Новости индекс джини по странам

Пенза А.С. 8 (495) 568-00-42 (доб. 99729). ca_PenzaAS@ Коэффициент Джини (индекс концентрации доходов) по субъектам Российской Федерации. Индекс Джини по Росстату резко поднялся в 1993 году с 26% в район 40%, и с тех пор находится вблизи уровня 40%, имеет слабую, едва заметную тенденцию к росту. The Sustainable Development Report 2023 tracks the performance of all 193 UN Member States on the 17 Sustainable Development Goals. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against.

Неравенство в Китае

Показатели индекса Джини в России в 1990-е годы. В 2023 году был составлен рейтинг стран по индексу Джини, который показывает, какие страны являются лидерами по уровню неравенства. Ниже представлен список стран по показателям неравенства доходов, включая коэффициент Джини, по данным Организации Объединённых Наций (ООН). Definition: Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received.

Коэффициент Джини (распределение дохода)

Затем он снижался до 0,412 в 2016 году. Наконец, самым минимальным он стал в 2017 году, достигнув 0,410. Ниже этого уровня индекс Джини в России был только в 2005 году 0,409. Как обратила внимание в документе «Комментарии о государстве и бизнесе» заместитель директора Центра развития ВШЭ Светлана Мисихина, в 2018 году индекс Джини в России вновь начал расти. За январь-сентябрь 2018 года индекс вырос с 0,400 до 0,402 в сравнении с тем же периодом 2017 года. Также было заявлено о разных темпах роста инфляции: для бедных она росла медленнее, чем для богатых.

Это привело к росту потребления малообеспеченных групп населения, что и дало сокращение неравенства. Как определялась инфляция для бедных? На основе индекса прожиточного минимума. Росстат полагает, что бедность тем ниже в стране, чем ниже прожиточный минимум. Однако в этом есть только теоретическая логика.

В то же время коэффициент Джини ведь растет, показывая реальное положение дел. В расчетах федеральных ведомств немало ошибок. Дело не в сознательном занижении инфляции, попытках «не увидеть» реальный рост цен или понизить показатели коэффициента Джини. Дело в большей степени состоит в проблемной выборке для статистической оценки. Так, например, индекс прожиточного минимума высчитывает Минтруд, который не учитывает полное изменение стоимости услуг по всей стране, что на выходе дает более красивую картину по прожиточному минимуму, а значит, население кажется менее бедным, чем есть на самом деле.

В обзоре ВШЭ сказано, что Росстат тоже не безгрешен.

Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство.

И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам.

Богатые используют деньги как инструмент для того, чтобы стать еще богаче. У бедных нет денег, и большинство из них тонет в трясине кредитов, что делает их еще беднее. Для этого, конечно, нужен пример. Предположим, что есть пять человек: Вася Пупкин капитал 20 рублей.

Иван Иванов капитал 2 тысячи рублей. Средняков капитал 20 000 рублей. Игорь Альфаинвестор капитал 2 000 000 рублей. Вагит Алекперов капитал 200 000 000 рублей. Прошел год. Вася и Иван, не имея средств к существованию, обеспечивали себя мелкой подработкой, мелким воровством и потребительскими кредитами. В результате Вася оказался должен банку 100 000 рублей, а Иван — 20 000 рублей.

Средняков работал и продолжает работать. Его зарплата была увеличена на величину инфляции, и в конце месяца его капитал составляет 22 000 рублей. С учетом инфляции он сохранил прежний уровень благосостояния, в отличие от Васи и Вани, которые взяли кредиты. Игорь и Вагит инвестировали свой капитал в акции и ETF. Оба получили хороший доход. Игорь получил больше в процентах от капитала. Этот пример показывает, как трудно бедным не становиться беднее и как легко богатым становиться богаче.

Даже ничего не делая, получая мизерные проценты на многомиллиардный капитал, вы все равно станете богаче за определенный период времени, чем человек с миллионом, создавший сверхприбыльную компанию и работающий как белка в колесе. В этом примере есть еще одна показательная фигура — Средняков. Это человек, живущий от зарплаты до зарплаты. Он не становится беднее, но и не становится богаче. Хотя он находится в ситуации, когда ему гораздо легче, чем Васе или Ивану, начать инвестировать, стремиться к жизни, в которой «деньги делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги…. С другой стороны, ему легче, чем Игорю или, тем более, Вагиту, оказаться в той ситуации, в которой оказались Вася и Иван. Что бы человек ни делал, он все равно «увязает» в своем финансовом положении.

А для среднего класса, живущего от зарплаты до зарплаты, их намерения играют ключевую роль. Почему и как бороться с неравенством Широко распространено мнение, что высокий уровень неравенства препятствует «подъему общества», тормозит экономическое развитие и угрожает социальной стабильности хотя это не доказано. Однако неоспоримым является тот факт, что экономическое неравенство порождает недовольство среди беднейших слоев общества. Очевидно, что правительства должны обратиться к этим группам и принять меры по борьбе с неравенством. Наиболее эффективными мерами являются: бесплатное медицинское обслуживание и образование; пособия для малообеспеченных групп населения; развитие инфраструктуры в селах дороги, электрификация, газификация и т. Нужно ли нам бороться с неравенством? Существует также мнение, что с неравенством не нужно бороться, потому что люди реагируют на неравенство не так сильно, как на несправедливость.

Стоит понимать, что неравенство и несправедливость — это разные понятия. И они часто путаются. Существует множество различных исследований на эту тему, которые показывают, что люди предпочитают справедливое неравенство несправедливому равенству. Подумайте над такой формулировкой. Когда люди оказываются в обществе, где все равны, многие испытывают обиду и раздражение, потому что тот, кто работает больше других, не получает за это вознаграждения, а тот, кто самый ленивый, получает незаслуженную награду.

Три графика, показывающие поведение ВВП в три разных момента времени. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен. Недостатки коэффициента Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть реального экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ офшорных зон. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается разделить двумерную область разрыв между кривой Лоренца и линией равенства до одного числа, он скрывает информацию о «форме» неравенства. В повседневных терминах это было бы похоже на описание содержимого фотографии только по ее длине вдоль одного края или простому среднему значению яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами внутри распределения, например распределение доходов по возрасту, расе или социальным группам. В этом ключе понимание демографии может быть важным для понимания того, что представляет данный коэффициент Джини.

Уровень инфляции

И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур.

И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики.

Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и.

Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге.

Список стран по распределению богатства. Доходы от черного рынка экономической деятельности не включены и являются предметом текущих экономических исследований.

Чем ближе значение индекса к 1, тем выше неравенство в распределении доходов в стране. Какой рейтинг по индексу Джини ожидается в 2023 году? Прогнозы рейтинга стран по индексу Джини на 2023 год еще не опубликованы, так как рейтинг обычно рассчитывается на основе данных за предыдущие годы. Придется подождать соответствующего исследования или анализа экспертов, чтобы узнать ожидаемый рейтинг в 2023 году. Какие страны считаются с наиболее высоким уровнем неравенства по индексу Джини? Страны с наиболее высоким уровнем неравенства по индексу Джини обычно включают в себя Гватемалу, Южную Африку, Намибию, Свазиленд и Лесото. В этих странах распределение доходов сильно неравномерно, что приводит к большим различиям в уровне жизни населения. Как влияет индекс Джини на экономику? Высокий уровень индекса Джини говорит о большом неравенстве в распределении доходов в стране, что может иметь отрицательное влияние на экономику.

Другими словами, это удвоенная площадь между кривой Лоренца и линией идеального равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая эту цифру из 0,5 площадь под линией равенства , мы получаем 0,3, которую затем делим на 0,5. Другой способ представить коэффициент Джини как меру отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально ровной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равноправным является общество. В приведенном выше примере Гаити более неравноправно, чем Боливия. В 1820 г. Источник: Всемирный банк. COVID-19, вероятно, окажет дальнейшее негативное влияние на равенство доходов. По данным Всемирного банка ,. Экономисты считают, что COVID-19 вызвал ежегодное увеличение коэффициента Джини на 1,2—1,9 процентных пункта в 2020 и 2021 годах. Джини внутри стран Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные: Некоторые из беднейших стран мира имеют одни из самых высоких в мире коэффициентов Джини, в то время как многие из самых низких коэффициентов Джини встречаются в более богатых европейских странах. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и со временем эта взаимосвязь менялась. Майкл Моатсос из Утрехтского университета и Джори Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство немного росло, а затем уменьшалось по мере роста ВВП на душу населения.

Индекс Джини и неравенство доходов

Индекс Джини – это то же самое, что и коэффициент Джини, только переведенное в проценты. Прогнозы рейтинга стран по индексу Джини на 2023 год еще не опубликованы, так как рейтинг обычно рассчитывается на основе данных за предыдущие годы. Explore data and insight from the new Global Green Economy Index™ (GGEI), measuring country progress against global sustainability targets across 18 key indicators.

Уровень жизни. Динамические ряды

На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года). Собрали рейтинг стран по качеству жизни, основанный на данных сайта Numbeo. Индекс Джини Хорошим показателем считается Индекс Джини, не превышающий 35%. Рейтинг стран по индексу Джини является важным инструментом для измерения и анализа уровня неравенства в разных странах мира.

Коэффициент Джини (распределение дохода)

Algeria - GINI index (World Bank estimate) Так как индекс Джини используется для оценки равномерности распределения доходов, этот показатель является важным для анализа темпов экономического развития.
Global Green Economy Index™ (GGEI) The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita.

Gini Coefficient by Country 2022

Индекс качества жизни по странам 2023, Рейтинг стран мира по уровню жизни в 2023 году. Ещё в 1980-м году индекс Джини в Китае был около 30. If the Gini coefficient, also known as the GINI index or Gini ratio, is high, the difference between the wealthiest and poorest individuals in a nation. Albania Algeria Angola Argentina Armenia Australia Austria Azerbaijan Bangladesh Belarus Belgium Belize Benin Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Bulgaria Burkina Faso Burundi Côte d'Ivoire Cabo Verde Cameroon Canada Central African Republic Chad Chile China Colombia. Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения.

Страны с неравномерным распределением богатства

Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой. Для составления рейтинга исползовался Индекс Джини. Показатели индекса Джини в России в 1990-е годы. Индекс Джини Хорошим показателем считается Индекс Джини, не превышающий 35%.

По индексу Джини Россия на 54-м месте в мире

Индекс Джини: в каких странах мира самая маленькая разница между доходами богатых и бедных Ниже представлен список стран по показателям неравенства доходов, включая коэффициент Джини, по данным Организации Объединённых Наций (ООН).
Распределение доходов семьи - индекс Джини Get Free Economic Indicators Charts, Historical Data and Forecasts for 196 Countries.

Список стран по равенству доходов - List of countries by income equality

World Bank staff have made an effort to ensure that the data are as comparable as possible. Wherever possible, consumption has been used rather than income. Income distribution and Gini indexes for high-income economies are calculated directly from the Luxembourg Income Study database, using an estimation method consistent with that applied for developing countries. Statistical Concept and Methodology: The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality. The Gini index provides a convenient summary measure of the degree of inequality. Data on the distribution of income or consumption come from nationally representative household surveys.

Сосредоточение относительных объёмов признака у отдельных единиц соответственно приводит к пропорциональному уменьшению относительных объёмов у единиц оставшейся части совокупности, что и вызывает неравномерность распределения.

Такая неравномерность возникает в распределении доходов по группам населения, трудовых ресурсов по регионам страны, активов по кредитным организациям и т. Расчёт коэффициента Джини базируется на использовании кривой концентрации кривая Лоренца. Для её построения необходимо иметь частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака.

The vertical axis shows the total wealth or income of the population. For example, the Central African Republic has a Gini coefficient almost ten times the global average 61. The Gini coefficients of high- and low-income countries may be the same. In addition, the Gini coefficient may overestimate income disparity and be erroneous because of restrictions such as valid GDP and income statistics.

Крупные корпорации и богатые люди имеют возможность использовать различные налоговые льготы и уклоняться от уплаты налогов, что приводит к увеличению разрыва между богатыми и бедными. Правительство США предпринимает шаги для борьбы с неравенством.

В последние годы в стране проводятся реформы налоговой системы, направленные на сокращение разрыва между богатыми и бедными слоями населения. Однако, эти меры пока не позволяют США занять лидирующую позицию в рейтинге по индексу Джини. Несмотря на проблемы с неравенством, США остаются одной из ведущих экономически развитых стран мира. Высокий уровень жизни и многочисленные возможности для достижения успеха привлекают людей со всего мира, которые хотят осуществить свою американскую мечту. Однако, для полного достижения этой мечты, необходимо сделать еще больше усилий по сокращению разрыва между богатыми и бедными в стране. Китай: растущее неравенство В последние десятилетия Китай достиг значительных успехов в экономике, подняв огромное количество людей из нищеты. Однако этот экономический рост привел к увеличению разрыва между богатыми и бедными. Основными причинами растущего неравенства в Китае являются экономические реформы, проведенные правительством, и процесс урбанизации. Реформы способствовали быстрому развитию городов и подъему среднего класса, однако в сельских районах и среди мигрантов население осталось отсталым и несравненно беднее.

Еще одной причиной растущего неравенства является неравномерное распределение доходов между различными регионами Китая. Развитые приморские провинции, такие как Пекин и Шанхай, получают гораздо большую часть бюджета, в то время как более отдаленные и бедные провинции остаются за бортом этого развития. Другой фактор, способствующий неравенству, — это различия в доступе к образованию и здравоохранению.

Gini Coefficient by Country 2022

Индекс Джини | Investor's wiki Согласно индексу Джини, который измеряет уровень неравенства распределения богатств в стране, страна занимает пятое место по уровню неравенства в мире.
Коэффициент джини в России: статистика, динамика, прогноз Коэффициент Джини.

Похожие новости:

Оцените статью
Добавить комментарий