Отметим, что реализация ключевого для водородной бомбы принципа сжатия термоядерной взрывчатки в «Слойке» был иным, чем в бомбе Теллера-Улама. Термоядерное оружие (водородные бомбы) предусматривает использование энергии неуправляемой реакции ядерного синтеза, то есть преобразования легких элементов в более тяжелые (например, двух атомов "тяжелого водорода", дейтерия, в один атом гелия). Водородная (термоядерная) бомба: испытания оружия массового поражения. как действует водородная бомба и каковы последствия взрыва. Термоядерное оружие (водородные бомбы) предусматривает использование энергии неуправляемой реакции ядерного синтеза, то есть преобразования легких элементов в более тяжелые (например, двух атомов "тяжелого водорода", дейтерия, в один атом гелия).
Водородная бомба
Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Существует другой способ запустить ядерную реакцию — обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе. На этом принципе работают все современные атомные детонаторы.
Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми.
Возможные последствия взрыва водородной бомбы В первую очередь водородная бомба — это оружие массового поражения. Оно способно уничтожать не только взрывной волной, как на это способны тротиловые снаряды, но и радиационными последствиями. Что происходит после взрыва термоядерного заряда: ударная волна, сметающая всё на своём пути, оставляя после себя масштабные разрушения; тепловой эффект — невероятная тепловая энергия, способна расплавить даже бетонные конструкции; радиоактивные осадки — облачная масса с каплями радиационной воды, элементами распада заряда и радионуклидами, движется по ветру и выпадает в виде осадков на любом удалении от эпицентра подрыва.
Вблизи ядерных полигонов или техногенных катастроф на протяжении десятилетий наблюдается радиоактивный фон. Последствия применения водородной бомбы очень серьёзные, способные нанести вред будущим поколениям. Всем спасибо!
Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф. Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез.
Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны. Это не единственное заблуждение о термоядерном оружии.
Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» — опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, — получается меньше, чем при делении ядер урана. Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда.
Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению. Правда, зерно истины в мифе о «чистой» бомбе все же есть.
Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации.
Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз — мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная.
Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа — более чем достаточный сдерживающий фактор.
Александр Березин Браво Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось.
Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения например, появился урановый экран между инициирующей бомбой и основным зарядом и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом.
Разве что рождение сверхновой звезды. Что такое реакция слияния ядер? Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий.
Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления.
В оболочке располагаются изотопы урана и плутония. Они распадаются на частички, захватывая нейтроны. Далее разрушается один атом и инициируется деление остальных. Делается это при помощи цепного процесса. В конце начинается сама ядерная реакция. Части бомбы становятся одним целым. Заряд начинает превышать критическую массу.
При помощи такой структуры освобождается энергия и происходит взрыв. Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии. Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер.
Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость. Тут протон со звуком замещается в ядре водорода на два элемента - дейтерий и тритий: Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород; Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза.
Сначала взрывается атомный запал из двух кусков урана-235 или плутония-239. Находятся они в хвостовой части бочки. При соединении они достигают критической массы и начинается цепная реакция. Это и есть атомный взрыв. За счет него выделяется тепло, которое начинает термоядерный синтез гелия из дейтерия. Подробнее о самых мощных атомных бомбах. Испытания термоядерной бомбы После взрыва в Хиросиме и Нагасаки , окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба.
Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной.
Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом.
Плазма нагретая до сотни миллионов градусов — светит в рентгеновском диапазоне, и что самое печальное — она прозрачна для него. Впрочем, из-за того, что в термоядерном реакторе газа очень мало например в ITER — всего пол грамма , все получается не так плохо: чтобы нагреть 0. Есть еще критерий Лоусона , показывающий, будет ли реакция давать больше энергии, чем тратится. Помимо температуры важна еще плотность само собой выше плотность плазмы — быстрее реакция идет и время удержания плазмы чтобы успело прореагировать. Соответственно, системы могут быть импульсные Z-Machine, NIF, термоядерный заряд — короткое время реакции, высокая температура и плотность и постоянные токамак — низкая плотность и температура, длительное время реакции. Посмотрим теперь, какие подходы есть к реализации термоядерного реактора. Конструкции Звезда — естественный термоядерный реактор.
Горячая плазма под высоким давлением удерживается гравитацией, а все излучаемое рентгеновское излучение — за счет огромной плотности и размеров поглощается. Таким образом ядро не остывает даже при относительно маленьких скоростях реакции. Из-за этого в ядре сгорает не только водород и дейтерий, но и гораздо более тяжелые элементы. К сожалению, на земле такую конструкцию реализовать затруднительно. Термоядерная водородная бомба — также достаточно проста по конструкции. С помощью 2-х типов взрывчатки «медленной» и «быстрой» и двух детонаторов формируется сферическая ударная волна, которая переводит плутоний в альфа-фазу меньшего размера, в которой возможна цепная реакция деления. По желанию можно добавить внешний импульсный нейтронный инициатор о нем ниже — в момент наибольшего сжатия он выдаст кучу нейтронов, которые должны дать резкий старт реакции. Они начинают реагировать друг с другом — и удерживает их от разлетания сила инерции относительно тяжелого корпуса заряда из урана.
Помимо этого, урановый корпус непрозрачен для рентгеновского излучения — соответственно потери тепла меньше. Вся реакция заканчивается за 1 микросекунду — и корпус только-только начинает разлетаться в разные стороны. Это была так называемая «бустерная схема» ядерного заряда, где вклад термоядерной реакции невелик, и лишь позволяет немного поднять мощность «задешево» плутоний — страшно дорогой, а литий — в сравнении с ним дешев как грязь. Тритий напрямую не используют поскольку он радиоактивный и соответственно долго не хранится. А литий-6 стабилен, и ядерный заряд всегда готов к бою. Можно использовать и литий-7 — он не только дает тритий, но и еще один лишний нейтрон. Об этой реакции не знали, когда американцы тестировали бомбу «Shrimp» «Креветка». Существует и схема радиационной имплозии — когда первичный ядерный взрыв рентгеновским излучением обжимает и нагревает отдельную сферу с термоядерным топливом.
Линейные ускорители: идея проста — берем мишень из любого удобного дейтерида металла, и в маленьком линейном ускорителе разгоняем до нужной скорости атомы трития. Получаем настоящую термоядерную реакцию, и выходом энергии и 14. Такой источник можно использовать для поиска нефти и воды например на марсианском ровере MSL стоит российский импульсный источник нейтронов DAN , и в качестве внешнего импульсного нейтронного инициатора в ядерных зарядах. Почему-же так нельзя вырабатывать электричество?
Очевидно, в конце октября. В заключение, вероятно, взорвем водородную бомбу мощностью в 50 миллионов тонн тротила. Мы говорили, что имеем бомбу в 100 миллионов тонн тротила. И это верно.
Но взрывать такую бомбу мы не будем". Генеральная ассамблея ООН приняла 27 октября 1961 г. Ту-95В с экипажем из девяти человек ведущий летчик - Андрей Дурновцев, ведущий штурман - Иван Клещ вылетел с военного аэродрома Оленья на Кольском полуострове. Сброс авиабомбы был осуществлен с высоты 10,5 км на площадку Северного острова архипелага, в районе пролива Маточкин Шар. Взрыв произошел на высоте 3,7 км от земли и 4,2 км над уровнем моря, на 188 сек. Вспышка длилась 65-70 сек. Облако долго сохраняло свою форму и было видно на расстоянии нескольких сотен километров. Несмотря на сплошную облачность, световая вспышка наблюдалась на расстоянии более 1 тыс.
Ударная волна трижды обогнула земной шар, из-за электромагнитного излучения на 40-50 мин. Радиоактивное загрязнение в районе эпицентра оказалось небольшим 1 миллирентген в час поэтому исследовательский персонал смог работать там без опасности для здоровья через 2 часа после взрыва. По оценкам специалистов, мощность супербомбы составила около 58 мегатонн в тротиловом эквиваленте. Это примерно в три тысячи раз мощнее атомной бомбы, сброшенной США на Хиросиму в 1945 г.
Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?
Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. Термоядерную бомбу иначе еще называют водородной бомбой.
Водородная (термоядерная) бомба: испытания оружия массового поражения
ВОДОРОДНАЯ БОМБА | Водородные бомбы, считающиеся ядерным оружием, работают с использованием комбинации ядерного деления и термоядерного синтеза. |
Как один солдат водородную бомбу изобрел | Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. |
Как действует водородная бомба и каковы последствия взрыва? Инфографика | Идея создания термоядерной («водородной») бомбы принадлежит американским ученым, участникам «Манхэттенского проекта», создавшим и испытавшим в 1945 г. в Аламогордо первую в мире атомную бомбу. |
Водородная и атомная бомбы: сравнительные характеристики
Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Слайд 8 Слайд 9 Описание слайда: Последствия взрыва. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер.
Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды. Слайд 11 Описание слайда: Самая мощная водородная бомба В 1961 году был произведён самый мощный взрыв водородной бомбы.
По сути, эти параметры послужили отправной точкой, определившей полезную нагрузку и стартовую массу ракеты Р-7 созданной ОКБ-1, главный конструктор С. Королев — первой советской межконтинентальной баллистической ракеты. Но с учетом расчетной точности стрельбы ракеты Р-7, мощность заряда РДС-6С была недостаточной для требуемой боевой эффективности.
Требовалось форсировать энерговыделение заряда. Кроме того, РДС-6С имел невысокие эксплуатационные характеристики. Расчетно-теоретические оценки показали, что в заданных массогабаритных ограничениях РДС-6С при одноступенчатой схеме, на принципе химической имплозии кардинально повысить энерговыделение заряда практически невозможно. Это инициировало поиски новых идей. Решение было найдено при использовании принципа радиационной имплозии «третья идея», как назвал в своих воспоминаниях ее автор А. На этой основе была разработана двухступенчатая схема термоядерного заряда. Правильность данного выбора подтвердило успешное испытание двухступенчатого термоядерного заряда РДС-37, проведенное 22 ноября 1953 г. Проведение испытаний Разработчики заряда РДС-37 были настолько уверены в правильности его физической схемы и конструкции, что заряд сразу испытывался в составе авиационной бомбы корпус с некоторыми техническими доработками был позаимствован от серийной бомбы РДС-6С , сбрасываемой в штатном режиме с реактивного бомбардировщика среднего радиуса действия ТУ-16.
Для обеспечения безопасности самолета-носителя и его экипажа в составе авиабомбы предусматривался тормозной парашют площадью 6 м2 , обеспечивающий запас по времени для ухода самолета на безопасное расстояние от эпицентра взрыва. Летные экипажи самолета-носителя и сопровождающего самолета-лаборатории, обслуживающий технический персонал, операторы измерительных средств и руководство полетами были из состава 71 полигона ВВС станция Багерово, Крымской области. Начальник полигона — генерал-майор Чернорез В. Данный полигон обеспечивал баллистические испытания спецавиабомб, их парашютных систем, отработку систем автоматики подрыва заряда, радиотелеметрии и т. Начальником полигона в то время был генерал-лейтенант И. Подготовку бомбы к испытаниям проверки всех приборов автоматики с полной имитацией их срабатывания на траектории полета - так называемый «контрольный цикл» - комплексную проверку, сборку и снаряжение заряда, подвеску бомбы под самолет-носитель, проверку взаимодействия самолетного пульта управления штурмана с системой автоматики бомбы, снятие первой ступени предохранения бомбы в бомбоотсеке, расчет полетного задания для ввода в автоматику бомбы обеспечивала испытательная бригада КБ-11, состоящая из гражданских лиц и офицеров военно-сборочной бригады, прикомандированной к КБ. Руководил этой бригадой наш корифей-испытатель Буянов В. Все работы контролировались квалифицированными военпредами из 12 ГУ Министерства среднего машиностроения МСМ во главе с генерал-лейтенантом В.
Административное руководство испытаниями осуществлял министр МСМ А. Научно-техническое руководство осуществляли академики И. Курчатов и Ю. Группу физиков-теоретиков возглавлял автор заряда академик А. На испытаниях присутствовал пока только присматриваясь вновь назначенный директор КБ-11 герой Уралмаша и «Маяка», дважды Герой Социалистического труда Б. Требования по подготовке бомбы были необычайно строги: любые отклонения от документации так называемые ИОСы — инструкции по окончательной сборке немедленно докладывались Курчатову и Завенягину, которые находились в тамбуре здания по подготовке так называемом «ДАФе»:Духов, Алферов, Флеров , оперативно принимая технические решения. Работы проводились в условиях жесточайшего режима секретности: часовыми у здания «ДАФ», где готовилась бомба, были офицеры КГБ в чине не ниже капитана, а при вывозе бомбы на аэродром статус часовых поднимался до полковника. Относительно режима секретности показателен следующий эпизод.
Начальник отдела КБ-11 по разработке специальной оснастки для сборки и снаряжения ядерного заряда И.
К сожалению, на земле такую конструкцию реализовать затруднительно. Термоядерная водородная бомба — также достаточно проста по конструкции. С помощью 2-х типов взрывчатки «медленной» и «быстрой» и двух детонаторов формируется сферическая ударная волна, которая переводит плутоний в альфа-фазу меньшего размера, в которой возможна цепная реакция деления.
По желанию можно добавить внешний импульсный нейтронный инициатор о нем ниже — в момент наибольшего сжатия он выдаст кучу нейтронов, которые должны дать резкий старт реакции. Они начинают реагировать друг с другом — и удерживает их от разлетания сила инерции относительно тяжелого корпуса заряда из урана. Помимо этого, урановый корпус непрозрачен для рентгеновского излучения — соответственно потери тепла меньше. Вся реакция заканчивается за 1 микросекунду — и корпус только-только начинает разлетаться в разные стороны.
Это была так называемая «бустерная схема» ядерного заряда, где вклад термоядерной реакции невелик, и лишь позволяет немного поднять мощность «задешево» плутоний — страшно дорогой, а литий — в сравнении с ним дешев как грязь. Тритий напрямую не используют поскольку он радиоактивный и соответственно долго не хранится. А литий-6 стабилен, и ядерный заряд всегда готов к бою. Можно использовать и литий-7 — он не только дает тритий, но и еще один лишний нейтрон.
Об этой реакции не знали, когда американцы тестировали бомбу «Shrimp» «Креветка». Существует и схема радиационной имплозии — когда первичный ядерный взрыв рентгеновским излучением обжимает и нагревает отдельную сферу с термоядерным топливом. Линейные ускорители: идея проста — берем мишень из любого удобного дейтерида металла, и в маленьком линейном ускорителе разгоняем до нужной скорости атомы трития. Получаем настоящую термоядерную реакцию, и выходом энергии и 14.
Такой источник можно использовать для поиска нефти и воды например на марсианском ровере MSL стоит российский импульсный источник нейтронов DAN , и в качестве внешнего импульсного нейтронного инициатора в ядерных зарядах. Почему-же так нельзя вырабатывать электричество? На разгон атомов тратится намного больше энергии, чем мы получаем в результате реакции далеко не все разгоняемые атомы реагируют. Токамак тороидальная камера с магнитными катушками — идея уже немного сложнее, в плазменном торе как в трансформаторе наводим ток.
Вокруг тора — сверхпроводящие магниты, которые «обжимают» плазму и не дают ей коснуться стенок. Плазма нагревается микроволновым излучением, и резистивным нагревом от протекающего тока. Когда начинали работать по этому направлению — казалось: вот-вот и все будет работать. Во всем мире построено порядка 300 токамаков, и самый современный и крупный из них — строящийся международный проект ITER в том числе и при участии России.
Водородную плазму то есть без термоядерной реакции собираются зажечь в 2020-м, а начать запуски с дейтерий-тритиевой плазмой — в 2027, если конечно все пойдет по плану и не случится какой-нибудь очередной кризис. Проблемы у токамаков следующие при их будущем промышленном использовании : Нестабильность плазмы. Разряд норовит где-то становится тоньше, где-то — толще, вплоть до разрыва кольца с прекращением тока или касанием стенок. С проблемой боролись увеличением размеров камеры, добавлением полоидального магнитного поля вокруг вертикальной оси камеры.
Полмиллиарда человек оказались бы убиты из-за первоначальных обменов ударами. Еще больше людей умерли бы впоследствии от радиации и голода. НАТО больше не было бы. Почти все Северное полушарие стало бы непригодными для проживания на десятилетия Пол Брэкенпрофессор Йельского университета Смертельная гонка События 1982 и 1983 годов стали кульминацией процесса, который начался еще до окончания Второй мировой войны. Так в потсдамском дворце Цецилиенхоф в 07:30 вечера 24 июля 1945 года началась настоящая гонка ядерных вооружений XX века.
На тот момент проект «Манхэттен» уже был на финальной стадии. Все шло к бомбардировке Японии. Он не стал просить о частной встрече и просто, как бы между делом, сообщил, что США обладают новым оружием необычайной разрушительной силы. Сказав это, Трумэн внутренне напрягся. Он не знал, как отреагирует Сталин.
Но тот ответил лишь, что рад слышать такую новость, и выразил надежду, что Соединенные Штаты "удачно используют это против японцев". И все. Никаких вопросов о принципе действия оружия. Ни слова о том, что хорошо бы поделиться им с русскими. Американцы и британцы были шокированы», — пишет в своей книге «Обратный отсчет: 116 дней до атомной бомбардировки Хиросимы» Крис Уоллес.
В реакции Сталина, однако, не было ничего удивительного. К тому моменту работы над ядерным оружием велись в СССР уже три года. Более того, знали в Москве и обо всех достижениях США. Информатором служил Клаус Фукс — один из ученых, непосредственно занятых в проекте «Манхэттен». За шесть недель до встречи Сталина с Трумэном он передал советским разведчикам все, что знал о «Толстяке»: документы о плутониевой начинке, взрывателе и электроприводе и даже эскиз атомной бомбы.
После бомбардировок Хиросимы и Нагасаки в США считали, что надолго останутся единственным ядерным государством в мире. Но в Советском Союзе работы над ядерным оружием шли стремительными темпами И в 1949 году, когда прошли успешные испытания первой советской ядерной бомбы РДС-1, мир был потрясен. С этого момента СССР начал стремительно ускорять темпы производства ядерного оружия. Если к концу 1949-го были изготовлены две РДС-1, то к концу 1951 года их было уже 29. Вовсю шло строительство баз для хранения атомных бомб.
Параллельно появились и первые бомбардировщики, способные переносить это оружие. В США такое развитие событий вызвало неслыханную тревогу. Уже 31 января 1950 года Трумэн выступил перед американским народом. Президент сообщил нации, что будет продолжена «работа над всеми видами атомного оружия, включая так называемую водородную или сверхбомбу». Испытаний водородной бомбы пришлось ждать еще два года — до 1 ноября 1952-го.
Взорванное в тот день термоядерное оружие было по-настоящему монструозным. Оно весило 60 тонн и по размерам превосходило трехэтажный дом. Мощность этой чудовищной разработки, названной «Айви Майк», впечатляла не меньше: она в 450 раз превышала возможности «Толстяка», который в 1945 году стер с лица земли Нагасаки. Советские ученые работали над собственной водородной бомбой параллельно с американцами Уже 8 августа 1953 года глава Совета министров СССР Георгий Маленков во всеуслышание объявил о том, что эти труды увенчались успехом. На Западе заявление произвело фурор, хотя и было встречено сомнениями.
The New York Times даже вышла с заголовком «Маленков говорит правду? Утвердительный ответ был дан всего через четыре дня: 12 августа 1953 года на Семипалатинском полигоне испытали водородную бомбу РДС-6с. Жуткое оружие потом назовут «слойкой Сахарова» — ее конструкция предполагала чередование легких и тяжелых реактивных веществ. Взрыв прогремел в 07:30 утра. Спустя несколько секунд в небо поднялся гриб высотой 12 километров, а пыль разлетелась на десятки километров.
Близлежащий железнодорожный мост со стотонными пролетами был отброшен на 200 метров. В радиусе четырех километров были полностью разрушены все кирпичные здания. Жар от вспышки ощущался на расстоянии 25 километров. Земля содрогнулась под нами, а в лицо ударил тугой, крепкий, как удар хлыста, звук раскатистого взрыва. От толчка ударной волны трудно было устоять на ногах Владимир Комельковучастник атомного проекта «Слойка Сахарова» была значительно слабее американского образца.
Ее заряд составлял всего 400 килотонн — против 10 мегатонн «Айви Майка». Но РДС-6с была куда компактнее и легко помещалась в отсеке бомбардировщика Ту-16. Да, взрыв действительно получился куда сильнее взрыва атомной бомбы. Впечатление от него, по-видимому, превзошло какой-то психологический барьер. Следы первого взрыва атомной бомбы не внушали такого содрогающего ужаса, хотя и они были несравненно страшнее всего виденного еще недавно на прошедшей войне», — писал сотрудник Радиевого института АН СССР Николай Власов.
Гарантированное уничтожение Но по-настоящему ход гонки вооружений изменила даже не водородная бомба РДС-6с, а первая межконтинентальная баллистическая ракета Р-7. Она появилась в 1957 году и была способна достичь другого конца Земли. Перехватить ее на тот момент не могла ни одна система защиты в мире Эта же ракета чуть позже станет отправной точкой для освоения Советским Союзом космоса. Именно на ее основе создали семейство ракет-носителей, которое позволило СССР сначала отправить на орбиту искусственный спутник Земли, а затем осуществить и первый полет человека к звездам.
«Отец» водородной бомбы
Водородная бомба (также известная как водородная бомба, слитая бомба, или термоядерная бомба) является атомной бомбой, чья основной энергия исходит от синтеза легких ядер. Одним из типов ядерного оружия является термоядерное оружие, которое многим из нас более известно под названием водородная бомба. Момент взрыва водородной бомбы в акватории Тихого океана. РИА Новости. Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения.
Опасная «слойка»: как советская водородная бомба потрясла мир
Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения. В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития. оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Атомный заряд служит запалом для водородной бомбы, а дальше происходит термоядерная реакция.
Водородная (термоядерная) бомба: испытания оружия массового поражения
Как работает водородная бомба (6 фото + видео) | тип ядерного оружия, разрушительная сила которого Разработка водородной бомбы. |
Принцип работы водородной бомбы | Водородная (термоядерная) бомба: испытания оружия массового поражения. как действует водородная бомба и каковы последствия взрыва. |
Подписи к слайдам:
- Принцип действия термоядерного оружия
- Опасная «слойка»: как советская водородная бомба потрясла мир
- Как один солдат водородную бомбу изобрел
- Водородная бомба - состав и принцип действий
- Как устроена водородная бомба
- Радиоактивные осадки
Смертельная гонка
- Термоядерная «Царь-бомба»
- Как один солдат водородную бомбу изобрел
- Термоядерное оружие — Википедия
- Термоядерное оружие: Как устроена водородная бомба
- Литературные дневники / Проза.ру
- Объективные проблемы
«Сердце» взрыва
- Объективные проблемы
- Публикации
- Термоядерная реакция
- Как работает водородная бомба » Вестник К
- Атомное оружие — Wiki. Lesta Games
Опасная «слойка»: как советская водородная бомба потрясла мир
Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы | Термоя́дерное ору́жие — вид ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые. |
RU2477449C1 - ВОДОРОДНАЯ БОМБА - Яндекс.Патенты | Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. |
Поражающие факторы взрыва водородной бомбы. Водородная бомба | Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета. |
Как работает водородная бомба | Конструкция бомбы состояла из чередующихся сферических слоев делящихся материалов и термоядерного горючего (дейтерий, тритий). |
Как работает водородная бомба » Вестник К | тэги: водородная бомба, водородное оружие, вооружение россии 2013, стратегические вооружения, термоядерная бомба, термоядерное оружие. |
Презентация по физике на тему: "Термоядерные реакции. Водородная бомба"
В 1968 году большинство существующих на тот момент стран подписали Договор о нераспространении ядерного оружия. Он ограничивает производство и продажу такого вооружения. Однако сейчас некоторые страны подозреваются в его нарушении. Например, поступали сообщения о том, что Иран хочет войти в клуб ядерных держав. Якобы на его территории идёт разработка атомной бомбы. Что точно можно сказать — частным предприятиям разработка ядерного оружия вряд ли под силу.
Чаще всего это национальные проекты, доступные только странам с крупными экономиками. Ведь для того, чтобы создать атомную бомбу с нуля, нужно сначала обогатить руду, чтобы из обычного урана получился нужный его изотоп. Кроме того, нужны очень точные приборы, которые измеряли бы наличие взрывчатого вещества в составе оружия. К тому же за оборотом радиоактивных элементов следит особая «радиоактивная полиция». Ведь радиация всегда оставляет следы.
Чем взрыв на АЭС отличается от взрыва атомной бомбы? При взрыве ядерной бомбы происходит цепная реакция и выделяется энергия, запасённая в ядре атома. А при аварии на АЭС внутри ядерного реактора с радиоактивным веществом возникает большое давление, которое приводит к разрыву. Представьте, что вы варите сгущёнку: если перекипятить банку, она взорвётся. Да, и в том и в другом случае происходит радиоактивное загрязнение местности, но оно может различаться по масштабам.
Так, например, Хиросиму и Нагасаки люди заселили вновь спустя всего несколько лет после бомбардировки. А вот вокруг Чернобыльской АЭС всё ещё сохраняется зона отчуждения, хотя авария произошла уже давно — в 1986 году. Реактор же в Чернобыле взорвался на уровне земли, сделав почву радиоактивной на много лет. Лишь недавно там начали встречать диких животных и растения без признаков мутаций. Чернобыльский реактор выпустил 180 тонн ядерного топлива.
То есть при аварии в атмосферу было выброшено на порядок больше вредных веществ. Сколько атомных бомб нужно, чтобы уничтожить Землю? Что будет, если начнётся ядерная война? Сейчас мировой ядерный арсенал насчитывает около 13 000 ядерных боеголовок. Этого запаса не хватит, чтобы, например, сдвинуть Землю с её орбиты и тем самым, возможно, уничтожить на ней жизнь.
Однако если начнётся ядерная война, то пострадает большая часть населения планеты. Затем по всей Земле начнутся пожары , которые повлияют на климат. Так что выжившие столкнутся с массовой засухой, кислотными дождями и голодом.
Всего в СССР, включая Семипалатинский полигон, в период с 20 октября по 5 ноября 1962 года было проведено пятнадцать ядерных взрывов. А завершилась программа таких испытаний декабрьской серией из 11 термоядерных бомб и боеголовок мегатонного класса, взорванных над мысом Сухой Нос у западного побережья Новой Земли. Причем 18, 24 и 25 декабря проводили по два испытания в день, а 23-го было проведено три... В 1961-1963 годах США провели как минимум 125 ядерных испытаний Справедливости ради отметим, что Соединенные Штаты за период 1961-1963 годов провели на трех своих полигонах в Неваде, на острове Рождества и острове Джонстона как минимум 125 ядерных испытаний в атмосфере и под водой.
Советский Союз в 1963 году ядерных испытаний не проводил. А серия мощных взрывов над Новой Землей в конце декабря 1962 года вообще стала последним для нашей страны эпизодом ядерных испытаний в открытых средах: с 1964 года в СССР проводились только подземные испытания. Так что Никита Хрущев ничуть не лукавил, когда заявил в Берлине, что в Советском Союзе в интересах всего социалистического содружества создано, испытано и поставлено на боевое дежурство, передано в войска оружие невиданной силы - "и пусть только господа-империалисты сунутся". Первые американские "штучки": урановый "Малыш", жертвой которого 06. Фото: Соцсети Многие эксперты солидарны в том, что нарочито громкое, демонстративное заявление советского лидера в Берлине имело целью подтолкнуть американцев к переговорам и заключению обязывающих соглашений. А чтобы так ставить вопрос - о переговорах между Москвой и Вашингтоном на равных, - надо было как минимум обеспечить фактический паритет СССР и США в ядерных вооружениях. Советский Союз вступил в эту гонку на исходе тяжелейшей для себя войны и первые пятнадцать лет был в роли догоняющего.
Даже после того, как в СССР провели первое испытание своей атомной бомбы 29 августа 1949 года , говорить о преодолении атомной монополии США можно было лишь условно.
Сам, вероятно, не знает 0 Николай Николаев 03 Декабря 2021, 03:16 Каков механизм получения из реакции ядерного синтеза энергии большей, чем затрачивается на этот синтез? Если в реакции ядерного распада используются свертяжёлые неустойчивые ядра, уже созданные природой, то есть, природа уже затратила энергию на создание критического состояния, то лёгкие ядра очень устойчивы и чтобы заставить их вступить в синтез, необходимо затратить энергии больше, чем может быть получено из этого синтеза. В любом советском учебнике по гражданской обороне написано гораздо понятнее и правильнее 1 Nicolay1 30 Апреля 2021, 16:43 При взрыве водородной бомбы основная энергия выделяется в виде выделения нейтронов при слиянии двух изотопов водорода из которых образуется один атом гелия. Автор именно эту подробность скрыл.
Во сколько раз дейтерид лития сжимается,? В миллиард? Москва, Большой Саввинский пер. II; Адрес редакции: 119435, г.
Группа не имела доступа к разведданным. Участвуя в анализе расчетов группы Я. Зельдовича, А. Теллера, он приходит к схеме, аналогичной схеме «будильника». Предложенная А. Лежащий в ее основе принцип ионизационного сжатия термоядерного горючего назвали «сахаризацией». Правда, надо заметить, что до предложения А. Сахарова в журнале «Science New Letter» от 17 июля 1948 года, в статье W. Сахаров выпустил свой первый отчет по «слойке».
А пока Ю. Харитон, ознакомившись с результатами расчетов группы И. Тамм и А. Компанеец получают значения ядерных реакций без ссылки на источник. Берию о предложенной А. Харитон направляет Б. По указанию Л. Берии в работе совещаний принимает участие А. Это был первый приезд А.
Сахарова в Арзамас-16. Был установлен срок изготовления первого экземпляра изделия РДС-6с - 1954 год. Харитон, а его заместителями - И. Тамм и Я. В марте 1950 года на работу в КБ-11 прибывают А. Сахаров и Ю. Романов, а в апреле - И.