Он отметил, что в 2021 году были показаны первые модели подводных беспилотников типа "Амулет", передает РИА Новости в понедельник, 10 октября. Летом 2022 года на форуме "Армия-2022" ЦКБ "Рубин" представило новейший подводный беспилотный аппарат. Беспилотный подводный аппарат «Сарма» запустят в серийное производство в 2024 году.
Что за подводный беспилотный аппарат «Сарма»?
Автономный малоразмерный беспилотный подводный аппарат разработали в РТУ МИРЭА, он может погружаться на глубину до ста метров и проводить аварийные и ремонтные работы, сообщили РИА Новости в пресс-службе вуза. — Подводные беспилотные аппараты для военных целей — действительно серьезный прорыв, — отмечает ведущий эксперт Центра военно-политических исследований МГИМО, доктор политических наук Михаил Александров. Казалось бы, в атмосфере последних событий новость о новом подводном аппарате можно легко списать на очередное российское преувеличение утверждают западные эксперты. попросил высказать свое мнение на тему того, могут ли в РФ создать армию подводных беспилотников, капитана первого ранга запаса, военного эксперта Василия Дандыкина.
Адмирал Комоедов рассказал о специфике обнаружения подводных дронов ВСУ
Длина "Посейдона" — 20 метров, диаметр — 1,8 метра, масса — 100 тонн. Как писал "ДП", накануне главком ВМФ России адмирал Николай Евменов сообщил , что носитель беспилотников —экспериментальная атомная подводная лодка "Белгород" проекта 09852 — будет принята на вооружение в 2023 году. Читайте также: Путин проследил за спуском подлодки-носителя для "Посейдона" из Петербурга В 2019 году президент РФ Владимир Путин во время посещения судостроительного завода "Северная верфь" в Петербурге в режиме телемоста следил за спуском на воду атомной подводной лодки "Белгород" в Северодвинске. Торжественная церемония подписания приёмного акта и передачи субмарины ВМФ состоялась в Северодвинске.
Чтобы монокристаллы выдерживали длительное воздействие соленой влаги, их покроют специальной пленкой, пропускающей свет в нужном диапазоне длины волны. Аналогичное решение использовали в проекте по размещению автономных буев на Балтике. Его тогда делала компания «Телеком-СТВ», которая спроектировала энергосистему и для нынешнего проекта.
Катамаран «Эковолна» во время презентации в Санкт-Петербурге в 2018 году При проектировании своего робота группа имела возможность наблюдать, как «Эковолна» ведет себя в эксплуатации, поскольку после «исторического» перехода из Балтики он остался на Северном Каспии в качестве опытного полигона. Парус-крыло и принципы управления Один из уникальных элементов — жесткий парус-крыло из композитных радиопрозрачных материалов, используемый для движения и управления судном, а заодно для размещения ряда датчиков и солнечных панелей. Конструкция паруса-крыла сходна с конструкцией крыла самолета. При вертикальном размещении оно создает тягу в горизонтальном направлении На робот возможно установить парус высотой от трех до шести метров — в зависимости от задач, акватории и ветровых потоков. Парус поворачивают сервоприводами. Дополнительно конструкторы предусмотрели систему фиксации, которая отвечает за удержание курса движения.
На парусе есть флаперон по аналогии с самолетным крылом , который позволяет удерживать судно на курсе или немного корректировать этот курс, не поворачивая большой парус. Флаперон помогает добиваться максимальной тяги в заданном направлении. При разработке паруса основной задачей было научиться правильно реагировать на изменения ветра в акватории. Команда не ставила условие двигаться под парусом строго по заданной траектории. Поэтому в зависимости от текущей ветровой нагрузки робот сам выбирает оптимальный курс движения, находясь в оговоренном периметре. Она же помогает ювелирно настраивать работу паруса-крыла.
На экстренный случай у робота есть электромотор, который может зафиксировать судно в определенной точке на короткий промежуток времени — например, если нужно снять данные. Иного способа фиксации якоря не предусмотрено, равно как и длительного перемещения на электротяге. По проекту робота можно пилотировать дистанционно: оператор дает задание, в какую зону переместиться или как скорректировать текущий курс. В панели оператора отображается текущее состояние лодки уровень заряда батареи, работа солнечных панелей, глубина и кнопки задания маршрута С точки зрения навигации в районе действующих морских путей парус очень удобен: по правилам такие суда имеют один из самых высоких приоритетов в движении. Однако у команды нет расчета на то, что робота все будут пропускать. Для навигации в реальных условиях будут использовать систему машинного зрения — распознавание объектов на поверхности воды.
Нейросеть будет обучаться на изображениях морских объектов из интернета, а также на фотографиях, снятых на Волге проектной командой. Примеры распознавания объектов Корпус и компоновка Ориентируясь на максимальную жизнеспособность, робота решили делать монокорпусным. Помимо хорошей проработки яхтенным сообществом, такая конструкция обеспечивает максимальный угол атаки относительно ветра, то есть дает больше возможностей для выбора курса. Как и любая яхта, судно имеет киль с противовесом. Компоновку рассчитывали таким образом, чтобы центр тяжести оказался как можно ниже. По условиям задачи в случае опрокидывания робота для морских яхт это штатное явление он должен возвращаться в исходное состояние и продолжать движение, не нанося себе ущерба.
Чтобы монокристаллы выдерживали длительное воздействие соленой влаги, их покроют специальной пленкой, пропускающей свет в нужном диапазоне длины волны. Аналогичное решение использовали в проекте по размещению автономных буев на Балтике. Его тогда делала компания «Телеком-СТВ», которая спроектировала энергосистему и для нынешнего проекта.
Катамаран «Эковолна» во время презентации в Санкт-Петербурге в 2018 году При проектировании своего робота группа имела возможность наблюдать, как «Эковолна» ведет себя в эксплуатации, поскольку после «исторического» перехода из Балтики он остался на Северном Каспии в качестве опытного полигона. Парус-крыло и принципы управления Один из уникальных элементов — жесткий парус-крыло из композитных радиопрозрачных материалов, используемый для движения и управления судном, а заодно для размещения ряда датчиков и солнечных панелей. Конструкция паруса-крыла сходна с конструкцией крыла самолета.
При вертикальном размещении оно создает тягу в горизонтальном направлении На робот возможно установить парус высотой от трех до шести метров — в зависимости от задач, акватории и ветровых потоков. Парус поворачивают сервоприводами. Дополнительно конструкторы предусмотрели систему фиксации, которая отвечает за удержание курса движения.
На парусе есть флаперон по аналогии с самолетным крылом , который позволяет удерживать судно на курсе или немного корректировать этот курс, не поворачивая большой парус. Флаперон помогает добиваться максимальной тяги в заданном направлении. При разработке паруса основной задачей было научиться правильно реагировать на изменения ветра в акватории.
Команда не ставила условие двигаться под парусом строго по заданной траектории. Поэтому в зависимости от текущей ветровой нагрузки робот сам выбирает оптимальный курс движения, находясь в оговоренном периметре. Она же помогает ювелирно настраивать работу паруса-крыла.
На экстренный случай у робота есть электромотор, который может зафиксировать судно в определенной точке на короткий промежуток времени — например, если нужно снять данные. Иного способа фиксации якоря не предусмотрено, равно как и длительного перемещения на электротяге. По проекту робота можно пилотировать дистанционно: оператор дает задание, в какую зону переместиться или как скорректировать текущий курс.
В панели оператора отображается текущее состояние лодки уровень заряда батареи, работа солнечных панелей, глубина и кнопки задания маршрута С точки зрения навигации в районе действующих морских путей парус очень удобен: по правилам такие суда имеют один из самых высоких приоритетов в движении. Однако у команды нет расчета на то, что робота все будут пропускать. Для навигации в реальных условиях будут использовать систему машинного зрения — распознавание объектов на поверхности воды.
Нейросеть будет обучаться на изображениях морских объектов из интернета, а также на фотографиях, снятых на Волге проектной командой. Примеры распознавания объектов Корпус и компоновка Ориентируясь на максимальную жизнеспособность, робота решили делать монокорпусным. Помимо хорошей проработки яхтенным сообществом, такая конструкция обеспечивает максимальный угол атаки относительно ветра, то есть дает больше возможностей для выбора курса.
Как и любая яхта, судно имеет киль с противовесом. Компоновку рассчитывали таким образом, чтобы центр тяжести оказался как можно ниже. По условиям задачи в случае опрокидывания робота для морских яхт это штатное явление он должен возвращаться в исходное состояние и продолжать движение, не нанося себе ущерба.
Особенностью ведущихся работ являются операции манипуляторного комплекса с КСТЗ без использования машиночитаемых знаков, а также обеспечение на втором этапе работ имитации подвижности НПА будет продемонстрировано на экспозиции OMR-2024 и на третьем этапе - недетерминированных воздействий на НПА будет продемонстрировано на форуме "Российский промышленник 2024". Канада Канадская компания Kraken Robotics Inc. Данные клиента не разглашаются, поставки должны состоятся в 2024 и в 2025 году. Kraken Robotics Inc.
Подходят на маскировке и включают форсаж: как защитить Севастополь от морских дронов
Вариант будущей подводной системы, связанной с платформой. Будут ли задачи исключительно гражданскими или же в них будет и военный компонент, не уточняется. Вариант будущего дрона, связанного с платформой.
Такие тренировки нужны и сейчас, считают ветераны, но уже с применением беспилотников. Писали тогда, что они якобы ездили на стажировку в Англию и Америку. Да они, наоборот, ездили туда передавать опыт. Ослепший эсминец Сегодня высадка подводных диверсантов в Севастополе менее вероятна, считает он. Надо готовиться к массовому штурму с применением морских и воздушных дронов.
Перед Севастополем стоит задача отработать технологии борьбы с комбинированными атаками и далее применять их для защиты всего побережья России, Калининграда, Северного морского пути. Им надо показать, что они работают. Они же продекларировали, что захватят Крым. Но для этого не обязательно штурмовать Перекоп, брать укрепления, высаживать десанты на побережье. Достаточно запустить дроны, морские и воздушные, вызвать панику. Украинская армия все больше склоняется в сторону терроризма и воюет против гражданского населения, гражданских объектов. В море нужно создать глубокоэшелонированную оборону, как на это делают на суше, полагает спецназовец. Нужны противолодочные дозоры с гидроакустическими приборами и другим оборудованием, которое может засечь любую деятельность на воде и под водой по одной из версий, атаку дронов на Севастополь могли корректировать при помощи подводных аппаратов-разведчиков.
Глубокая практическая подготовка, основанная на работе студентов в условиях, максимально приближённых условиям реального производства. Постоянная взаимовыгодная связь высшей технической школы с промышленностью. Ещё одна важнейшая составляющая успеха русской инженерной школы — это уровень и качество подготовки в средней общеобразовательной школе». Ученики школы презентовали два доклада: «Использование Robot Operation Sistem для управления подводно-надводными роботами» и «Работа на экспериментальном стенде и подготовка тестового материала для проверки аберрационных характеристик фотосистемы». Выступление школьников не осталось незамеченным. Причём, учащиеся рассматривают достаточно серьёзные темы, нарабатывают опыт.
Может быть, их результаты и нельзя будет прямо сейчас применить на практике, но в дальнейшем они уже будут знать методы и способы проведения исследований, будут знать, как интерпретировать и применять полученные результаты. Школьным преподавателям теперь нужно стараться постоянно повышать квалификацию. Думаю, в дальнейшем было бы полезно привлечь и учителей к нашей научно-технической конференции». Тексты докладов опубликованы в виде статей в сборнике материалов ХLI научно-технической конференции молодых специалистов. Лучшими, по мнению организаторов, стали выступления инженера 2 категории Ирины Тюмянцевой на тему «Использование нейронных сетей в системах обнаружения морских объектов» и студента СПбГМТУ Дмитрия Смыкова на тему «Технический облик медицинского робота с адаптивным управлением».
Питается такой окунь энергией, полученной от аккумуляторных литиевых батарей. Подводный дрон с рыбообразным корпусом оснащен и технологиями ИИ, посредством которых он и перемещается под водой, параллельно производя мониторинг вод. Как утверждает один из разработчиков роботизированного окуня Евгений Татаренко, дрон в виде большой рыбы весит порядка 1,5 кг, поэтому его легко можно использовать вместо привычных подводных беспилотных аппаратов небионического типа.
Работать робот может на глубине до пяти метров.
ГНОМ — телеуправляемый подводный аппарат
Boeing Defense — подразделение Boeing, которое отвечает за оборонную продукцию — опубликовала первое видео своего сверхбольшого беспилотного подводного аппарата Orca, или XLUUV. Беспилотный подводный аппарат «Сарма» запустят в серийное производство в 2024 году. попросил высказать свое мнение на тему того, могут ли в РФ создать армию подводных беспилотников, капитана первого ранга запаса, военного эксперта Василия Дандыкина. В первый раз упомянутый в статье беспилотный подводный аппарат "Суррогат-В" представили публике на международном военно-техническом форуме "Армия 2022" в августе 2022 года.
Программа Manta Ray: беспилотные подводные аппараты, вдохновленные скатом манта
Великобритания поставит Украине шесть подводных беспилотников для разминирования Черного моря. Беспилотный подводный аппарат «Сарма» запустят в серийное производство в 2024 году. Предполагается, что, когда дело дойдет до подводной войны, беспилотные аппараты станут необходимыми для доминирования в боевом пространстве под водой.
Виды морских беспилотников
- Сверхмалый флот. Вступят ли российские дроны в морской бой с украинскими
- Палубные беспилотники
- Специалисты назвали морские дроны, атаковавшие Севастопольскую бухту - МК
- Официальный сайт QYSEA - Подводные дроны FIFISH -
Специалисты назвали морские дроны, атаковавшие Севастопольскую бухту
Например, надводные беспилотные аппараты могут использоваться пограничной службой для борьбы с нарушителями государственной границы, а Росрыболовством – в поимке браконьеров. В случае, если беспилотный подводный аппарат будет вооружен торпедами, то это увеличит огневую мощь материнской подлодки. В этом году на стенде МЧС России "Океанос" представил специальную модификацию подводного глайдера — автономный необитаемый аппарат планирующего типа для обнаружения и мониторинга подводных потенциально опасных объектов. Глобальный рынок беспилотных подводных дронов (UUV) принес в 2020 году доход в размере $4,1 млрд. Она включает в себя устройства связи и геопозиционирования, беспилотные летательные аппараты самолетного типа для дальней разведки, подводные БПЛА большого радиуса действия для поиска сетей. Министерство обороны Индии инициировало проект по проектированию и разработке сверхбольших беспилотных подводных аппаратов (XLUUV).
Каталог подводных военных роботизированных аппаратов
Агентство по перспективным оборонным научно-исследовательским разработкам США (DARPA) перешло ко второй фазе программы Manta Ray по созданию автономных беспилотных подводных аппаратов (UUV). Как утверждает один из разработчиков роботизированного окуня Евгений Татаренко, дрон в виде большой рыбы весит порядка 1,5 кг, поэтому его легко можно использовать вместо привычных подводных беспилотных аппаратов небионического типа. Агентство по закупкам, технологиям и логистике Минобороны Японии (ATLA) впервые представило дизайн нового сверхбольшого безэкипажного подводного аппарата типа XLUUV. Разработка беспилотных подводных аппаратов, которые могут применяться в различных боевых операциях, не требующих присутствия человека, а также сетецентрических боевых действиях, является важной частью арктической стратегии России.
«Витязь», «Сарма», «Посейдон»: каких результатов добилась Россия в разработке подводных роботов
Морские соревнования беспилотников, созданных для решения транспортных задач | Сейчас, с началом разработки и внедрения значительного числа самых разнообразных беспилотных подводных и летательных аппаратов, можно наблюдать начало нового этапа кардинальных изменений в структуре флотов ведущих морских держав. |
Новейшая подлодка Boeing впервые замечена в море - Hi-Tech | Агентство по закупкам, технологиям и логистике Минобороны Японии (ATLA) впервые представило дизайн нового сверхбольшого безэкипажного подводного аппарата типа XLUUV. |
Какие морские дроны нужны ВМФ России
Однако у бойцов России имеются все средства, чтобы найти вражеские дроны и уничтожить их. Дроны идут притопленные. Локации их тяжело обнаружить. Глаза и уши — вот единственная система выявления, которая позволяет их уничтожить. Используются для обнаружения дронов тепловизоры, приборы ночного видения», — сообщил он в беседе с изданием URA.
В 2019 году субмарину спустили на воду. Главнокомандующий ВМФ Николай Евменов подчеркнул , что при создании «Белгорода» использовались передовые достижения науки и новейшие технологии.
Подводный дрон с рыбообразным корпусом оснащен и технологиями ИИ, посредством которых он и перемещается под водой, параллельно производя мониторинг вод. Как утверждает один из разработчиков роботизированного окуня Евгений Татаренко, дрон в виде большой рыбы весит порядка 1,5 кг, поэтому его легко можно использовать вместо привычных подводных беспилотных аппаратов небионического типа. Работать робот может на глубине до пяти метров.
То требуется сосредоточить усилия на одном из направлений. То совершить маневр и перенести усилия на другое направление. То на время выйти из боя и ввести противника в заблуждение демонстративными действиями. Все это будет делать ИИ, получающий данные по обстановке из самых разнообразных источников», — поясняет источник «Газеты. Кроме ведения боевых действий подводные дроны ищут на дне мины, разведывают, охраняют. Вода искажает радиоволны и другие беспроводные сигналы, которые на воздухе прекрасно передаются даже на больших расстояниях. Поддерживать четкий контакт оператора и морского дрона, при котором в командном пункте еще и будут получать точную картинку происходящего, крайне непросто. К тому же, если шпион-беспилотник попытается передать информацию на командный корабль, он раскроет этим его местоположение. При этом самому дрону практически ничего не угрожает: для ликвидации он слишком мелкая сошка. Ведь уничтожение такого аппарата из-за его малых размеров и маневренности не только затруднительно, но и экономически невыгодно», — объясняют в Центральном конструкторском бюро морской техники ЦКБ МТ «Рубин», одном из ключевых подрядчиков ВМС РФ. А вот управлять беспилотниками на глубине 8—11 км даже проще , чем, например, на глубине в 1 км: команды передаются с гораздо меньшими помехами. Поскольку абсолютно любое оружие бессильно на такой глубине, необитаемая субмарина способна подойти почти вплотную к цели. Борьба с рыбацкими сетями и акулами Обнаружить подводные беспилотники трудно, а вот поймать легко. Главная опасность для таких систем — обычные рыбацкие сети. В январе 2020 года хорватские рыбаки вытащили из Адриатики часть подводной сенсорной системы ВМС США, которую американские военные тут же попросили вернуть. Постоянно вылавливает в своих водах иностранные дроны и Китай. В 2020 году за передачу неопознанных подводных аппаратов наградили 11 рыбаков. Как правило, такие находки китайские военные не демонстрируют, однако, вероятнее всего, это беспилотники-шпионы, измеряющие глубину, шум, состав воды, течения. Все, что обывателю может показаться неважными подробностями, в потенциальных операциях способно дать подводникам тактическое преимущество.
Морские войны будущего: французский новый подводный беспилотник XLUUV
Параллельно на борту волнового глайдера могут быть размещены гидрометеорологические датчики. Макет аппарата также был представлен на выставочной экспозиции. На пленарном заседании первый заместитель главы МЧС России Александр Чуприян рассказал о работе ведомства по построению комплексной системы безопасности населения, территорий и критически важных объектов в российской арктической зоне.
Российские ученые создали роботизированного окуня Фото: stock.
Ученые Научно-образовательного центра робототехники и мехатроники Самарского университета изобрели робота бионического типа в виде большого окуня. Разработка позволит более эффективно и быстро проводить мониторинг вод, с ее помощью можно будет также проводить поисковые работы. Об этом сообщил «Московский комсомолец».
Причем скорость кратно выше всех существующих подводных и надводных кораблей, а также торпед. Название «Посейдон» дали беспилотнику путем всеобщего голосования Также в 2019 году появились первые характеристики подводного беспилотника. Как стало известно, он обладает неограниченной дальностью хода. Характеристики поистине фантастические, так как скорость современных атомных подлодок вдвое меньше. Ее диаметр не превышает двух метров, длина составляет 20 метров а вес около 100 тонн. Разумеется, не каждая подводная лодка способна запустить со своего борта такой гигантский аппарат. Посейдон — это самая крупная в мире торпеда. Ее вес в тридцать раз больше средней стандартной торпеды. Посейдон — оружие судного дня Как было сказано выше, одним из поражающих факторов «Посейдона» является гигантское цунами, вызванное ядерным взрывом под водой. Такое искусственное мегацунами будет достигать в высоту 300-500 метров и сможет зайти в глубь материка до 500 км на равнинной местности.
При первом режиме работает двухтактный авиационный двигатель, разгоняющий катер до 60 узлов на дальность до 100 миль. При втором электродвигатель обеспечивает запас хода до 140 часов и дальность до 400 миль. Пока аппарат использует ДВС, аккумуляторы заряжаются. Катер оснащен интеллектуальной системой управления, которая позволяет ему перемещаться как под управлением оператора, так и в полностью автономном режиме. Помимо этого, он оборудован радиолокационной станцией, спутниковой связью и комплексом датчиков. Система технического зрения также является собственной разработкой специалистов СПбПУ. Дальность видеосвязи — 40 км.
Передача телеметрии, которая запитана от солнечных батарей, не ограничена по расстоянию. Мы разработали с нуля полностью наше решение. Беспилотные надводные системы способны выполнять максимальный диапазон задач в зависимости от установленного оборудования: патрулирование территорий, целеуказание, разведывательные и поисковые операции и др. Для создания беспилотников в промышленных масштабах необходим спрос со стороны потребителей, требуются квалифицированные кадры и налаженное производство, утверждает Майстро. Кроме того, нужна государственная поддержка: она может быть предоставлена в виде заказа на оснащение службы навигации и океанографии современными гидрографическими робототехническими комплексами «Атлас», которые сейчас разрабатываются СПбПУ. В условиях дефицита кадров практически каждого специалиста приходится проводить через внутреннюю школу СПбПУ, обучать всем технологическим и конструкторским приемам, так как в разработке беспилотников много специфики, сообщил Майстро. Однако, выразил сожаление эксперт, остаются работать в Центре технологических проектов СпбПУ не все.