Новости термоядерная физика

Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается. Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного.

Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте

Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Когда стали создаваться термоядерные установки, возникла большая наука – это физика высокотемпературной плазмы. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии.

Главная тема

  • Вестник РАН, 2021, T. 91, № 5, стр. 470-478
  • Как работает изобретенный китайцами токамак и зачем он нужен | 360°
  • Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
  • Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить
  • Быстрее взрыва
  • Ученые в США провели третий успешный эксперимент с ядерным синтезом

Прорыв в термоядерном синтезе

Термоядерная реакция позволяет звездам генерировать огромные объемы энергии, однако на Земле ее крайне трудно воспроизвести, так как для поддержания такой реакции требуется чрезвычайно высокоэнергетическая среда. Для этого ученым необходимо обеспечить стабильное «зажигание», которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта «зажигания», команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча.

Требования к мощности «фабрики атомов» ITER настолько велики, что на этой машине впервые пришлось применить систему, которой не было на предшествующих токамаках. Это система отрицательных ионов.

На таких высоких скоростях положительный ион просто не успевает превратиться в нейтральный атом в газовых ячейках. Поэтому используются отрицательные ионы, которые захватывают электроны в специальном радиочастотном разряде в среде плазмы дейтерия, экстрагируются и разгоняются высоким положительным потенциалом 1 МВ по отношению к источнику ионов , затем нейтрализуются в газовой ячейке. Оставшиеся заряженными ионы отклоняются электростатическим полем в специальную охлаждаемую водой мишень. При потреблении примерно 55 МВт электроэнергии, каждый из двух планируемых на ITER инжекторов нейтральных атомов способен вводить в плазму до 16 МВт тепловой энергии. Криостат[ править править код ] Криостат [30] [31] — самый большой компонент токамака.

Внутри криостата будут располагаться остальные элементы машины. Криостат, помимо механических функций опора деталей токамака и их защита от повреждений будет выполнять роль вакуумного «термоса», являясь барьером между внешней средой и внутренней полостью. Для этого на внутренних стенках криостата размещены тепловые экраны, охлаждаемые азотным контуром 80 К. Криостат имеет множество отверстий для доступа к вакуумной камере, трубопроводов системы охлаждения, фидеров питания магнитных систем, диагностики, дистанционного манипулятора, систем нагрева плазмы и других. Доставить сборку таких размеров целиком тяжело и дорого, поэтому было принято решение конструктивно разбить криостат на четыре крупных фрагмента поддон, две цилиндрические обечайки и крышка.

Каждый из этих фрагментов будет собираться из более мелких сегментов. Всего сегментов 54. Их производством занята Индия. Затем фрагменты, после сборки в Здании криостата, по очереди будут перемещены и установлены на место — в шахту реактора [33]. Для снижения влияния нейтронного излучения токамака на окружающую среду криостат будет окружён «одеялом» из специального бетона, которое называют «биозащита» англ.

Толщина биозащиты над криостатом составит 2 м. Эти выступы на сайте ITER называют «короной» «crown». Арматура элементов короны имеет очень сложный макет; для приготовления бетона будет использован гравий , добываемый в Лапландии [34]. Control, Data Access and Communication — управление, доступ к данным и связь является основной системой управления при эксплуатации ИТЭР-токамака. В настоящий момент команда проводит консультации с ведущими институтами и привлечёнными компаниями в целях принятия наилучших технических решений для ИТЭР.

Central Safety Network — Сеть централизованной защиты ; терминалы; датчики. Организационно вся система управления делится на следующие подразделения: Центральный контроль и автоматизация, мониторинг и обработка данных Central supervision and automation, monitoring and data handling. Отображение данных и управление HMI англ. Human Maсhine Interface. Подразделение включает в себя терминалы и мнемосхемы, системы Центральной блокировки CIS англ.

Central Safety System. Обе системы обладают собственными регистраторами параметров.

В декабре 1943 года, по рекомендации Пайерлса и Роберта Оппенгеймера, Фукс с группой других учёных был включён в состав участников американского «Манхэттенского проекта» и прибыл в США. Там в феврале 1944 года с Фуксом была установлена новая связь через связника Гарри Голда, коммуниста из семьи украинских евреев, которому Клаус передавал важную информацию, касающуюся своей части исследовательской работы по «Манхэттенскому проекту». Однако во второй половине 1944 года связь оказалась прервана: Фукс был переведён в Лос-Аламосскую лабораторию со строжайшими мерами секретности. Там он работал в группе Ганса Бете и добился выдающихся научных результатов.

Восстановить связь советской разведке удалось только в январе 1945 года, до конца года состоялись три встречи, на которых Фукс передал исключительно важную информацию как о ходе работ, так и о первом испытании атомной бомбы, в котором он лично участвовал. Читайте также В Суоми решили исключить из истории Ленина, чтобы снова стать чьим-то областным центром? Финляндия тонко намекает, что может вновь стать частью Российской Империи В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини. В июле 1946 года с другими британскими участниками проекта вернулся в Великобританию, где стал начальником отдела теоретической физики Научно-исследовательского атомного центра в Харуэлле. С 1947 года связь с Фуксом вёл заместитель резидента по технической разведке А. Феклисов, которому Фукс передал информацию о производстве плутония в США, о реакторах британского атомного центра в Уиндскейле, принципиальную схему водородной бомбы, результаты испытаний ураново-плутониевой бомбы на атолле Эниветок, данные о британо-американском атомном сотрудничестве и многое другое.

Между тем над головой Клауса начали сгущаться тучи. Среди выданных Гузенко оказался и британский физик-ядерщик Алан Мэй. Он был арестован в марте 1946 года, а уже 1 мая того же года приговорён к 10 годам каторжных работ. Предъявить что-либо конкретное Фуксу британская контрразведка не могла, но за ним была установлена открытая слежка. Фукса допрашивал лучший британский следователь из МИ-5 — Скардон, тот самый, который пытался расколоть и некоторых членов Кембриджской пятёрки. Но и он уже было решил отказаться от бесполезных допросов Клауса Фукса.

И тут совершенно неожиданно Фукс сломался.

Принцип действия всех типов диверторов одинаков. В токамаке ITER используется дивертор полоидального типа. На «горячей стенке» всегда присутствуют загрязнения, которые прилипают к ней в результате адсорбции.

При нагреве эти загрязнения испаряются и попадают в плазму. Там они ионизируются и начинают интенсивно излучать. Возникают дополнительные радиационные потери эти потери пропорциональны второй степени эффективного заряда плазмы. Тем самым плазменный шнур охлаждается, а горячая стенка перегревается.

Дивертор непрерывно «обдирает» с плазменного шнура внешний слой где концентрация примесей наиболее высока. Для этого, с помощью небольшого магнитного поля, внешние слои шнура направляются на интенсивно охлаждаемую водой мишень. Здесь плазма охлаждается, нейтрализуется, превращается в газ, а затем откачивается из камеры. Таким образом, примеси не проникают в сердцевину шнура.

Кроме того, в токамаке ITER дивертор служит для осаждения и удержания бериллиевой пыли, образующейся при испарении «горячей стенки» бланкета. Поэтому его на сайте ITER ещё шутливо называют «ashtray» пепельница. Если не удалять пыль из зоны горения, она попадёт в плазменный шнур, разогреется, и тоже начнёт излучать. Это вызовет в свою очередь, перегрев горячей стенки, её повышенный износ испарение и радиационное распыление и образование новых порций пыли.

Дивертор ITER состоит из пяти мишеней с щелями между ними. Металлическая пыль скатывается с пологих поверхностей мишеней и попадает в щели. Оттуда ей очень трудно вновь попасть в плазменный шнур. Дивертор выполнен из 54 кассет [25] , общим весом 700 т.

Корпус кассеты — высокопрочная нержавеющая сталь. По мере износа кассеты будут демонтироваться, и на их место устанавливаться другие. Мало какой материал способен длительно срок службы токамака 20 лет выдерживать такой нагрев. На начальных стадиях проектирования токамака планировалось выполнить мишени из углеродного композита, армированного углеродным волокном англ.

Система охлаждения дивертора будет работать в околокипящем режиме. Суть этого режима такова: теплоноситель дистиллированная вода начинает закипать, но ещё не кипит. Микроскопические пузырьки пара способствуют интенсивной конвекции, поэтому этот режим позволяет отводить от нагретых деталей наибольшее количество тепла. Однако есть и опасность — если теплоноситель всё-таки закипит, пузырьки пара увеличатся в размерах, резко снизив теплоотвод.

Для контроля за состоянием теплоносителя на ITER установлены акустические датчики. По шуму, который создают пузырьки в трубопроводах, будет оцениваться режим, в котором находится теплоноситель.

Эра термоядерного синтеза

В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции. Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. Зачем на самом деле строится самый большой термоядерный реактор.

FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв

Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено». Физпуск состоялся еще 18 мая 2021 года. А вот с энергопуском возникли организационные проблемы. Все это время мощности не использовались. Нам потребовалось почти два года, чтобы решить эту проблему. Мы согласовали с энергокомпанией все условия, и сейчас уже ничто не мешает выйти на работу в сети». Следующим российским термоядерным реактором должен стать токамак с реакторными технологиями, который планируют построить на территории Троицкого института инновационных и термоядерных исследований.

И там, в момент наибольшего сжатия, возникали бы условия для «зажигания» небольшой части смеси дейтерия и трития в центре мишени — от 2 до 5 процентов общей массы, которые разогревали бы оставшееся тело мишени. Но достичь успеха удалось не сразу. Любые неравномерности в обжатии мишени разрушали ее задолго до момента схлопывания к нужному размеру и достижения нужной плотности и температуры. Ученые подыскивали способы эффективнее обжимать топливные капсулы. Изначальная концепция нагрева и сжатия капсулы лазерами потребовала бы порядка 100 мегаджоулей, но физики придумали вариант, где разгоняющиеся внешние плотные слои из топливного льда сжимают газовую топливную смесь, разогревая ее ударной волной сжатия — такая концепция требовала уже 2-3 мегаджоуля, в 30 раз меньше! Параллельно ученые в попытке добиться инерциального конфайнмента пробовали и увеличить «массу молотка», то есть энергии, которая «вкачивалась» в мишень за один выстрел начав с единиц килоджоулей, физики к 1980-м пришли к энергиям в десятки, а то и сотню килоджоулей за выстрел , так и поменять саму схему эксперимента. В середине 1970-х годов физики решили поставить между лазерным излучением и мишенью посредника, то есть попробовать метод «непрямого воздействия». В этом варианте топливная капсула размером в миллиметр подвешивалась в центре небольшого золотого или свинцового сосуда, который получил название хольраум от немецкого Hohlraum, «пустое пространство, полость», термин взят из работ Макса Планка , посвященных излучению абсолютно черного тела. Детали их производства оставались в секрете до 1994 года. Под действием излучения лазера внутренняя поверхность сосуда становилась источником рентгеновского излучения, которое и попадало в мишень, запуская термоядерную реакцию. В рентген должно было превращаться от 70 до 80 процентов энергии лазерного излучения. В этом варианте поток излучения гораздо более равномерен и капсула, в теории, должна была сжиматься ровно, без искажения формы. Впрочем, на практике путь к этому оказался долгим. Рождения героя После нескольких промежуточных установок поменьше, в 1997 году США запустили строительство гигантской лазерной установки NIF стоимостью около 2 миллиардов долларов, которая должна была продемонстрировать работоспособность концепции и так называемый breakeven — равенство или превышение выхода термоядерной энергии над энергией лазеров, которая по проекту должна была составить 1,8 мегаджоуля. Проблемы NIF, как прототипа термоядерной электростанции, были видны еще до начала строительства — даже если бы 1,8 мегаджоуля термоядерной энергии получалось бы в каждом выстреле, затраты энергии «из розетки» все равно составляли бы скорее 500 мегаджоулей, а количество выстрелов не превышало бы 2-3 в сутки. Кроме того, мишени для NIF представляли собой произведение криогенного ювелирного искусства: капсула миллиметрового размера и сверхточной формы наполняется топливом при температуре 15 кельвин и поддерживается при этой температуре в процессе помещения в установку и до момента эксперимента. Ну и разумеется, никакой энергоустановки в проекте предусмотрено не было, термоядерное тепло просто рассеивалось через градирни. В реальности все оказалось еще скромнее. Установка произвела первые полноценные выстрелы в 2010 году и вместо мегаджоулей термоядерной энергии ученые увидели сотни джоулей. Три года непрерывных усилий по совершенствованию установки привели к первому breakeven — выходу около 15 килоджоулей термоядерной энергии, что было больше, чем сообщали рентгеновского тепла стенки сосуда с капсулой. Однако это было далеко от того, что обещали до начала строительства NIF. Впрочем, основного заказчика этой установки все устраивало. Дело в том, что условия, создающиеся в топливной капсуле и хольрауме очень похожи на то, что происходит в термоядерном боеприпасе в момент срабатывания. И изначально NIF создавался как большой стенд для верификации нового поколения программ, симулирующих поведение ядерного оружия, а энергетическое направление было приятным бонусом, на который выделялось меньше трети фондирования. Но команда термоядерщиков LLNL продолжала совершенствовать режимы работы лазеров, конструкцию хольраума и капсулы. Вместе это позволило поднять симметричность и стабильность сжатия капсулы, побороть лазерно-плазменные неустойчивости на хольрауме, увеличить эффективность передачи энергии от лазеров на хольраум и от хольраума на сжатие капсулы.

И вот недавно я случайно узнал, что, в каком-то роде, пошел прямо по дедушкиным стопам! Перебирая домашний архив, я обнаружил грамоту более, чем 40-летней давности, которую в свое время вручили моему деду за вклад в автоматизацию экспериментов на токамаках ФТИ, где я сейчас работаю! Так что, в науку я попал неслучайно В школе я любил алгебру, геометрию и физику. С девятого класса я учился в специализированном лицее с физико-математическим уклоном. А потом поступил на кафедру экспериментальной ядерной физики в Политехнический тогда еще институт в Санкт-Петербурге. Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им.

А реакция синтеза быстро останавливается при выключении питания. Фактически в качестве топлива используется вода, в которой содержится дейтерий. А тритий можно получить из лития непосредственно в процессе работы термоядерного реактора или как побочный продукт работы ядерных реакторов», — добавил эксперт. По его словам, США традиционно были лидерами в коммерческих технологиях ядерной энергетики. Однако в настоящий момент главным поставщиком коммерческих ядерных технологий на мировые рынки является российская компания «Росатом».

Главная тема

  • Зажгли. Лазерная установка NIF вышла в термоядерный плюс
  • Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
  • Преимущества и недостатки термоядерных реакторов
  • Клаус Фукс получил от Англии 14 лет каторги, а от Страны Советов — вечное забвение

Мировой рекорд

  • Преимущества и недостатки термоядерных реакторов
  • Другие новости
  • ЗА ЧТО БОРЕМСЯ
  • Лазерный пресс

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия.

Мегаджоули управляемого термоядерного синтеза

Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд.

Похожие новости:

Оцените статью
Добавить комментарий