Новости применение искусственного интеллекта в медицине

по использованию алгоритмов искусственного интеллекта для решения научных и прикладных задач в области офтальмологии.

Искусственный интеллект в медицине и здравоохранении

Благодаря этому медработники сконцентрируют время и усилия на решении серьезных диагностических вопросов и выборе лечения. Современные ИИ-технологии могут помочь системе здравоохранения повысить удовлетворенность пациентов и медицинского персонала, снизить стоимость медицинских услуг и улучшить качество медицинской помощи. Онлайн-консультации Над телемедицинскими приложениями работают многие крупные компании, например, Сбер. Приложение СберЗдоровье использует искусственный интеллект для распознавания симптомов. Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача.

Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников. Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности.

Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т. Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам.

ИИ помогает диагностировать даже редкие, плохо изученные патологии. Сервис MedClueRx может не только проанализировать клинические проявления и диагностировать заболевание. Он также ориентирован на подбор эффективных лекарственных препаратов с учетом индивидуальных особенностей пациента. ИИ для автоматизации процессов в медицине Практически во всех странах наблюдается дисбаланс и нехватка квалифицированного медицинского персонала среднего и высшего звена. По статистике ВОЗ, чтобы каждый человек, даже в странах с низким уровнем доходов, к 2030 году имел доступ к услугам здравоохранения, потребуется 18 млн.

Перспективы улучшить ситуацию с доступностью медицинского обслуживания ничтожны: население растет, общество стареет. Проблема усугубляется еще и тем, что многие патогены мутируют, меняется клиническая картина заболеваний. Все эти факторы увеличивают спрос на квалифицированных врачей и медицинский медперсонал, пациентам становится все сложнее быстро получить необходимую медицинскую помощь. ИИ и другие инновационные технологии помогают освободить врачей от многих повседневных рутинных задач. Внедрение технологий ИИ позволяет быстро и правильно вносить данные в медкарту, проводить детальный анализ проведенных исследований, формировать историю болезни, отслеживать и корректировать ход лечения. Это позволит специалисту больше времени уделять каждому пациенту, заниматься решением серьезных диагностических вопросов, сконцентрироваться на поиске причин патологии и эффективной схемы лечения. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Удаленные консультации Консультации врачей онлайн — это возможность получить качественную медицинскую помощь большему количеству людей.

Удаленные консультации особенно актуальны для жителей малонаселенных пунктов или во время эпидемий и пандемий. Онлайн-консультации — это возможность значительно снизить расходы и здравоохранение, быстро получить еще одно мнение при спорном диагнозе. ИИ делает телемедицину более простой и удобной. Его применяют для удаленной диагностики, сбора необходимых данных и показателей анализа информации о пациентах. Есть приложения, которые анализируют симптомы и переводят запись приема в текст. Google разработал алгоритм, который делает фотографию сетчатки глаза для диагностирования диабетической ретинопатии. ИИ значительно облегчает работу врачам, снижается риск постановки ошибочного диагноза или назначения неправильного лечения. Перспективы развития ИИ в медицине Разработкой приложений с использованием искусственного интеллекта в медицине занимаются известные корпорации — Google, Apple, Microsoft.

Их продукты помогают повысить точность диагнозов, сделать квалифицированную медицинскую помощь более доступной, систематизировать все необходимые данные о пациентах.

Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире. По данным сайта Da Vinci, с 2007 по 2022 год в России американскими роботами—хирургами было выполнено около 28 тыс. Однако в ближайшее время в больницах страны появятся первые роботы—хирурги отечественного производства, разработанные учёными Института конструкторско—технологической информатики РАН. Российские роботы—хирурги смогут делать операции в брюшной полости, в области гинекологии и урологии, а также в сфере нейро— и кардиохирургии.

Одним из ключевых преимуществ отечественной разработки станет её стоимость: она примерно в 3 раза ниже американской, благодаря чему операции войдут в программы ОМС и будут бесплатны для пациентов. Роботизированные системы в медицине, несомненно, с каждым годом будут всё активнее применяться. Однако пока есть ряд факторов, которые сдерживают развитие рынка автоматизированной медицины. По мнению Дениса Банного, одними из ключевых являются большие финансовые затраты на покупку оборудования и эксплуатационные расходы, а также расходы на обучение персонала. Со временем этот вопрос будет решён.

Пока же сложные роботизированные системы доступны только крупным медицинским центрам и клиникам.

На это ушло еще 25 дней. Таким образом на выбор потенциального лекарства потребовалось всего 46 дней. Для сравнения, традиционный процесс разработки кандидатов на звание лекарства занимает около 8 лет и обходится компаниям в несколько миллионов долларов США. В то время как на создание ИИ ушло всего 150 тысяч долларов. Слева — нормальная мышечная ткань. Справа — ткань с развитием фиброза При этом Insilico подчеркивают, что они еще не доказали, что новый препарат эффективнее существующих лекарств. Однако время и затраты, которые ушли у ученых на создание потенциальных лекарств, куда меньше, чем у традиционных методов фармации.

Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией

От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям.

Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов.

Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов. Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ. Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать. И здесь возникает вызов — как научиться делать это быстро. Итак, для корректной работы ИИ нужны «чистые» машиночитаемые данные, подготовленные и размеченные высококвалифицированными специалистами выборки данных для обучения нейросетей, оцифрованные порядки оказания медицинской помощи, клинические рекомендации и стандарты оказания медицинской помощи. При смене методологии медицинские информационные системы тоже начинают наполняться новыми данными только с появлением утвержденных изменений в методологии диагностики, лечения, наблюдения пациента и т. Симбиоз или противостояние? Если мы смотрим на искусственный интеллект глазами разработчика, то видим набор алгоритмов и математических методов, которые могут обучаться на данных, анализировать изображения, искать неочевидные связи и сходства в огромных массивах данных, обнаруживать различия там, где естественный интеллект может просто их не заметить. Но для врача работа искусственного интеллекта — это черный ящик. Врачу непонятно «мышление» системы и то, как ИИ получил итоговый результат. Формировать доверие медицинских работников к ИИ возможно, объясняя базовые алгоритмы его работы и то, на каких данных обучаются системы. Возможно также более широкое участие врачей в рабочих группах по подготовке данных для обучения нейросетей. Объяснять базовые алгоритмы работы искусственного интеллекта необходимо в рамках вузовской подготовки специалистов на цифровых кафедрах и в рамках профессиональной переподготовки. Ну и, отвечая на вопрос: возможен ли симбиоз врачей и ИИ.

Сегодня к ИИ относят программные средства с набором алгоритмов и методов, которые могут решать интеллектуальные задачи так же, как это сделал бы человек. К примеру, искусственный интеллект способен: Прогнозировать различные ситуации Оценивать информацию и формулировать заключительную оценку Анализировать данные и искать скрытые закономерности Стоит отметить, что на настоящий момент компьютеру не доступно моделирование сложных процессов высшей нервной системы человека: творчество, эмоции и т. Все это может возникнуть со временем и с появлением более сильного искусственного интеллекта. Однако компьютеры уже научились решать задачи так называемого «слабого искусственного интеллекта». Машина может работать по заранее установленным человеком правилам. Кроме того увеличивается количество проектов, в которых компьютеры не только работают по установленным алгоритмам, но также самообучаются, совершенствуются и решают более сложные задачи. Первые создаются программистами, которым не нужно обладать информацией обо всех зависимостях между входными параметрами и ответом — полученным результатом. Такие программные продукты прекрасно справляются со многими задачами, в том числе медицинскими — системы используются для расчетов статистик, формирования реестров и т. Искусственный интеллект нужен там, где невозможно задать четкие правила и алгоритмы. К примеру, как простая программа может на рентгенологическом снимке выявить наличие патологии? Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни. Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы. Как работают нейронные сети в медицинской сфере? Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению. Механизм работы искусственных нейросетей повторяет принцип биологических. В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой. В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше. Нейросети могут применяться в медицине разными способами. Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос. Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства. Алгоритм разработан с помощью технологий машинного обучения в медицине. Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии. Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений.

Редакция не несет ответственности за информацию и мнения, высказанные в комментариях читателей и новостных материалах, составленных на основе сообщений читателей. СМИ сетевое издание «Городской информационный канал m24. Средство массовой информации сетевое издание «Городской информационный канал m24. Учредитель и редакция - АО «Москва Медиа».

Будущее рядом: как нас будет лечить искусственный интеллект?

Создатели платформы видят свои перспективы во внедрении технологии в широкую клиническую практику, чтобы пациенты, пришедшие на осмотр в городскую поликлинику, имели доступ к передовым технологиям. РФ , который выделяет специальные гранты на модернизацию программного обеспечения с применением алгоритмов ИИ. Так, резидент «Сколково» и грантополучатель Фонда содействия инновациям — «Платформа третье мнение» «ПТМ» — уже в 19 регионах страны внедряет сервисы искусственного интеллекта, поддерживающие рабочий процесс врача при интерпретации диагностических исследований. Также в ряде регионов запускаются системы для анализа видеопотока в стационарах, отделениях реанимации и интенсивной терапии.

При диспансеризации врачи обрабатывают большой поток исследований, не имеющих отклонений от нормы, что создает высокую рутинную нагрузку и повышает риск пропуска редкой патологии. А решение «ИИ-Мониторинг» от «ПТМ» позволяет в режиме реального времени анализировать видеопоток в стационарах и эффективно наблюдать даже за пациентами в тяжелом состоянии. С помощью алгоритмов компьютерного зрения система отслеживает нежелательные события и уведомляет о них.

Благодаря чему скорость реакции на них медперсонала повышается в 50 раз, а число наступивших негативных событий сокращается до нуля. По федеральному проекту «Искусственный интеллект» Фондом содействия инновациям уже профинансировано свыше 850 проектов ИИ-разработчиков. До 13 мая открыт прием заявок на конкурсы для инноваторов в сфере искусственного интеллекта.

Гранты до 8 млн рублей могут получить как физические, так и юридические лица.

ИИ в белом халате Применение искусственного интеллекта ИИ в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Но, как и в любой другой сфере, применение ИИ в медицине имеет свои риски и ограничения.

Важно понимать, как общество воспринимает такие новации и какие ожидания и опасения связаны с их использованием. Особый интерес в этой связи представляют сравнительные межстрановые исследования, так как в них раскрываются коллективные ориентации и ценности, присущие тому или иному обществу. Опросы ВЦИОМ и Pew показывают, что в российском и американском обществе пациенты больше будут чувствовать дискомфорт, чем комфорт, если врач будет полагаться на искусственный интеллект для диагностики заболеваний и рекомендации лечения.

Это значит, что и в российском, и в американском обществе существуют опасения по вопросу применения ИИ в здравоохранении. К чему все это приведет? ИИ обладает способностью обрабатывать огромные объемы данных и находить скрытые закономерности.

Теоретически это позволит врачам лучше исследовать болезни, быстрее и точнее ставить диагнозы и эффективнее лечить пациентов.

Если его вовремя не обнаружить и не начать лечить, исход может быть летальным. Помочь маленькой пациентке смогли лишь в Санкт-Петербурге, проведя специально исследование. Медики спасли жизнь маленькой Ксюши. Помочь врачам определить опасную болезнь всего за несколько минут помог искусственный интеллект. Ученым удалось установить связь между формой заболевания, яркостью и цветовым тоном очагов инсулина при анализе каждого пикселя на КТ-снимках. Причем программа может фиксировать различия в цветовых характеристиках, которые невидимы для глаза врача. Сейчас они пролечены, и мы имеем на исходе выздоровление», — рассказала заведующая кафедрой детских болезней Центра Алмазова Ирина Никитина.

Благодаря искусственному помощнику и работе эндокринологов, радиологов, хирургов и патоморфологов более 120 детей из России и ближнего зарубежья с врожденным гиперинсулинизмом получили лечение и выздоровели. Специальная программа, Voice2Med, позволяет врачам делать описание снимков за 15 минут вместо часа.

Документы pdf16. Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных.

Национальная база медицинских знаний

Искусственный интеллект в медицине. “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции.

«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине

Искусственный интеллект в медицине Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний.
Полная роботизация: как искусственный интеллект помогает врачам Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют.
Искусственный интеллект в медицине Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи.

ИИ в медицине: тренды и примеры применения

В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением.

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ

Искусственный интеллект в клинической медицине Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи.
Платформа ИИ Минздрав ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов.
Сбер открыл Центр искусственного интеллекта в медицине: Бизнес: Экономика: по использованию алгоритмов искусственного интеллекта для решения научных и прикладных задач в области офтальмологии.

Нейросеть для медиков: искусственный интеллект научился ставить диагнозы

Области применения технологий на основе искусственного интеллекта быстро расширяются, в частности, умные технологии приходят на помощь врачам и пациентам. Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ. Искусственный интеллект в здравоохранении, который когда-то был областью научной фантастики, теперь стал реальностью. ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов.

Технология мРНК

  • Первое в истории ИИ-лекарство
  • Врачам и пациентам: как искусственный интеллект помогает в медицине
  • Для чего в российских регионах используют ИИ в медицине
  • Прошу удалить мой номер
  • ИИ в медицине: тренды и примеры применения

Для чего в российских регионах используют ИИ в медицине

Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики. Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России.

Применение искусственного интеллекта в медицине

Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника. Сбор данных и искусственный интеллект в медицине. 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке.

Полная роботизация: как искусственный интеллект помогает врачам

Эксперимент по внедрению технологий искусственного интеллекта Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб.
ВЗГЛЯД / Эксперт объяснил провал искусственного интеллекта в медицине :: Новости дня искусственный интеллект в медицине, искусственный интеллект. Рост применения КТ приводит к выявлению большого количества очагов и округлых образований в легких.
Для чего в российских регионах используют ИИ в медицине - Российская газета Искусственный интеллект (ИИ) сегодня является инновационной технологией, которая вызвала настоящую революцию в различных отраслях, и медицина не стала.

ИИ в медицине: тренды и примеры применения

Но борьба за жизнь пациента, за качество его жизни, избавление от мучений — это выбор, который не всегда экономически обоснован. Это человеческий выбор. Хочется помочь, и есть надежда. А если не получится? Ухудшим показатели. Это моральные и организационно-методические проблемы людей.

Но может ли здесь помочь искусственный интеллект? А это зависит от того, как настроен этот инструмент, на какой результат он нацелен. И не забываем, что инструмент — просто набор алгоритмов, зависящий от объема и качества данных «на входе», настройки, обучения и целеполагания. В некоторой степени он лишен моральных критериев. Они задаются человеком.

Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации. Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов. Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ.

Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована.

Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям. Еще сервис умеет сортировать проблемы по степени опасности и оповещать о необходимости немедленного вмешательства. Цифровой помощник врача Сервисы компании «Платформа третьего мнения» в 2020 году внесли большой вклад в борьбу с коронавирусной инфекцией. Сейчас платформа умеет: Проводить анализ маммограмм, флюорограмм, КТ органов грудной клетки и других изображений; Заменять помощника врача, выявляя патологии; Автоматически заполнять заключения по исследованию, что экономит время и снижает вероятность ошибок; Привлекать внимание врача к проблемным областям снимка. Библиотека молекул для создания лекарств Как утверждает глава медицинского кластера СНГ Дмитрий Власов, на изобретение нового препарата обычно уходит от 10 до 15 лет и колоссальные суммы денег.

Однако искусственный интеллект способен ускорить и удешевить этот процесс. Например, российская платформа Syntelly умеет анализировать токсикологические и физико-химические свойства соединений, а база данных сервиса хранит информацию о 96 миллионах молекул, позволяя исследовать и сравнивать их.

Он не может заменить врача, но может в отдельных клинических сценариях ускорить работу рентгенолога, оптимизировать ресурсы за счет автоматизации двойных просмотров результатов скринингов. Поначалу врачи опасались, что ИИ заменит их, относились как к конкуренту, но потом настороженность все же сменилась слабопозитивным отношением». Очевидно, что искусственный интеллект может взять на себя лишь часть врачебных функций. Окончательный диагноз все равно ставит только врач. И тем более никакой искусственный интеллект не сможет конкурировать с опытом, мудростью и непосредственным общением доктора с пациентом, а ведь все это играет важную роль при постановке диагноза и выработке схемы лечения. Как начать доверять машинам? С какими проблемами сталкиваются сами разработчики и производители медицинского программного обеспечения?

В ней содержится информация о тех исследованиях, которые проводятся в ходе обследования — например, флюорография, узи, МРТ, рентген. Ключевой продукт — это система описания, рекомендации и статистики. В нее входит набор протоколов разной степени формализации, которые позволяют эффективно описывать те или иные нозологии, чтобы потом иметь возможность организовать общение врачей — диагностов и клиницистов, а также помочь пациенту понять, о чем говорится в заключении». Весной 2020 года компания обратилась к проблеме коронавируса и применила к этому заболеванию формализованный протокол. Получился продукт, который определяет в ходе исследования объем поражения легких и позволяет визуализировать поражения. Модуль искусственного интеллекта заполняет необходимые поля, предлагая врачу те или иные решения, а тот может или согласиться с ними или заменить своими данными. Аналогичная работа будет продолжаться в области онкологии. По словам С. Дьяченко, сложности есть, и заключаются они, в основном, в «недоверии к машинам», непонимании роли искусственного интеллекта, скепсису относительно инновационных методов диагностики и лечения, низкому уровню знаний современных компьютерных технологий особенно в регионах.

По мнению разработчика, чтобы снять барьеры, нужно популяризировать ИИ среди врачей и пациентов, добавить соответствующие курсы в программу как технических, так и медицинских вузов, сформировать систему поощрения применения технологий искусственного интеллекта для медицинских учреждений и для поставщиков, а также непременно проводить открытое общественное обсуждение.

Более того, если раньше ИИ-решения в медицине рассматривались в первую очередь как системы поддержки принятия врачебных решений, то сегодня мы делаем первые шаги в сторону системной автоматизации производственных процессов. Так, на базе эксперимента технологии ИИ достигли того уровня зрелости, когда мы начинаем «делегировать» искусственному интеллекту отдельные диагностические задачи. В этом году мы запускаем пилотный проект в рамках территориальной программы обязательного медицинского страхования по применению ИИ в автономном режиме, без участия врача — для проекционных методов исследований, флюорографии и рентгенографии органов грудной клетки. ИИ будет сортировать все исследования взрослых пациентов, сделанные в поликлиниках, на те, где достоверно отсутствует патология, и те, где есть признаки заболевания. Для первых ИИ будет самостоятельно формировать заключение в виде электронной медицинской записи в ЭМК, а вторые — направлять на описание врачу.

При этом характерная особенность профилактических исследований, таких как флюорография, — низкая доля исследований с патологическими признаками. Это решение позволит перенаправить время врача на более сложные виды исследований, где действительно требуется врачебная экспертиза. По итогам пилотного проекта мы сможем достоверно оценить безопасность применения автономного ИИ для пациентов. Первыми шагами в развитии персональных ассистентов врача стал диагностический ассистент врачей-терапевтов и врачей общей практики для постановки предварительного диагноза. Сервис был внедрен в 2020 году, на основе анализа жалоб пациента он предлагает топ-3 диагноза. К выбранному диагнозу врачу предлагаются пакетные назначения.

Такой «синтез» искусственного и естественного интеллекта. В этом году внедрен диагностический ассистент при постановке заключительного диагноза во взрослых поликлиниках. Сервис анализирует данные ЭМК пациента за последние два года и сигнализирует врачу, если мнения с ИИ разошлись. В обоих случаях ИИ выступает помощником, окончательное решение остается за врачом. Вся информация, все снимки, загруженные в электронную медицинскую карту пациента, могут стать частью «обучающей программы» для искусственного интеллекта. ИИ не нужен отдых, сон, он не болеет и не устает.

Поэтому в алгоритмизированных задачах он может превзойти человека. Как калькулятор, автоматическая линейка. Это продвинутые математические системы, способные мгновенно или за считаные минуты обрабатывать данные и выдавать стабильно точный результат. Также способность ИИ анализировать гигантские объемы данных позволит учитывать влияние неочевидных факторов на развитие рисков и заболеваний. То, что недоступно возможностям человека в условиях временных ограничений. ИИ может в считаные минуты обрабатывать полный объем данных и просчитать все взаимосвязи, учесть ретроспективные данные.

Однако эффективная работа ИИ возможна только в результате совместных усилий ученых, экспертного врачебного сообщества и разработчиков. Последнее слово будет оставаться за врачом. Это позволит держать работу ИИ под контролем, объективно оценивать алгоритмы и видеть потенциал развития.

Что хотите найти?

После того, как медицинское изображение получено с помощью МРТ, компьютерной томографии, ультразвукового или рентгенологического исследования, врач должен проанализировать его на наличие каких-либо отклонений или признаков заболеваний. Для выявления сколько-нибудь серьезного состояния требуется интерпретация нескольких визуализационных исследований. После обучения с использованием больших наборов данных исследований системы на основе ИИ способны анализировать медицинские изображения и сообщать об обнаруженных особенностях, например, небольших опухолях, которые человеческий глаз может упустить. Такие системы выявляют закономерности и предоставляют информацию о характеристиках любых отклонений от нормы, экономя время врача.

В тех случаях, когда у пациента есть несколько снимков, сделанных на протяжении некоторого времени, искусственный интеллект также может анализировать динамику заболевания. Так, для проверки работы своей системы на основе ИИ в корпорации Google провели эксперимент: снимки предложили изучить шестерым сертифицированным радиологам. В тех случаях, когда диагноз ставился по единственному снимку, искусственный интеллект справился так же или даже лучше людей.

Сегодня рядом с живыми медсестрами в госпиталях США уже работают компьютерные помощники, от которых можно получать советы, подсказки и другую информацию. Например, цифровой ассистент Салли, улыбающаяся женщина в белом халате, или медбрат Уолт. Салли и Уолт — это анимированные аватары, виртуальные личные тренеры по здоровью из платформы iCare Navigator на базе искусственного интеллекта, предназначенной для взаимодействия с пациентами и их обучения.

Компания TeleHealth Services, разработавшая iCare Navigator, утверждает, что использует электронные медицинские записи пациентов и применяет машинное обучение для выстраивания индивидуальных отношений. Приложение определяет, когда пациент будет наиболее восприимчив к информации о состоянии своего здоровья и можно будет лучше всего управлять его лечением. Толчком для создания платформы iCare Navigator стали исследования Медицинской школы Бостонского университета, в ходе которых были разработаны виртуальные медсестры Луиза и Элизабет, объясняющие пациентам, например, когда принимать лекарства.

Молли от компании Sensely — еще один популярный аватар медсестры с искусственным интеллектом, который используют Калифорнийский университет в Сан-Франциско и Национальная служба здравоохранения Великобритании. Молли задает пациентам вопросы, касающиеся их здоровья, оценивает симптомы и на основе симптомов дает рекомендации по наиболее эффективному лечению. Таким образом, вместо того, чтобы искать обнаруженные у себя симптомы в интернете, сегодня человек может получить помощь от виртуальной медсестры.

Виртуальные медсестры не только предоставляют медицинские консультации по поводу распространенных заболеваний или недомоганий, но также позволяют записаться на прием к врачу. Они доступны круглосуточно и без выходных и готовы ответить на вопросы в режиме реального времени.

Молли от компании Sensely — еще один популярный аватар медсестры с искусственным интеллектом, который используют Калифорнийский университет в Сан-Франциско и Национальная служба здравоохранения Великобритании. Молли задает пациентам вопросы, касающиеся их здоровья, оценивает симптомы и на основе симптомов дает рекомендации по наиболее эффективному лечению.

Таким образом, вместо того, чтобы искать обнаруженные у себя симптомы в интернете, сегодня человек может получить помощь от виртуальной медсестры. Виртуальные медсестры не только предоставляют медицинские консультации по поводу распространенных заболеваний или недомоганий, но также позволяют записаться на прием к врачу. Они доступны круглосуточно и без выходных и готовы ответить на вопросы в режиме реального времени. Это одно из основных приложений искусственного интеллекта в здравоохранении, которое все чаще применяется для повышения информированности и улучшения навыков самоуправления у пациентов с хроническими заболеваниями.

Благодаря виртуальной медсестре пациент сможет предотвратить ухудшение своего состояния. Системы мультимодальной диагностики В развитии ИИ можно выделить несколько трендов, один из которых связан с интеграцией типов модальностей данных, на которых выполняется обучение. Например, для аудиовизуального распознавания речи визуальное описание движения губ объединяется с аудиовходом для предсказания произнесенных слов. Информация, поступающая из источников различных модальностей, может иметь различную предсказательную силу и топологию шума, а в некоторых источниках данные могут отсутствовать.

Неоднородность мультимодальных данных затрудняет построение моделей. Важно изучить, как представлять входные данные и обобщать их таким образом, чтобы они отражали несколько модальностей. Например, текст представляется символами, а аудио и визуальные модальности — сигналами. В контексте медицинского применения вся диагностическая информация о пациенте может быть интегрирована в такие мультимодальные данные и обрабатываться системой ИИ, обученной рассматривать как внешнее изображение человека и фрагментов его тела, так и результаты анализов, МРТ- и КТ-изображения, аудиозаписи ответов на вопросы и т.

Все это приближает нас к построению универсального диагноста, использующего холистический подход к диагностике заболеваний, и сокращению количества посещений разных врачей-специалистов для назначения эффективного лечения. Приложения для здоровья на базе искусственного интеллекта Самое большое потенциальное преимущество искусственного интеллекта — возможность помочь людям оставаться бодрыми, чтобы им не приходилось посещать врача или по крайней мере делать это не слишком часто. Искусственный интеллект и интернет медицинских вещей IoMT уже постепенно меняют парадигму с «реактивного» здравоохранения на «проактивное».

Но на самом деле исследования куда глубже, чем можно представить. И касаются они не только вирусологии, но также профилактической медицины и нутрициологии, для которых анализируют натуральные органические соединения. Их существует десятки миллиардов, поэтому исследования вручную не слишком эффективны.

Клинические испытания требуют крупных инвестиций и могут длиться несколько лет. Для разработки нового препарата нужно протестировать на клеточных культурах десятки и сотни химических соединений, которые в дальнейшем нужно будет проверить и на живых организмах. Из-за этого все фазы клинических испытаний могут занять несколько лет. Компьютерные мощности способны помочь исследователям, значительно ускорив процесс создания новых лекарственных препаратов, а также ощутимо сократить расходы на проведение дорогостоящих клинических испытаний. К примеру, британо-ирландская компания Nuritas использует искусственный интеллект для поиска активных органических соединений, которые в теории можно использовать для лечения и предотвращения болезней. Как утверждают специалисты компании, технология анализа химических соединений с помощью искусственного интеллекта в 600 раз точнее и в десять раз быстрее, чем стандартные методики.

Впрочем, без человека пока еще не обойтись. После того, как нейросеть обнаруживает перспективное соединение, за глубокое исследование берутся биохимики. За восемь лет сотрудники компании зарегистрировали 65 патентов в медицинской отрасли, сейчас компания активно разрабатывает препараты для восстановления мышц, нормализации метаболизма глюкозы и замедления клеточного старения. Это лишь один из нескольких десятков проектов, которые изучают химические соединения для разработки диетических и биологических пищевых добавок, а также лекарственных препаратов. А развитие искусственного интеллекта в перспективе еще больше ускорит исследования и улучшит их результативность. Согласно данным Всемирной организации здравоохранения, редкими считаются болезни с распространенностью от 1 случая на 1 000 человек до 1 случая на 200 000 человек.

Концерны не слишком часто инвестируют средства в поиски лекарств от таких болезней. Время окупаемости таких исследований составит десятки лет, если они вообще когда-нибудь окупятся. Основная сложность лечения редких болезней не в синтезе лекарств и лабораторных тестированиях, а в недостатке клинических данных.

Александр Гусев: у нас есть шанс на мировом рынке искусственного интеллекта Минздрав анонсировал вступление в силу приказа, согласно которому главврач медицинской организации будет сам принимать решение о переходе на электронный документооборот. Замминистра Павел Пугачев признал, что, несмотря на всю цифровизацию, «врачи по-прежнему вынуждены печатать документы на бумаге». Почему буксует информатизация отрасли?

Похожие новости:

Оцените статью
Добавить комментарий