация нейронов: ученые вернули ходьбу мышам, парализованным после травмы
Нейроинтерфейс, соединяющий спинной и головной мозг, позволил пациенту с повреждением спинного мозга лучше ходить — сначала со стимуляцией, а потом и без нее. Новости науки и техники/. Сайт для специалистов и больных по проблеме травматической болезни спинного мозга. Клиника, диагностика, лечение, реабилитация. Новейшие достижения и перспективы исследования.
Нейроинтерфейс между спинным и головным мозгом позволил ходить паценту с травмой позвоночника
Впервые в области Абай пациенту имплантировали нейростимулятор в спинной мозг, тем самым купировав выраженный хронический болевой синдром. Пациент делится, что последние три года от жутких болей не мог ночью спать, а обезболивающие препараты перестали действовать. Сейчас, после операции его состояние улучшилось, вернулось качество жизни. Напомним, ранее мы писали о том, что врачи инновационного отделения ВКО Специализированного медицинского центра выполнили уникальную операцию на спинном мозге установив пациентке 47 лет нейростимулятор в спинной мозг, которую на протяжении многих лет мучили нестерпимые боли. Нейростимулятор помог ей от них избавиться. До его установки она перенесла несколько сложных операций.
С одной стороны, есть масса исследовательских попыток напрямую зарастить повреждение в спинном мозге, простимулировать рост нервов , чтобы пучки нервов до места травмы и после нашли друг друга, чтобы нейронная спинномозговая «электропроводка» снова стала непрерывной. Доброволец, чьи ноги были парализованы после несчастного случая одиннадцать лет назад, тренируется согласовывать работу нейроинтерфейса и спинномозгового имплантата. Потому что спинной мозг — это не просто шлейф проводов, передающий сообщения между центрами головного мозга и подведомственными им органами. Если говорить о скелетных мышцах, то спинномозговые нейроны образуют довольно сложные специализированные сети, ответственные за сохранение равновесия, координацию при ходьбе, контролирующие скорость и направление движения и т. Получая информацию от мышц и кожи, нейронные сети спинного мозга могут вносить поправки в двигательную программу, корректируя её в зависимости от ощущений.
Способность человека или животного управлять своими движениями зависит не только от контактов спинномозговых нейронов с центрами головного мозга, но и от целостности таких вот сетей в самом спинном мозге. Стимулируя двигательные сети спинного мозга, можно научить его управлять ногами, которые после травмы остались парализованными. Много лет назад сотрудники Федеральной политехнической школы Лозанны вместе с коллегами из других научных центров начали экспериментировать с такой стимуляцией. Мы неоднократно писали об этих экспериментах. Когда мы говорим «стимуляция спинного мозга», нужно помнить, насколько непросто простимулировать спинномозговые нейроны так, чтобы получить правильную последовательность движений. Если мы представим, как двигается наша нога, то быстро поймём, что активность нейронов и групп нейронов , управляющих движением, будет довольно сложной: они будут включаться по очереди, постоянно «прислушиваясь» к тому, что во время выполняемого движения происходит с ногой, с её мышцами.
Проваливался в бессознательное состояние, снова выплывал... Тяжко по-настоящему стало после того, как наркоз окончательно отпустил. Осознание полного отсутствия каких либо ощущений от тела меня пугал просто до усрачки. Точнее, левой рукой я чувствовал тонометр на плече в реанимации он прикреплен постоянно, и с какой то периодичностью накачивается, сжимая руку, и сдувается. Врачи во время обхода подходили, проверяли простыми вопросами, осознаю ли я реальность, но все общение сводилось к тому что я моргал в ответ, если да, и шевелил челюстью, если нет. Иногда ониговорили другим врачам слово "тетрапарез" двигательная дисфункция всех 4х конечностей. Я мог поднимать левую руку и сгибать ее в локте, а так же шевелить кистью. Пальцами я управлять нормально не мог - они хаотично шевелились, вместо того чтобы выполнять команды мозга. Вишенкой на торте было сильное воспаление лёгких, полученное, видимо, во время нахождения в приемнике, на сквозняке в одной футболке. Поясню: из-за трубки в трахее я не мог выкашлять мокроту, и она заполняла лёгкие, а когда она начинала лезть из меня пузырями, медсестра подходила, с каменным лицом отключала ИВЛ, включала вакуумный отсос, и засовывала его через дыхательную трубку мне в лёгкие и высасывала мокроту. Ощущения, мягко скажем, не очень. Так проходили дни. Течение времени я мог осознавать только по меняющемуся медперсоналу. Завотделением реанимации, молодая женщина, с невероятно красивыми глазами и в шапочке с лисичками иногда показывала мне распечатанную фотку семьи, которую передала моя любимая жена, а ещё говорила, что у них все хорошо, и они меня любят. Спасибо Вам. Заснуть не получалось из-за яркого света лампы, и постоянного пищания аппаратуры. Ещё, конечно, сильно мешала общая атмосфера реанимации - стоны соседей, которые приходили в себя после наркоза, некоторые кричали от боли, а кто-то и умирал...
Метод основан на использовании пузырьков, состоящих из мембраны клеток - внеклеточных везикул, которые участвуют в различных процессах внутри организма. Сами везикулы были получены из мезенхимных стволовых клеток свиньи, которой они потом и вводились. Была проведена качественная оценка этих везикул, определены их размер и ультраструктура, - рассказала "Газете. Ru" ведущий научный сотрудник OpenLab "Генные и клеточные технологии" КФУ, руководитель научной группы "Молекулярные и клеточные механизмы нейрорегенерации" Яна Мухамедшина. Эффективность метода была установлена при эксперименте, в ходе которого была смоделирована контузионная травма спинного мозга у свиньи на уровне 11-го грудного позвонка.
Ученые КФУ разработали новый метод восстановления спинного мозга
Создан препарат со стволовыми клетками для лечения спинного мозга. Что происходит во время травмы? До начала разработки импланта изначально они обнаружили новое место для стимуляции, которое располагается очень близко к важнейшим мотонейронам спинного мозга и одновременно доступно без хирургического вмешательства.
Всего одна субпопуляция нейронов помогла пациентам начать ходить после паралича
Аналогичным образом второй имплантат размещается над частью спинного мозга, которая управляет ногами. Ученые заявили, что революционная технология "превращает мысли в действия", восстанавливая нарушенную связь между головным мозгом и областью спинного мозга, контролирующей движения. Первым пациентом стал 40-летний голландец, инженер Герт-Ян Оскам, который получил травму спинного мозга после аварии на велосипеде во время работы в Китае в 2011 году. Он остался парализованным, но уже через несколько дней после того, как хирурги откалибровали имплантаты, он заметил улучшения. В течение пяти минут я мог управлять своими бедрами".
Герт-Ян Оскам С тех пор, после долгих тренировок, пациент смог ходить, подниматься по лестнице и преодолевать пандусы. Он также вновь открыл для себя походы с друзьями в бар.
В результате пациент смог ходить и даже подниматься по лестнице, пока на костылях, но уже без инвалидной коляски. Из-за повреждения позвоночника, а с ним и спинного мозга, нарушается связь между головным и спинным мозгом. Нейроны двух органов не могут обмениваться сигналами, поэтому человек перестает двигаться ниже места повреждения, возникает паралич. Теперь же с помощью цифрового моста — электродов, помещаемых между спинным мозгом и позвоночником и имитирующих сигналы, которые поступают от головного мозга — был совершен прорыв в медицине.
Однако пока что ни одна стратегия не признана достаточно эффективной и безопасной.
Подобную конструкцию они исследовали на обезьянах еще в прошлом десятилетии. Имплантированный чип в головном мозге получал сигналы от нейронов моторной коры, контролирующих движения задних лап, и с помощью беспроводного интерфейса передавал декодированные сигналы на другой имплантат, расположенный ниже повреждения спинного мозга эпидуральная электростимуляция. В результате животные снова смогли ходить. В новой работе представлены результаты эксперимента, в котором участвовал человек с травмой спинного мозга. Два беспроводных регистратора, каждый из которых содержит 64 электрода, в ходе операции были размещены на твердой мозговой оболочке одна из трех оболочек, покрывающих мозг, самая внешняя , над областями, которые участвуют в контроле движений ног. Такой метод отведения потенциалов, при котором электроды располагаются на мозге, называется электрокортикографией, или ЭКоГ; потенциалы имеют большую амплитуду и разрешение, чем при ЭЭГ. Участки, сильнее всего реагирующие на намерение пошевелить ногами, выбрали с помощью компьютерной томографии и магнитоэнцефалографии.
В имплантате также есть две антенны: одна питает его за счет индуктивной связи, а другая, сверхвысокочастотная, транслирует сигналы ЭкоГ в режиме реального времени на портативную базовую станцию ее пока приходится носить в рюкзаке. Третью многоэлектродную решетку имплантировали в твердую оболочку спинного мозга, чтобы сигналы поступали на входные зоны задних корешков. Эти структуры проецируются на сегменты спинного мозга, которые содержат двигательные нейроны, контролирующие мышцы ног.
Напомним, ранее мы писали о том, что врачи инновационного отделения ВКО Специализированного медицинского центра выполнили уникальную операцию на спинном мозге установив пациентке 47 лет нейростимулятор в спинной мозг, которую на протяжении многих лет мучили нестерпимые боли. Нейростимулятор помог ей от них избавиться. До его установки она перенесла несколько сложных операций.
В рамках мастер-класса были выполнены также несколько видов высокотехнологичных вмешательств, к примеру, пациентке с угрозой ишемического инсульта было выполнено экстра интро краниальное шунтирование. Суть операции заключается в создании альтернативного пути тока крови в обход пораженного участка сосудистого русла. Обходной участок называется шунтом.