Новости 26 задача егэ информатика

В варианте ЕГЭ-2024 две задачи по теории вероятностей — это №4 и №5. По заданию 5 в Интернете почти нет доступных материалов. Информатика. ЕГЭ. Задания для подготовки. Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников. 01.05.2023ЕГЭ Задание 26АдминистраторКомментарии: 0. Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград. 2024. 3 месяца назад. Самый мощный обстрел Белгорода за всю войну / Новости России.

Pascal в ЕГЭ по информатике

Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике. Способ решения задания №26 ЕГЭ по информатике (без использования программирования) с помощью MS Excel. Разбор нового типа 6 задания из Демоверсии l ЕГЭ 2023 по информатике l Коля Касперский из Вебиума.

Задание 26. ЕГЭ Информатика 2024. Разбор всех типов. Все коды решений в описании.

Входные данные В первой строке входного файла находится число N — количество коробок в магазине натуральное число, не превышающее 10 000. В следующих N строках находятся значения длин сторон коробок все числа натуральные, не превышающие 10 000 , каждое — в отдельной строке. Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе. В них вы найдёте всё самое полезное для себя — теория, решения заданий и практика.

Например, полное дерево игры не является верным ответом на это задание. Тогда после первого хода Пети в куче будет 15 или 28 камней. В обоих случаях Ваня удваивает кучу и выигрывает в один ход.

Выигрывает Ваня 14 - проигрышная позиция Задание 2. Возможные значения S: 7, 13. В этих случаях Петя, очевидно, не может выиграть первым ходом. Однако он может получить кучу из 14 камней: в первом случае удвоением, во втором — добавлением одного камня. Эта позиция разобрана в п. В ней игрок, который будет ходить теперь это Ваня , выиграть не может, а его противник то есть Петя следующим ходом выиграет.

Выигрывает Петя 7, 13 - выигрышные позиции со второго хода Задание 3. Возможные значения S: 12. После первого хода Пети в куче будет 13 или 24 камня. Если в куче их станет 24, Ваня удвоит количество камней и выиграет первым ходом. Ситуация, когда в куче 13 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Ваня , выигрывает своим вторым ходом.

Выигрывает Ваня вторым ходом! В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня подчеркнуты. На рисунке это же дерево изображено в графическом виде. Задание 26: Два игрока, Паша и Вася, играют в следующую игру. Игроки ходят по очереди, первый ход делает Паша.

За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S. Опишите выигрышную стратегию Васи. Задание 2.

Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася. Для каждого указанного значения S опишите выигрышную стратегию Паши. Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы.

При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней. Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче. Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней. После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз.

Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию.

Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней.

Условие задания Организация купила для своих сотрудников все места в нескольких подряд идущих рядах на концертной площадке. Известно, какие места уже распределены между сотрудниками. Найдите ряд с наибольшим номером, в котором есть два соседних места, таких что слева и справа от них в том же ряду места уже распределены заняты. Гарантируется, что есть хотя бы один ряд, удовлетворяющий условию. В ответе запишите два целых числа: номер рядя и наименьший номер места из найденных в этом ряду подходящих пар.

Работа со списком.

Вначале будет идти предварительное объяснение его писать в ЕГЭ не нужно , а затем — "формальное решение", то есть то, что нужно писать в самом бланке ЕГЭ. Давайте подумаем: первый игрок очевидно в один ход выиграть не может, так как что бы он не делал, суммарно 73 не будет. Самое "большое" действие, которое он может сделать, — это увеличить в 2 раза количество камней во второй кучке, сделав их 66. Но 6, 66 — это 72 камня, а не 73. Значит, первый в один ход явно выиграть не сможет.

Однако второй — вполне сможет. Первый может сделать потенциально четыре действия: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. В этом случае второй игрок может увеличить в 2 раза количество камней во второй кучке. Получим 7, 66. Суммарно — 73. Значит, второй выигрывает.

Получим 12, 66. Суммарно — 78. Получим 6, 68. Суммарно — 74. Получим 6, 132. Суммарно — 138.

Итого: как бы себя не вёл первый игрок, второй выиграет и в один ход. Аналогично решается и с 8,32. Формальное решение Задания 1. Второй игрок имеет выигрышную стратегию. Докажем это и покажем эту стратегию. Для этого построим дерево партии для каждой из начальных позиции.

В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке. При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33. Дерево партий для начальной позиции 8, 32.

Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно. При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход. Задание 2 Формальное решение Рассмотрим начальную позицию 6,32. Заметим, что она близка к 6,33 из Задания 1. В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход. Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым.

Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода. Докажем это. Таким образом, получается позиция 6,33. Как мы выяснили ранее, в позиции 6,33 тот, кто ходит, проигрывает. В нашем случае будет ход Вани.

Поэтому Ваня проиграет в один ход. Аналогично в позиции 7, 32. В этой позиции согласно тем же рассуждениям, тот, кто ходит, проигрывает. Будет ход Вани, поэтому Ваня проиграет. Аналогично в позиции 8, 31. Задание 3 Обсуждение Заметим, что из ситуации 7, 31 очень легко попасть либо в ситуации 8, 31 и 7, 32 , в которых, согласно предыдущему Заданию, тот, кто ходит, выигрывает, либо в ситуации 14, 31 и 7, 62 , в которых тот, кто ходит, может выиграть в один ход, увеличив в два раза количество камней во второй кучке.

Таким образом, получается, что у Вани должна быть выигрышная стратегия. При этом он может выиграть как в 2 хода первые два случая , так и в один ход вторые два случая. Формальное решение В начальной позиции 7, 31 выигрывает Ваня в один или два хода. Для этого построим дерево всех партий. Дерево всех партий для начальной позиции 7, 31. Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках.

Задание 26. Обработка массива целых чисел

Директор института информационных технологий Московского государственного технологического университета «Станкин», кандидат технических наук, член комиссии разработчиков контрольных измерительных материалов ЕГЭ по информатике Сергей Сосенушкин напомнил, что компьютерный формат экзамена дает возможность выпускникам использовать широкий спектр инструментов, которые не были им доступны ранее, и выполнить задания максимально эффективно.

Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Разбор 27 задания демоверсии 2018 года ФИПИ : На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности элементы пары не обязаны стоять в последовательности рядом, порядок элементов в паре не важен.

Выскочит окно Мастер текстов импорт. Здесь оставляем выбранный пункт с разделителями и кликаем Далее.

В следующем окне поставим ещё галочку пробел. В итоге Символами-разделителем будут знак табуляции и пробел. Кликаем ещё раз Далее и Готово. Наши данные вставятся, как нужно! Число 8200 размер свободного места нужно запомнить или записать на черновике. Число 970 количество файлов нам в принципе не нужно при таком подходе решения. Теперь удаляем первую строчку. Выделяем две ячейки в первой строчке, через контекстное меню мыши нажимаем Удалить…. Выбираем ячейки, со сдвигом вверх.

Найдём максимальное количество файлов. Выделяем весь столбец A и сортируем его по возрастанию. Теперь выделяем ячейки сверху мышкой, а справа в нижней части программы будет показываться сумма выделенных ячеек. Мы должны выделить максимальное количество ячеек, но чтобы сумма не превышала число 8200. Получается максимальное количество файлов, которое можно сохранить, равно 568. Найдём максимальный размер файла при максимальном количестве файлов. Если покрутим таблицу вниз, то найдём такой файл размером 50.

Тщательно изучите варианты ЕГЭ предыдущих лет. Экзамен по информатике — один из самых стабильных, это означает, что для подготовки можно смело использовать варианты ЕГЭ за последние 2—3 года. За два года поменялись только задачи 6, 13 и 22. Познакомьтесь с разными вариантами формулировки заданий. Помните о том, что незначительное изменение формулировки всегда приводит к ухудшению результатов экзамена. Внимательно читайте условие задачи. Большинство ошибок при выполнении заданий связано с неверным пониманием условия. Учитесь самостоятельно проверять выполненные задания и находить ошибки в ответах. Её особенность в том, что к ней невозможно подготовиться заранее. Каждый год на экзамен выносится принципиально новая задача.

ЕГЭ по информатике 2023 - Задание 26 (Сортировка)

ЕГЭ. Информатика. 26 задание. 3 апреля 2023. Некоторые из способов решения заданий данного задания. В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python. Большая база заданий ЕГЭ по Информатике, объяснения решений и правильные ответы. В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python.

Базовый ЕГЭ по информатике. Задание 26. Решение на Python

Опишите выигрышную стратегию Вовы. Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанных значений S опишите выигрышную стратегию Паши. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход, в узлах - количество камней в куче. При меньших значениях S за один ход нельзя получить кучу, в которой больше 40 камней. Тогда после первого хода Паши в куче будет 31 камень или 40 камней. Возможные значения S: 20, 29.

Возможное значение S: 28. После первого хода Паши в куче будет 29 или 38 камней. Если в куче станет 38 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 29 камней, разобрана в п. В таблице изображено дерево возможных партий при описанной стратегии Вовы. Заключительные позиции в них выигрывает Вова подчёркнуты. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы. Два иг-ро-ка, Петя и Ваня, иг-ра-ют в сле-ду-ю-щую игру. Перед ними лежат две кучки кам-ней, в пер-вой из ко-то-рых 2, а во вто-рой - 3 камня.

У каж-до-го иг-ро-ка не-огра-ни-чен-но много кам-ней. Иг-ро-ки ходят по оче-ре-ди, пер-вый ход де-ла-ет Петя. Ход со-сто-ит в том, что игрок или утра-и-ва-ет число кам-ней в какой-то куче, или до-бав-ля-ет 4 камня в какую-то кучу. Игра за-вер-ша-ет-ся в тот мо-мент, когда общее число кам-ней в двух кучах ста-но-вит-ся не менее 31. Если в мо-мент за-вер-ше-ния игры общее число кам-ней в двух кучах не менее 40, то вы-иг-рал Петя, в про-тив-ном слу-чае - Ваня. Кто вы-иг-ры-ва-ет при без-оши-боч-ной игре обоих иг-ро-ков? Каким дол-жен быть пер-вый ход вы-иг-ры-ва-ю-ще-го иг-ро-ка? Ответ обос-нуй-те. Выигрывает Ваня.

Для доказательства рассмотрим неполное дерево игры, оформленное в виде таблицы, где в каждой ячейке записаны пары чисел, разделённые запятой. Эти числа соответствуют количеству камней на каждом этапе игры в первой и второй кучах соответственно. Таблица содержит все возможные варианты ходов первого игрока. Из неё видно, что при любом ходе первого игрока у второго имеется ход, приводящий к победе. Два игрока, Петя и Вася, играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 2, а во второй - 1 камень. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первым ходит Петя. Ход состоит в том, что игрок или увеличивает в 3 раза число камней в какой-то куче, или добавляет 3 камня в какую-то кучу.

Выигрывает игрок, после хода которого в одной из куч становится не менее 24 камней. Кто выигрывает при безошибочной игре? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте. Выигрывает Петя, своим первым ходом он должен увеличить в 3 раза количество камней во второй куче. Для доказательства рассмотрим неполное дерево игры, оформленное в виде таблицы, где в каждой ячейке записаны пары чисел, разделенные запятой. Таблица содержит все возможные варианты ходов Васи. Из неё видно, что при любом его ответе у Пети имеется ход, приводящий к победе. Два игрока, Петя и Ваня, играют в следующую игру.

За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. Игра завершается в тот момент, когда количество камней в куче становится более 100. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 101 или больше камней. Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите все такие значения и выигрывающий ход Пети. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани.

Представьте его в виде рисунка или таблицы. Для каждого ребра дерева укажите, кто делает ход, для каждого узла - количество камней в позиции. При меньших значениях S за один ход нельзя получить кучу, в которой больше 100 камней. Пете достаточно увеличить количество камней в 5 раз. Тогда после первого хода Пети в куче будет 21 камень или 100 камней. В обоих случаях Ваня увеличивает количество камней в 5 раз и выигрывает в один ход. Возможные значения S: 4, 19. После первого хода Пети в куче будет 19 или 90 камней. Если в куче станет 90 камней, Ваня увеличит количество камней в 5 раз и выиграет своим первым ходом.

В таблице изображено дерево возможных партий при описанной стратегии Вани.

Нынешний выпуск запомнится прежде всего коронавирусом: ни последних звонков, ни выпускных. ЕГЭ с опозданием на месяц с лишним и жарой, проверкой температуры, масками с перчатками и социальной дистанцией.

Когда еще такое было? Результат он показал в своем Твиттере. Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике.

В Интернете разыскивали счастливчиков, которые смогли его решить. Тем более, что при переводе из первичных во вторичные баллы для максимума, то есть 100, актуальны и 35, и 34 балла, то есть с учетом одного невыполненного задания. По этому поводу даже обыграли фильм про войну.

На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче. Вопрос 1а. Для этого достаточно число камней в куче увеличить вдвое и их всегда получится более 21. Вопрос 1б. Для ответа на этот вопрос нужно найти позиции, условно назовем их min0 , из которых все возможные ходы ведут в начальную выигрышную позицию, отмеченную нами как max0. Для того чтобы Петя гарантированно выиграл вторым ходом, то есть оказался в позиции max0 , после хода Вани, ему необходимо своим первым ходом «посадить Ваню в яму ». Проверим данную позицию на гарантированность победы!

Проверим данную позицию на гарантированность проигрыша Пети! Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков? Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Игроки ходят по очереди, первый ход делает Паша один в два раза.

Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход?

Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Побеждает тот игрок, который называет последнюю букву любого слова из набора. Петя ходит первым.

Определить выигрышную стратегию. В первом слове 99 букв, во втором 164. Задание 2 Необходимо поменять две буквы местами из набора пункта 1А в слове с наименьшей длинной так, чтобы выигрышная стратегия была у другого игрока. Объяснить выигрышную стратегию. У кого из игроков есть выигрышная стратегия? Обосновать ответ и написать дерево всех возможных партий для выигрышной стратегии. Игра завершается в тот момент, когда количество камней в куче становится не менее 29.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии.

Обработка массива целых чисел За правильное выполненное задание получишь 2 балл. На решение отводится примерно 35 минуты. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

ЕГЭ по информатике (2024)

01.05.2023ЕГЭ Задание 26АдминистраторКомментарии: 0. Задание номер 26 ЕГЭ по информатике. Сколько баллов? Как делать задание? Теория. Шпаргалка. Практика. Разбор. Решение. Критерии оценивания. Баллы. Эфир, посвященный ЕГЭ по информатике, открыл финальный день онлайн-марафона Рособрнадзора «ЕГЭ – это про100!».

Cara Memilih Situs Toto Togel Terbaik dan Terpercaya

  • Navigation Menu
  • Use saved searches to filter your results more quickly
  • ЕГЭ по информатике с решением
  • Демовариант ЕГЭ по информатике 2020 года, задание 26
  • Слайд 3: 25. Общий подход
  • Блог учителя информатики Альшевской А.А.: ЕГЭ

Разбор 26 задания ЕГЭ 2017 по информатике из демоверсии

Разобраны все актуальные виды заданий 26 (100+ задач) и 27 (170+ задач). Дана вся необходимая теория. Способ решения задания №26 ЕГЭ по информатике (без использования программирования) с помощью MS Excel. Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике.

ЕГЭ по информатике (2024)

Рассмотрим ряд сложных задач типа 14 из ЕГЭ по информатике. Тип 14 это задачи на позиционные системы счисления. Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике. Информатика. ЕГЭ. Задания для подготовки. Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников.

5 самых сложных задач из ЕГЭ по информатике в 2023 году — и как их решать

В st[0] - будет подстрока с первым числом, в st[1] со вторым. Переменная s - это размер свободного пространства на диске, n - это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных. Заводим список b.

В него будем класть элементы, которые записываем на диск. С помощью цикла пробегаемся по всем элементам. В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b. Таким образом, сможем найти максимальное количество. Чтобы найти максимальный элемент при максимальном количестве, удаляем из списка b последний самый большой элемент. Пробегаемся по списку a, начиная с конца.

Ищем кем можно заменить удалённый элемент. Мы идём с конца, поэтому в приоритете будут самый большие элементы.

Для этого построим дерево партии для каждой из начальных позиции. В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке. При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу.

Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33. Дерево партий для начальной позиции 8, 32. Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно. При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход. Задание 2 Формальное решение Рассмотрим начальную позицию 6,32.

Заметим, что она близка к 6,33 из Задания 1. В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход. Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым. Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода. Докажем это.

Таким образом, получается позиция 6,33. Как мы выяснили ранее, в позиции 6,33 тот, кто ходит, проигрывает. В нашем случае будет ход Вани. Поэтому Ваня проиграет в один ход. Аналогично в позиции 7, 32. В этой позиции согласно тем же рассуждениям, тот, кто ходит, проигрывает.

Будет ход Вани, поэтому Ваня проиграет. Аналогично в позиции 8, 31. Задание 3 Обсуждение Заметим, что из ситуации 7, 31 очень легко попасть либо в ситуации 8, 31 и 7, 32 , в которых, согласно предыдущему Заданию, тот, кто ходит, выигрывает, либо в ситуации 14, 31 и 7, 62 , в которых тот, кто ходит, может выиграть в один ход, увеличив в два раза количество камней во второй кучке. Таким образом, получается, что у Вани должна быть выигрышная стратегия. При этом он может выиграть как в 2 хода первые два случая , так и в один ход вторые два случая. Формальное решение В начальной позиции 7, 31 выигрывает Ваня в один или два хода.

Для этого построим дерево всех партий. Дерево всех партий для начальной позиции 7, 31. Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках. Таким образом, в начальной позиции 7, 31 у Вани имеется выигрышная стратегия, при этом Ваня выиграет в один или два хода. Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным.

Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков? Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша один в два раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней.

У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход?

Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Побеждает тот игрок, который называет последнюю букву любого слова из набора.

Петя ходит первым.

Она отметила также, что оптимальным для выполнения заданий ЕГЭ по информатике является язык Python — простой и понятный для учеников, но можно пользоваться любым языком, если выпускник чувствует себя в нем более уверенным. Отвечая на вопросы зрителей эфира, педагоги уточнили, что единых требований к программному обеспечению на экзамене нет — этот вопрос регламентируют региональные центры обработки информации. Эксперты посоветовали сочетать различные виды подходов в подготовке к экзамену в течение ближайшего месяца. Так, например, на выходных можно ставить таймер и решать по одному полному варианту в день, а затем собирать статистику и отрабатывать задачи, вызывающие сложности. Если есть возможность решить задачу разными способами, воспользуйтесь ей, проверяйте себя», — подчеркнул Сергей Сосенушкин.

Переходим к шагу 2. Не нужно оптимизировать без необходимости! Изображение слайда Слайд 4: 25. Изображение слайда Слайд 5: 25. Делители в парах: Проблема: вещественное! Проблема: полные квадраты! Изображение слайда Слайд 7: 25. Divs d then begin divs. Add x div d ; if divs. Add d ; divs. Count divs. Add i ; P rint primes. Count ; Время 0,3 с! Изображение слайда Слайд 12: 25. Пример 12 Б. Михлин Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [194441; 196500] простые числа, оканчивающиеся на 93. Изображение слайда Слайд 13: 25. Пример 15 Рассматриваются целые числа, принадлежащих числовому отрезку [631632; 684934], которые представляют собой произведение двух различных простых делителей. Найдите такое из этих чисел, у которого два простых делителя больше всего отличаются друг от друга. Изображение слайда Слайд 16: 25. Изображение слайда Слайд 17: 25. Divs d then begin Пара « наименьший-наибольший » имеет наибольшую разность! IsPrime d первый d всегда простой! Изображение слайда Слайд 18: 25. Add i ; Список возможных меньших простых делителей: Изображение слайда Слайд 19: 25. Изображение слайда Слайд 20: 17.

Демовариант ЕГЭ по информатике 2020 года, задание 26

  • Постоянные читатели
  • Информатика ЕГЭ 2021. Задание 26 в Excel. № 2650 с сайта Полякова - Смотреть видео
  • ЕГЭ по ИНФОРМАТИКЕ 2022 | Lancman School
  • Е26.17 В магазине для упаковки подарков есть N кубических коробок.
  • ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26"

Тренажёр компьютерного ЕГЭ

  • Задание 26 ЕГЭ по информатике 2019: практика и теория - Российский учебник
  • Информатика ЕГЭ 2021. Задание 26 в Excel. № 2650 с сайта Полякова
  • Задания №26 ЕГЭ по информатике - cпособ решения без использования программирования
  • Демовариант ЕГЭ по информатике 2020 года, задание 26
  • Досрочный период КЕГЭ по информатике 9 апреля 2024
  • Слайд 3: 25. Общий подход

ЕГЭ по информатике (2024)

При проведении эксперимента заряженные частицы попадают на чувствительный экран, представляющий из себя матрицу размером 10 000 на 10 000 точек. При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда целое число от 1 до 10 000 и номер позиции в ряду целое число от 1 до 10 000. Точка экрана, в которую попала хотя бы одна частица, считается светлой, точка, в которую ни одна частица не попала, — тёмной.

Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 123. Победителем считается игрок, сделавший последний ход, то есть первым получивший суммарно в кучах 123 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Входные данные. Каждая строка входного файла содержит натуральное число и букву A или B. Число обозначает размер контейнера в условных единицах, буква — цвет этого контейнера буквами A и B условно обозначены два цвета. В ответе запишите два целых числа: сначала максимально возможное количество контейнеров в одном блоке, затем минимальное количество ячеек для хранения всех контейнеров.

Эксперты рассказали выпускникам о финальной подготовке к итоговой аттестации, о типичных затруднениях, с которыми сталкиваются школьники во время ЕГЭ, и о грамотном распределении времени на экзамене. Директор института информационных технологий Московского государственного технологического университета «Станкин», кандидат технических наук, член комиссии разработчиков контрольных измерительных материалов ЕГЭ по информатике Сергей Сосенушкин напомнил, что компьютерный формат экзамена дает возможность выпускникам использовать широкий спектр инструментов, которые не были им доступны ранее, и выполнить задания максимально эффективно.

Похожие новости:

Оцените статью
Добавить комментарий