Новости лазеры и аппаратура

Холдинг «Швабе» Госкорпорации Ростех и Российская академия наук работают над созданием квантово-каскадных лазеров. Специалисты московской компании "Лазеры и аппаратура" разработали установку для лазерной маркировки и микрообработки полупроводниковых пластин, которые служат основой для создания микросхем. Группа компаний «Лазеры и аппаратура», ведущий российский производитель лазерных станков и номинант Национальной премии в области передовых технологий «Приоритет-2021», разработала и поставила промышленную лазерную DMD-установку для порошковой наплавки. Специалисты Владимирского инжинирингового центра использования лазерных технологий в машиностроении при ВлГУ разработали комплекс обнаружения и обезвреживания малоразмерных беспилотников с помощью лазера.

Компания ОЭЗ «Технополис Москва» расширила ассортимент лазерного оборудования

Созданный в корпорации «Росатом» промышленный лазер, режущий металл как масло, поражает воображение. Министерство промышленности и торговли Российской Федерации включило пятикоординатную машину для лазерной наплавки и прямого выращивания из металлического порошка МЛ7 производства группы компаний «Лазеры и аппаратура» в реестр промышленной продукции. Специалисты столичной компании "Лазеры и аппаратура" разработали установку для лазерной маркировки и микрообработки полупроводниковых пластин, которые служат основой для создания микросхем. последние новости по теме на сайте АБН24. Крупнейший в России производитель газовых лазеров до 70% рынка.

Сделано в России

Специалисты компании "Лазеры и аппаратура" разработали установку для маркировки пластин, которая оборудована системой автоматической погрузки изделия в зону обработки. Это решение будет актуально для производства микроэлектроники. За час лазерная установка может обрабатывать более 100 полупроводниковых пластин из кремния, карбида кремния, арсенида галлия и фосфида галлия", - сказал Овчинский. Отмечается, что загрузка и выгрузка в зону маркировки происходит с помощью пневматического робота-перегрузчика, что исключает механические повреждения изделий.

Карьера Мы предлагаем интересную и перспективную работу в сфере лазерных технологий — в одной из самых быстро растущих областей в современной физике. С каждым годом штат наших сотрудников стремительно растет. Мы приглашаем специалистов с разным опытом работы и всегда рады видеть новые таланты.

Видео о нашем производственном процессе ЛАССАРД — компания полного цикла Обнинск На производственной площадке в Обнинске мы разрабатываем и изготовляем все компоненты для лазеров: от выращивания кристаллов и протягивания оптоволокна до сборки квантронов и оптомеханики.

Уникальность лазерных станков предприятия заключается в том, что «Лазеры и аппаратура» реализует полный жизненный цикл производства и сопровождения серийного и специального лазерного оборудования, включая анализ задачи заказчика, исследование и выбор технологий, разработку технического задания на станок, разработку конструкторской документации на производство, изготовление основных узлов и частей, полную сборку и отладку станков у себя, запуск у заказчика с обучением его персонала и дальнейшее сопровождение в течение всего срока службы станка.

Министр правительства Москвы, руководитель Департамента инвестиционной и промышленной политики столицы Владислав Овчинский рассказал, что компания «Лазеры и аппаратура» на российском рынке с 1998 года. По его словам, предприятие обеспечивает расширение производственных площадей и парка оборудования, увеличение товарной линейки и выпуск конкурентоспособных изделий. В 2024 году производитель планирует выпустить не менее 60 станков.

На АЭХК испытали мобильный лазерный комплекс производства ТРИНИТИ

У берегов Сахалина Росатом и Tazmar Maritime с помощью мобильного лазера утилизируют затонувшие суда В рамках федерального проекта «Генеральная уборка» эксперты Госкорпорации «Росатом» приступили к работам по утилизации затонувших кораблей на берегу г. Корсаков о. Сахалин c применением современной лазерной техники.

Предприятие уже более 20 лет занимается созданием и выпуском промышленных лазерных систем, которые успешно работают на производствах ведущих российских и зарубежных компаний», — объяснил глава ведомства. Технику можно использовать в машиностроении, двигателестроении, аэрокосмической отрасли, при производстве медицинской техники и в других отраслях промышленности. Специальное программное обеспечение позволяет управлять контроллерами движения, лазером, дополнительным оборудованием, а также системой технического зрения и программным комплексом, автоматически определяющим траекторию сварки.

За 2022 год было произведено и поставлено 24 лазерные установки заказчикам, что почти втрое больше, чем в предыдущем году. Одним из ключевых направлений компании является производство оборудования для микроэлектроники.

Она активно развивает этот сегмент благодаря инвестициям, высококвалифицированным кадрам и поддержке города.

Поскольку такая интеграция может быть достигнута только с помощью высокотемпературных процессов, решение этой проблемы долгое время считалось сложной задачей. Профессор Гото и его коллеги решили эту проблему с помощью лазерной закалки. Это метод, при котором определенные участки материала нагреваются лазером очень избирательно. Такой нагрев позволяет осуществлять точный контроль места нагрева, поскольку нагреваются только выбранные участки, не затрагивая окружающие области. Кроме того, чтобы избежать химического воздействия окружающего воздуха на соответствующий материал, команда разработала новое устройство, которое нагревает материалы в вакууме с помощью лазера. Это позволит точно нагревать очень маленькие участки размером около 60 микрометров без изменения структуры окружающего материала. Профессор Гото и его команда ожидают, что «прозрачный магнитный материал, полученный с помощью этого метода, значительно улучшит разработку компактных магнитооптических изоляторов, которые необходимы для стабильной оптической связи». Новый метод также открывает «возможности для разработки мощных миниатюрных лазеров, дисплеев высокого разрешения и небольших оптических устройств», — резюмирует профессор.

Дальность передачи в 80 раз превысила расстояние между Землёй и Луной и составила 31 млн км. Скорость передачи оказалась заметно выше пропускных интернет-каналов на Земле. Видео по лучу загрузилось быстрее, чем его смогли получить в центре управления за несколько сот километров от приёмника. Экспериментальная лазерная установка связи не будет передавать на Землю какие-либо данные с научных приборов станции «Психея» Psyche. Видео высокого разрешения с котом одного из инженеров проекта было стилизовано под «космический» интерфейс с имитацией жизненных показателей кота по кличке Тейтерс, орбитальных траекторий станции и планет и другими фишками. Закодированный в лазерном луче сигнал принимался установкой, смонтированной на телескопе Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния. До Земли сигнал путешествовал в космосе 101 секунду. На передачу видео в центр NASA в Южной Калифорнии потребовалось больше времени, чем сигнал шёл в открытом пространстве. Первый раз станция «Психея» установила лазерную связь с Землёй 14 ноября.

Тогда она и центр управления обменялись техническими сигналами на расстоянии 16 млн км. А 11 декабря со станции на Землю впервые по лазерному каналу передали потоковое видео с максимальной скоростью передачи. Это было в 10—100 раз быстрее, чем если бы работать по радиоканалам. Возможность передавать данные с большей скоростью будет востребована во время путешествий к Марсу и дальше. Станция «Психея» как раз во время выполнения своей основной миссии в главном поясе астероидов между Марсом и Юпитером испытает лазерную связь на самом дальнем удалении Земли от Марса. Во время тестовой передачи команда NASA смогла загрузить по лазерному каналу в общей сложности 1,3 Тбит данных. Лазерная связь между спутниками связи на орбите позволит абонентам на Земле обмениваться данными с малыми задержками, что позволит пассажирам самолётов, круизных лайнеров и жителям из отдалённых мест получить повсеместный быстрый интернет. Это тем более важно, что Amazon также будет предоставлять вычислительные и облачные ресурсы через сеть спутников, на которые военные также подписаны. В тестовом режиме по лазерному каналу на удаление 1000 км были переданы и приняты разнообразные данные, включая имитацию покупок в онлайн магазинах, просмотр видео в высоком разрешении и прогулки по сайтам.

Компания Amazon не одинока в своём стремлении организовать лазерную связь в космосе. Спутники сети Starlink также обмениваются информацией с помощью лазеров. Работа оптических каналов в вакууме происходит с большей скоростью, чем по волоконным линиям, что добавляет им пропускной способности. NASA также переходит на лазерную связь в космосе. Группировка Amazon Project Kuiper начнёт разворачиваться в первой половине 2024 года. Тестирование каналов связи начнётся позже в 2024 году, но только с избранными клиентами. Всего созвездие Kuiper будет насчитывать 3236 спутников. Это настоящий прорыв в области ускорителей частиц. Источник изображения: Bjorn «Manuel» Hegelich Учёные продолжают изучать возможности применения этой технологии, включая потенциал ускорителей частиц в полупроводниковой технологии, медицинской визуализации и терапии, исследованиях в области материалов, энергетики и медицины.

Недавно группа учёных разработала компактный ускоритель частиц, получивший название «усовершенствованный лазерный ускоритель кильватерного поля». Устройство при длине менее 20 метров генерирует электронный пучок с энергией 10 миллиардов электрон-вольт, утверждается в заявлении Техасского университета в Остине. Сам лазер работает в 10-сантиметровой камере, что значительно меньше традиционных ускорителей частиц, которым требуются километры пространства. Работа ускорителя опирается на инновационный механизм, в котором вспомогательный лазер воздействует на гелий. Газ подвергается нагреву до тех пор, пока не переходит в плазму, которая, в свою очередь, порождает волны. Эти волны обладают способностью перемещать электроны с высокой скоростью и энергией, формируя высокоэнергетический электронный луч. Таким образом получается уместить ускоритель в одном помещении, а не строить огромные системы километрового масштаба. Данный ускоритель был впервые описан ещё в 1979 году исследовательской группой из Техасского университета под руководством Бьорна «Мануэля» Хегелича Bjorn «Manuel» Hegelich , физика и генерального директора TAU Systems. Однако недавно в конструкцию был внесен ключевой элемент: использование металлических наночастиц.

Эти наночастицы вводятся в плазму и играют решающую роль в увеличении энергии электронов в плазменной волне. В результате электронный луч становится не только более мощным, но и более концентрированным и эффективным. Бьорн «Мануэль» Хегелич, ссылаясь на размер камеры, в которой был получен пучок, отметил: «Теперь мы можем достичь таких энергий на расстоянии в 10 сантиметров». Исследователи использовали в своих экспериментах Техасский петаваттный лазер, самый мощный импульсный лазер в мире, который излучал сверхинтенсивный световой импульс каждый час. Один импульс петаваттного лазера примерно в 1000 раз превышает установленную в США электрическую мощность, но длится всего 150 фемтосекунд — примерно миллиардную долю от продолжительности удара молнии. Учёные намерены использовать эту технологию для оценки устойчивости космической электроники к радиации, получения трёхмерных визуализаций новых полупроводниковых чипов, а также для создания новых методов лечения рака и передовой медицинской визуализации. Кроме того, этот ускоритель может быть использован для работы другого устройства, называемого рентгеновским лазером на свободных электронах, который может снимать замедленные видеоролики процессов в атомном или молекулярном масштабе. Примеры таких процессов включают взаимодействие между лекарствами и клетками, изменения внутри батарей, которые могут привести к воспламенению, а также химические реакции, происходящие в солнечных батареях, и трансформацию вирусных белков при заражении клеток. Команда проекта намерена сделать систему ещё более компактной.

Они хотят создать лазер, который помещается на столешнице и способен выдавать импульсы множество раз в секунду. Это значительно повысит компактность всего ускорителя и расширит возможности его применения в гораздо более широком диапазоне по сравнению с обычными ускорителями. Лазер настолько мал, что поместится в микросхему. Такое решение поможет совершать точнейшие измерения в микромире, что найдёт применение в атомных часах и в аналитических приборах, и даже может найти применение в смартфонах. Источник изображения: Alireza Marandi «Наша цель — совершить революцию в области сверхбыстрой фотоники, превратив большие лабораторные системы в системы размером с чип, которые можно будет массово производить и применять в полевых условиях, — заявил физик Цюши Го Qiushi Guo из Калифорнийского технологического института и Городского университета Нью-Йорка. Для точного измерения физических и химических явлений в мельчайших масштабах необходим лазер, обладающий идеальным сочетанием мощности и точности. Большинство лазеров, способных справиться с этой задачей, громоздки, дороги и потребляют много энергии.

«Лазеры и аппаратура»

Обзор №5 участников выставки «Фотоника-2024» Новости компании128 Новости отрасли208 Мероприятия4.
«Лазеры и аппаратура» Каталог оборудования для флебологических центров, отделений сосудистой хирургии, а также многопрофильных клиник.

Выставка «Фотоника. Мир лазеров и оптики-2024» открылась в Экспоцентре

Установка используется на предприятиях двигателе- и машиностроения, а также в аэрокосмической, автомобильной и железнодорожной отраслях», — отметила исполнительный директор группы компаний «Лазеры и аппаратура» Анна Цыганцова. Новая система может работать с металлическими порошками из хромоникелевых и кобальт-хромовых сплавов, нержавеющей стали, алюминия, титана, а также цветных металлов.

Госкорпорация Ростех — крупнейшая промышленная компания России. Объединяет порядка 800 научных и производственных организаций в 60 регионах страны. Ключевые направления деятельности — авиастроение, радиоэлектроника, медицинские технологии, инновационные материалы и др.

Продукция корпорации поставляется более чем в 100 стран мира. Почти треть выручки компании обеспечивает экспорт высокотехнологичной продукции.

Часть из них уникальная, в основном, это переводы из иностранных специализированных изданий. Без колебаний продлеваю присутствие компании на Индастри Хантер на 2020 год. Мы активно используем «Базу знаний» на платформе для привлечения внимания к нашей компании и нашим услугам, публикуя полезные материалы по выбору производственных помещений, проектированию и строительству. По отзывам пришедших с платформы клиентов, такие публикации помогают сразу исключить целый ряд ошибок при создании нового производства. Платформа IndustryHunter показала хороший потенциал по привлечению заказов и охвату целевой аудитории. Это поможет нам выйти на новые для нас рынки и получить новые контакты и заказы. Отрасли требовалась единая площадка для взаимодействия специалистов и компаний.

Оптико-электронные системы «НТЦ «ЛЭМТ» Научно-технический центр «ЛЭМТ» — это компания из Республики Беларусь, которая более 30 лет специализируется на исследованиях, разработке, производстве и модернизации оптоэлектронных и лазерных приборов, а также технологическим трансфером. Основными направлениями деятельности предприятия являются оптические прицелы и прицельные комплексы для легкого стрелкового вооружения, лазерные дальномеры, лазерные системы управления огнем и многоканальные системы наблюдения и прицеливания. Продукция компании экспортируется более чем в 65 стран мира. В рамках выставки «Фотоника. Мир лазеров и оптики» компания представит как уже используемые решения, так и новые перспективные разработки, в том числе в области обнаружения и противодействия БПЛА. Прибор может комплектоваться переходником для установки на перископическую артиллерийскую буссоль ПАБ-2.

Московская компания начала серийное производство оборудования для промышленной 3D-печати

Более 800 лазерных машин, выпущенных группой «Лазеры и аппаратура», работают на предприятиях России, Беларуси, других стран ближнего и дальнего зарубежья. Новости «Росэлектроника» создала импортозамещающую серверную платформу TSP. Московская ГК «Лазеры и аппаратура» впервые в России наладила выпуск лазерных станков для высокоточной микрообработки печатных плат и полупроводников. Инженеры столичного предприятия «Лазеры и аппаратура» разработали отечественные пятикоординатные лазерные станки для высокоточной обработки деталей, сложноконтурной резки и сварки. Выпуск о ГК "Лазеры и аппаратура"» на канале «МосПром» в хорошем качестве и бесплатно, опубликованное 12 июля 2022 года в 18:01, длительностью 00:12:15, на видеохостинге RUTUBE. Выпускаемые лазеры в основном используются в аналитическом оборудовании и промышленных установках.

Ростех и РАН создают уникальные лазеры для медицинских и досмотровых комплексов

Специалисты Владимирского инжинирингового центра использования лазерных технологий в машиностроении при ВлГУ разработали комплекс обнаружения и обезвреживания малоразмерных беспилотников с помощью лазера. ведущий российский поставщик и интегратор научного оборудования, лазеров и лазерных систем, волоконно-оптических компонентов и модулей, измерительного и технологического оборудования для волоконной оптики и интегральной фотоники. В департаменте инвестиционной и промышленной политики Москвы (ДИПП) сообщили, что столичная группа компаний "Лазеры и аппаратура" в прошлом году выпустила почти втрое больше лазерных установок, чем годом ранее.

Похожие новости:

Оцените статью
Добавить комментарий