является самым мощным в мире реактором-размножителем на быстрых нейтронах с жидкометаллическим натриевым теплоносителем. Так реактор на быстрых нейтронах, использующий отработанное топливо, уже вовсю работает на Белоярской АЭС. В реакторах на быстрых нейтронах обходятся без замедлителей. Блок № 4 Белоярской АЭС оснащен реактором на быстрых нейтронах БН-800 установленной электрической мощностью более 800 МВт.
Российские ученые: Реактор БН-800 полностью переведен на МОКС-топливо
Россия продолжила работу с реакторами на быстрых нейтронах единственная в мире. Здесь были выдвинуты и реализованы идеи создания реакторов на быстрых нейтронах и реакторов с прямым преобразованием ядерной энергии в электрическую. Энергоблок №4 с реактором на быстрых нейтронах БН-800 (800 МВт) включен в энергосистему России и уже поставляет электроэнергию. Причина, по которой нет плутониевых реакторов на быстрых нейтронах, впрочем, весьма простая. Поскольку реакторы на быстрых нейтронах способны работать на плутонии и, таким образом, позволяют замкнуть ядерный топливный цикл, оптимальным топливом для таких установок будет уран-плутониевая смесь. разработка, испытание реакторов на быстрых нейтронах (быстрых реакторов).
Также по теме
- БН-800 — Википедия
- Что даст программа "Росатома" в ближайшей перспективе?
- Радиационные явления в реакторных материалах обсудили в Обнинске
- Быстрое семейство
Уникальный реактор обеспечит энергетическое будущее России
Это, в частности, позволит решить ресурсную проблему атомной энергетики, связанную с ограниченностью запасов природного урана. Поскольку реакторы на быстрых нейтронах способны работать на плутонии и, таким образом, позволяют замкнуть ядерный топливный цикл, оптимальным топливом для таких установок будет уран-плутониевая смесь. В частности, реактор БН-800 в 2022 году был переведен на промышленное смешанное оксидное уран-плутониевое МОКС-топливо. Другой вид уран-плутониевого топлива для быстрых реакторов — нитридное СНУП-топливо, оно будет использоваться в первом инновационном реакторе со свинцовым теплоносителем БРЕСТ-ОД-300 строится в Северске в рамках отраслевого проекта "Прорыв".
Первая поставка в Китай топлива для реактора на быстрых нейтронах « Росатом » впервые отправил в Китай топливо для реактора на быстрых нейтронах, о чем госкорпорация объявила 29 сентября 2022 года. Это флагманский проект КНР в области «быстрой» атомной энергетики. Заказчику отгружены первые тепловыделяющие сборки для стартовой загрузки реактора. Топливная компания в очередной раз подтвердила, что готова реализовывать сложные проекты в нестандартных условиях, гибко подходить к требованиям наших партнеров.
Но поскольку ректор работал в течение 9 часов только вполсилы, поэтому ксенон не выгорел. При запланированном постепенном снижении произошел кратковременный провал по мощности практически до нуля. Персонал станции принял решение о восстановлении мощности реактора, путем извлечения поглощающих стержней реактора состоят из поглощающего нейтроны карбида бора , которые используются для замедления реакции деления.
Кроме того, из-за снижения оборотов насосов, подключенных к «выбегающему» генератору, усугубилась проблема положительного парового коэффициента реактивности. За секунды мощность реактора резко возросла, превысив уровень его возможностей в 100 раз. Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram.
Там вы узнаете много нового. Поняв опасность ситуации, начальник смены 4-го энергоблока дал команду старшему инженеру управления реактором нажать кнопку аварийного глушения реактора А3-5. По сигналу этой кнопки в активную зону должны были вводиться стержни аварийной защиты.
Однако из-за конструктивных недостатков реактора до конца опустить эти стержни не удалось — давление пара в реакторе задержало их на высоте 2-х метров высота реактора — 7 метров. Тепловая мощность продолжила стремительно расти, начался саморазгон реактора. Произошли два мощных взрыва, в результате которых реактор 4-го энергоблока был полностью разрушен.
Также были разрушены стены и перекрытия машинного зала, возникли очаги пожара. Сотрудники начали покидать рабочие места. Ученые по-прежнему спорят, что могло послужить причиной каждого взрыва.
Согласно некоторым мнениям, оба взрыва могли быть паровыми и вызваны резким повышением давления в циркуляционной системе. Согласно другой версии, один взрыв мог быть паровым. А в результате второго взорвался водород, в ходе химических реакций внутри разрушающегося реактора.
Однако определение после взрыва изотопов ксенона в Череповце, что в 370 километрах от Москвы, указывает по словам Де Геера на то, что первый взрыв был на самом деле выбросом радиоактивного газа, выстрелившего на несколько километров в атмосферу. Что изменили в реакторах РБМК после чернобыльской катастрофы? Дополнительные сооружения при атомной станции.
О реальном масштабе случившегося из-за медлительности властей и также халатности на местах общество узнало далеко не сразу.
Что изменили в реакторах РБМК после чернобыльской катастрофы? Дополнительные сооружения при атомной станции. О реальном масштабе случившегося из-за медлительности властей и также халатности на местах общество узнало далеко не сразу. Советские СМИ не сразу сообщили о катастрофе. Первая информация о последствиях взрыва появилась в шведских СМИ после того, как над страной появилось радиоактивное облако.
В отсутствии достоверной информации и внятных комментариев со стороны властей зарубежные издания стали распространять непроверенные данные, основанные на слухах. Советские газеты в ответ обвинили «определенные круги» за рубежом в попытках нагнетать обстановку. Михаил Горбачёв обратился к советским гражданам только 14 мая, спустя почти три недели после катастрофы. Кроме того, это положило начало новой эре международной кооперации по вопросам ядерной безопасности. В августе 1986 года Международное агентство по атомной энергии провело конференцию в Венне, где советские ученые проявили беспрецедентный для того времени уровень открытости, сообщив подробности инцидента, говорит Де Геер, который также присутствовал на той конференции. После жуткой аварии в конструкцию работающих РБМК-1000 были внесены изменения: стало использоваться более обогащенное топливо, было увеличено количество управляющих стержней, введены дополнительные ингибиторы для избежания потери контроля над реактором при низких мощностях.
Три оставшихся реактора Чернобыльской АЭС находились в эксплуатации до 2000 года. В Литве также оставались два РБМК, которые впоследствии были закрыты по требованию после того, как страна стала членом Европейского союза. К настоящему моменту четыре эксплуатирующихся РБМК находится в Курске, три в Смоленске и еще три в Санкт-Петербурге четвертый был закрыт в декабре 2018 года. Вряд ли можно повысить безопасность РБМК в целом до уровня, который можно ожидать от аналогичного реактора западного образца», — добавляет Эдвин Лайман. В дополнение к этому Де Геер отмечает, что эти реакторы не предусматривают наличие защитных систем полной локализации, которая имеется у реакторов западного образца. Эти системы представляют собой щиты из свинца и стали и предназначены для удержания радиоактивного газа или пара от выбросов в атмосферу в случае аварии.
Необходим более жесткий контроль Инженеры лицом к лицу сталкиваются с проблемами атомных станций и должны их преодолевать. Несмотря на потенциал последствий аварии на АЭС для всего мирового сообщества по-прежнему не существует международных соглашений, в которых было бы четко прописано, что именно можно считать «безопасной» атомной электростанцией, говорит Лайман. Он отмечает, что Конвенция о ядерной безопасности требует от стран полной прозрачности в отношении принятых мер безопасности эксплуатации АЭС и допускает экспертную оценку этих систем, но законодательно не существует никаких принудительных механизмов и санкционных мер по соблюдению этих требований. Отдельные страны имеют свои независимые регулирующие органы, однако их независимость ограничивается тем, насколько им ее обеспечивают местные органы власти, говорит Лайман. Несмотря на то, что помимо СССР никто больше не строил реакторы типа РБМК-1000, в некоторых странах предложены новые проекты реакторов, где также имеет наличие пустотный коэффициент реактивности.
АО "ТВЭЛ" представило инновационные решения для замыкания ядерного топливного цикла
Вообще-то, Россия не является пионером в создании реакторов на быстрых нейтронах, но она стала первой, кто преуспел в этом. Ранее ядерные реакторы в России, работающие на быстрых нейтронах, загружались обычным урановым топливом, поскольку работали по обыкновенным натриевым технологиям, сообщает Научно-техническая конференция «Развитие технологии реакторов на быстрых нейтронах с натриевым теплоносителем (БН-2023)». Исследуем, как работают реакторы на быстрых нейтронах и в чем заключается их преимущество в ядерной энергетике. "Росатом" завершил передачу 25 тонн высокообогащенного урана для первого китайского реактора на быстрых нейтронах.
Россия создала нейтронный «Прорыв»
Тепловыделяющие элементы содержат смешанное плотное нитридное уран-плутониевое топливо СНУП-топливо , в 2023 году в соответствии с программой реакторных испытаний они будут загружены в реактор на быстрых нейтронах БН-600 на Белоярской АЭС", — говорится в сообщении. БН-1200М — это "быстрый" реактор нового поколения, который должен стать типовым проектом для энергоблока мощностью 1200 МВт с реактором на быстрых нейтронах и жидким натрием в качестве теплоносителя. С помощью этой установки в России должна быть реализована концепция двухкомпонентной атомной энергетики с реакторами большой мощности как на тепловых, так и на быстрых нейтронах, и замкнутым ядерным топливным циклом, когда в производстве свежего топлива планируется использовать вторичные продукты — обедненный уран, плутоний и регенерированный уран, выделенный из облученного топлива. Это, в частности, позволит решить ресурсную проблему атомной энергетики, связанную с ограниченностью запасов природного урана.
В качестве топлива эти установки могут использовать не только обогащенный природный уран, но и вторичные продукты ядерного топливного цикла — обедненный уран и плутоний. Кроме того, расчеты показали, что минорные актиниды из ОЯТ под действием быстрых нейтронов в реакторе будут делиться на осколки, представляющие собой достаточно широкий спектр радиоактивных и стабильных изотопов, но в целом их потенциальная опасность будет гораздо ниже, чем у исходных минорных актинидов. Процесс трансмутации минорных актинидов также называют дожиганием в реакторе. Внедрение МОКС-топлива позволяет многократно расширить сырьевую базу атомной энергетики за счет обедненного урана и плутония и перерабатывать облученное топливо вместо хранения. Дожигание минорных актинидов — это следующий шаг в замыкании ядерного топливного цикла, который должен не только уменьшить количество ядерных отходов, подлежащих финальной изоляции, но и значительно снизить их радиоактивность. В перспективе это дает возможность отказаться от сложного и дорогостоящего глубинного захоронения отходов», — прокомментировал старший вице-президент по научно-технической деятельности АО «ТВЭЛ» Александр Угрюмов.
Она появилась в 2021 году как часть продуктового направления «Сбалансированный ядерный топливный цикл» и рассчитана до 2035 года.
The purpose of the MBIR construction is to have a high-flux fast test reactor with unique capabilities to implement the following tasks: in-pile tests and post-irradiation examination, production of heat and electricity, testing of new technologies for the radioisotopes and modified materials production.
По сравнению с западноевропейским аналогом уран-плутониевого топлива для легководных реакторов его преимущество в том, что РЕМИКС-топливом можно загрузить активную зону не частично а полностью, а также в возможности многократного рециклирования ОЯТ.
Это следующий шаг российской науки в замыкании ядерного топливного цикла, ранее технология МОКС-топлива использовалась только для реактора на быстрых нейтронах БН-800. Как отметил Александр Угрюмов, полученные результаты также будут использованы для опережающей разработки и обоснования МОКС-топлива для перспективного инновационного реактора ВВЭР-С с регулированием спектра нейтронов предполагается, что данные установки смогут работать как в открытом, так и в замкнутом топливном цикле. Топливо для «быстрых» реакторов Внедрение замкнутого топливного цикла осуществляется прежде всего для реакторов на быстрых нейтронах, которые по своей физике изначально более «всеядны» с точки зрения топлива и делящихся материалов. Производство МОКС- и СНУП-топлива позволяет вовлекать в ядерный топливный цикл обедненный уран, постепенно ликвидируя его накопленные на складах запасы.
Технологии топлива для «быстрых» реакторов с каждым годом развиваются.
Что еще почитать
- К «Прорыву» добавляется реактор (12 февраля 2024) |
- Реактор БН-800 проработал год на топливе из отработавшего ядерного топлива
- "Росатом" испытает топливо для "реактора будущего" на Белоярской АЭС - 13.12.2022, ПРАЙМ
- Список статей
- Топливо для электростанций
Что дадут "быстрые нейтроны" в ближайшей перспективе?
- «Сделали то, что не успели в СССР». В России запущен вечный ядерный реактор | Аргументы и Факты
- Тема, которая американцам не близка
- В Волгодонске отгрузили реактор на быстрых нейтронах
- БН-800 — Википедия
- К «Прорыву» добавляется реактор (12 февраля 2024) |
Атомный феникс для вечного двигателя
важный этап в развитии технологий реакторов на быстрых нейтронах и замыкания ядерного топливного цикла в России. «Прорыв» предусматривает создание ядерных энергетических технологий нового поколения на базе замкнутого топливного цикла с использованием реакторов на быстрых нейтронах. «Росатом» начал возводить в Томской области уникальный реактор на быстрых нейтронах. Исследуем, как работают реакторы на быстрых нейтронах и в чем заключается их преимущество в ядерной энергетике. Несмотря на это, сегодня 10 реакторов типа РБМК-1000 все еще работают в России.
Реактор БН-800 проработал год на топливе из отработавшего ядерного топлива
Российским решением проблемы минорных актинидов должны стать инновационные реакторы на быстрых нейтронах. «Исследовать проблему вывода из эксплуатации быстрых реакторов можно на больших реакторах БН-600, БН-800. В итоге, на сегодняшний день в Обнинске уже собрали модель активной зоны перспективного реактора на быстрых нейтронах с натриевым теплоносителем БН-1200М.