Новости черная дырка

Мини черные дыры: физик рассказал об уникальном эксперименте в Большом адронном коллайдере. Среди бесчисленного множества космических объектов самыми загадочными являются черные дыры – области пространства-времени, сила притяжения которых настолько.

Опубликован первый в истории снимок черной дыры

Данные наблюдений черных дыр средней массы, казалось бы, подтверждают эту гипотезу. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу Но когда астрономы заглянули дальше во Вселенную, они стали все чаще замечать несостыковки. В 2017 году в далеком уголке космоса была обнаружена черная дыра с массой, в 800 раз превышающей массу Солнца. Это значит, что она выросла до таких размеров очень быстро, всего за пару сотен миллионов лет после Большого взрыва. И это не единственный пример. По одной из гипотез, некоторые черные могли сформироваться как-то иначе, с самого начала получив значительную массу. Например, если массивное облако газа коллапсирует, из него может получиться черная дыра с массой от 10 000 до 100 000 масс Солнца, пишет New Atlas.

Художественное представление системы Gaia BH3.

Звезда находится на удалении 2000 световых лет от Солнечной системы в созвездии Орла. Наблюдение за звездой с помощью эшелле-спектрографа UVES на наземном телескопе VLT Южной европейской обсерватории в Чили показало, что у звезды есть невидимый партнёр, параметры которого оказались достаточно необычными, что позволило прийти к выводу, что это чёрная дыра с рекордной звёздной массой. Расчёты показывают, что звезда и чёрная дыра совершают один оборот по орбите за 11,6 года. Спектральный анализ показал, что звезда бедна металлами и, следовательно, чёрная дыра также образовалась из звезды-гиганта с низкой металличностью. Это первое такое открытие. Именно звёзды с низкой металличностью потенциально способны образовывать рекордно массивные чёрные дыры после своей смерти, так как они в процессе жизни не так активно «разбазаривают» вещество, как звёзды с высоким содержанием металлов. До обнаружения чёрной дыры в системе Gaia BH3 самой массивной чёрной дырой звёздной массы считался объект Лебедь Х-1 массой 21 солнечная на удалении около 7000 световых лет от нас.

Самая близкая к нам чёрная дыра солнечной массы расположена в 1500 световых годах — это чёрная дыра Gaia BH1 с массой в 10 солнечных. Также была найдена ещё одна чёрная дыра подобной массы — Gaia BH2 , которая расположена на удалении 3800 световых лет от Солнечной системы. Новое открытие затмевает предыдущие находки и делает его крайне интересным. Первым достоверно подтверждённым событием стал гравитационно-волновой сигнал GW230529. Это событие оказалось уникальным и вторым подобным за всю историю работы детекторов. Один из объектов гравитационного взаимодействия оказался из так называемого разрыва масс между нейтронными звёздами и лёгкими чёрными дырами, а это новая загадка. Художественное представление разрыва нейтронной звезды чёрной дырой.

Источник изображения: Max Planck Institute for Gravitational Physics Согласно данным гравитационно-волновых детекторов LIGO, событие GW230529 представляет собой взаимодействие двух объектов — одного массой 1,2—2,0 солнечных масс, а второго — более чем в два раза массивнее 2,5—4,5 солнечных масс. Первый компактный объект определён как нейтронная звезда, а второй попал в диапазон масс, в котором ничего не должно находиться. Выше разрыва учёные находили лёгкие чёрные дыры, а ниже — нет. Также в этот диапазон не могут попасть нейтронные звёзды. Остаётся предположить, что учёные открыли легчайшую чёрную дыру, что стало вызовом для современной астрофизики. Но тогда, в 2019 году, был получен сигнал об объекте из нижнего диапазона разрыва масс, что заставило заподозрить в нём тяжелейшую нейтронную звезду. Сигнал GW230529 подбросил новую загадку, но одна только гравитационно-волновая обсерватория её не решит.

Для этого нужны наблюдения в других диапазонах. В то же время обнаружение сигнала на одном детекторе стало проверкой нового программного обеспечения, которое успешно отфильтровало шум и вычленило полезный и, как оказалось, уникальный сигнал. В январе обсерватории были остановлены на плановое обслуживание и модернизацию. Обсерватория в Японии подверглась землетрясению и вынуждена была встать на ремонт. Новый сеанс наблюдения начнётся 10 апреля и продлится до февраля 2025 года. В первый цикл было зафиксировано 81 событие, данные по первому из них — GW230529 — опубликованы. Всего по окончанию цикла ожидается регистрация свыше 200 гравитационно-волновых событий.

Эти совершенно невидимые и даже сейчас всё ещё гипотетические объекты попытались запечатлеть на снимках. И этим дело не ограничилось. Соответственно, у них такая же разная динамика. Что касается самой методики получения снимков, то также следует понимать, что напрямую увидеть объект и его тень нельзя. Объект в принципе недоступен для регистрации в любом электромагнитном диапазоне об излучении Хокинга мы сейчас не говорим , зато его тень — окружающую чёрную дыру вещество в аккреционном диске, выбрасываемое в пространство электромагнитными полями чёрной дыры, можно легко наблюдать в радиодиапазоне. Проблема тут в низком разрешении отдельных радиотелескопов, поэтому для получения снимков чёрной дыры была создана коллаборация «Телескоп горизонта событий» Event Horizon Telescope, EHT. Радиоданные, в отличие от оптических данных условно — фотографий , достаточно легко объединить в один массив.

Поэтому следить за чёрной дырой можно было сразу со многих радиотелескопов, причём не обязательно полностью синхронно. Нужно было лишь точно сопоставить данные наблюдений, например, с помощью атомных часов или сигналов GPS. Потом жёсткие диски с результатами свозились в одно место и обрабатывались как единый массив, полученный виртуальным радиотелескопом размером с Землю. Первое изображение обнародовали только в 2022 году. Это было, как получить чёткий снимок дерева на сильном ветру, сетовали учёные. Но у них получилось, и изображения оказались достаточно похожими, несмотря на огромнейшие различия в массе объектов. Возникло разумное желание посмотреть, а как с этим обстоят дела в случае нашей чёрной дыры?

Снова наблюдения — и первый результат, который не разочаровал. С нашей дырой пока ничего непонятно. Нам неизвестна её ориентация и скорость вращения. Снимки в поляризованном свете обещают помочь с разгадкой этих тайн, о раскрытии которых учёные совсем недавно даже не думали. Прямое наблюдение этих объектов в природе крайне затруднено, поскольку чёрные дыры блокируют электромагнитное излучение. Поэтому лабораторное моделирование — это один из путей изучить их свойства и сопоставить с теоретическими представлениями. Источник изображения: ИИ-генерация Кандинский 3.

В одном из ранних исследований учёные обратили внимание на то, что воронка воды сильно напоминает гравитационные явления искажения пространства-времени вблизи чёрных дыр. Использование для моделирования жидкости в сверхтекучем состоянии с охлаждением едва ли не до абсолютного нуля привносит в процесс квантовые свойства, а это — путь к квантовой теории поля и сути квантового поведения чёрных дыр. По крайней мере, на уровне квантовой механики ряд процессов должны проходить одинаково и это можно соотнести с теорией. Источник изображения: Leonardo Solidoro Изучая «торнадо в стакане», исследователи смогли выявить сходство между вихревым потоком и влиянием вращающейся чёрной дыры на искривленное пространство-время вокруг нее. В частности, исследователи наблюдали стоячие волны, аналогичные связанным состояниям чёрной дыры, и возбуждения, аналогичные кольцевому замыканию новообразованной чёрной дыры. И это только начало. Теперь, когда исследователи продемонстрировали, что их эксперимент работает так, как они задумали, «вихрь» готов открыть новую область науки о чёрных дырах.

Эта галактика характеризуется активным звездорождением, располагается в 160 млн световых лет от Земли и наблюдается в созвездии Льва. Иллюстрация спагеттификации звезды сверхмассивной чёрной дырой. Источник изображения: hawaii.

По предварительным оценкам количество подобных систем в Млечном Пути составляет около миллиона. Расчеты показывают, что в Млечном Пути существует примерно 100 миллионов черных дыр звездной массы, возникающих при коллапсе массивных звезд. Часто эти черные дыры являются изолированными невзаимодействующими и не поглощают вещество от близлежащих объектов, что делает их обнаружение трудным.

Так, герои кинокомиксов Марвел, как и герои мультсериала «Рик и Морти, то и дело путешествуют между мирами. Согласитесь, сама идея о существовании других версий себя захватывает дух, а такие именитые ученые как Андрей Линде, Митио Каку и Стивен Хокинг всерьез рассматривают существование Мультиверса.

Ликвидаторов дзержинской свалки «Черная дыра» оставили под арестом

Обнаружена чёрная дыра, способная уничтожить Солнце за сутки Интерфакс: Астрономы обнаружили древнейшую черную дыру из всех известных на данный момент, она появилась спустя 470 млн лет после Большого взрыва, сообщает Associated Press.
Впервые в истории опубликована фотография черной дыры галактики — 12.05.2022 — В мире на РЕН ТВ в материале ФедералПресс.
Мир наблюдает за вспышкой: в Галактике обнаружили новую черную дыру Примечательно, что летом этого года Минэкологии региона отчитывалось о том, что рекультивация «Черной дыры» успешно продолжается.

Стала известна судьба нижегородской «Черной дыры»

16:00 20.02.2024 Обнаружена самая яркая и быстрорастущая чёрная дыра — в день она поглощает массу Солнца. В данном разделе вы найдете много статей и новостей по теме «черная дыра». Модель черной дыры со светящимся кольцом вращающихся поглащаемых частиц вокруг и бьющими вверх и вниз потоками плазмы. Две массивные черные дыры столкнутся и сольются, образовав одну черную дыру.

Мир наблюдает за вспышкой: в Галактике обнаружили новую черную дыру

Астрономы впервые обнаружили черную дыру в галактике, используя метод, который имитирует свет, проходящий через Вселенную бесчисленное количество раз. Условие номер один: черная дыра должна быть изолированной, то есть вокруг нее не должно быть аккреционного диска, температура которого настолько высока. NASA удалось увидеть, как черная дыра разорвала звезду размером с Солнце Американским ученым удалось увидеть поглощение звезды черной дырой. «Черную дыру» в Дзержинске ликвидируют, несмотря на аресты руководства ГЭС. Ликвидацию химической свалки «Черная дыра» в Дзержинске планируют завершить.

Получена первая в истории фотография черной дыры

Однако изучая пищевое поведение других черных дыр, астрономы обнаружили некоторые аномалии в их эволюции. Так, если одна из них медленно пожирала звезду в течение 10 лет, то другая постепенно отрывала кусок за кусок при каждом пролёте звезды, формируя при этом всплески радиоактивного излучения. Эксперты считают, что более подробное изучение этих процессов позволит лучше понять периодичность их появления. Результаты этого проекта были представлены в научном издании The Astrophysical Journal. Источники: Harvard, The Astrophysical Journal.

Провал огородили, дорогу перекрыли. Сначала обещали устранить «черную дыру» через месяц, потом через 2, потом через пол-года, но все эти обещания так и не воплотились в жизнь. Как поясняли работники водоканала и городские власти — объект оказался очень сложный.

На снимке по бокам и над скоплением были замечены три ярких красных точки, привлёкших внимание астрономов. Анализ показал , что это один и тот же квазар — активный центр галактики или активно питающаяся сверхмассивная чёрная дыра, которая благодаря эффекту гравитационного микролинзирования отобразилась одновременно в трёх местах на небе. С помощью спектрометра «Уэбба», а также с привлечением радиотелескопа ALMA и рентгеновского телескопа «Чандра» группа астрономов внимательно изучила этот объект и пришла к далеко идущим выводам. Измерения и моделирование показало, что квазар слишком тяжёлый для подобного среднестатистического объекта.

Открытие такого массивного и активно питающегося объекта, о чём говорит его красный цвет, и так рано после Большого взрыва, заставляет предположить, что учёные наткнулись на недостающее переходное звено между зародышем сверхмассивной чёрной дыры и ярким квазаром. Источник изображения: Lukas J. Furtak et al. Нам непонятен процесс быстрого набора массы чёрными дырами за короткий промежуток времени.

В теории зародышами сверхмассивных чёрных дыр могут быть чёрные дыры, рождённые смертью первых звёзд определённой большой массы, либо чёрные дыры, возникшие при прямом коллапсе газовых облаков вскоре после Большого взрыва. Одного наблюдения определённо не хватит для построения стройных математических моделей эволюции сверхмассивных чёрных дыр. Но «Джеймс Уэбб» поможет набрать достаточно данных по таким объектам, и тогда своё слово скажут теоретики. Пока они не спешат разрушать космологические устои, требуя больше доказательств по наблюдаемым с помощью «Уэбба» явлениям.

Источник изображений: eso. Лишь в прошлом году астрономы из Австралийского национального университета смогли идентифицировать его как квазар — активное ядро галактики на расстоянии 12 млрд световых лет от Земли и в 600 трлн раз превосходит Солнце по яркости. Диаметр аккреционного диска, вращающегося вокруг этой сверхмассивной чёрной дыры, оказался также рекордным — он составил 7 световых лет или в 15 тыс. Ещё одной отличительной особенностью J0529-4351 является то, что его излучение не искажается и не усиливается гравитационными линзами других галактических ядер.

Учёные отметили, что поиск квазаров — непростая задача, требующая точных данных наблюдений на больших участках неба. Массивы необходимых данных настолько высоки, что для их анализа и выявления квазаров часто применяются модели искусственного интеллекта. Но эти модели обучаются на существующих данных, то есть потенциальными кандидатами на статус квазаров становятся лишь объекты, которые похожи на уже известные. И если новый квазар, как в этом случае, оказывается ярче любого из наблюдавшихся ранее, то алгоритм ИИ может его отклонить и классифицировать объект как не очень удалённую от Земли звезду.

Исследователи смогут оценить соотношение массы сверхмассивных чёрных дыр и яркость производимого ими свечения. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс.

Источник изображения: The Astrophysical Journal Letters На днях в журнале The Astrophysical Journal Letters была опубликована работа , в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой. Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных.

Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД.

Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем. Сверхмассивная чёрная дыра СЧД в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности.

Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко. Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина. Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной.

Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода. Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске. Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным. Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме.

Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters. В галактиках других типов эти процессы не встречаются, но, как показало новое исследование, мы просто не умели находить такие события. Астрономы из США показали пример , как случаи «жестокой расправы» чёрных дыр со звёздами обнаруживать повсеместно.

Приливное разрушение звезды чёрной дырой в представлении художника. Kornmesser Когда звезда оказывается в опасной близости от чёрной дыры, она теряет большую часть своего вещества в процессе так называемого приливного разрушения. Вещество звезды образует диск вокруг чёрной дыры и запускает процесс аккреции вещества — его падение на чёрную дыру. Гравитация, трение и нагрев вещества вызывают выбросы энергии как от внутренней стороны аккреционного диска, так и с полюсов чёрной дыры, куда вещество из диска забрасывается мощными магнитными полями этого объекта.

Эти выбросы энергии мы регистрируем в основном в оптическом и рентгеновском диапазонах. Астрономы из Массачусетского технологического института предложили искать события приливного разрушения звёзд чёрными дырами в инфракрасном диапазоне. Официальное сообщение о первом открытии такого события в инфракрасном спектре поступило в апреле 2023 года. Метод был признан рабочим и взят на вооружение.

И это привело к лавине открытий. Шесть из них были позже отброшены, поскольку были связаны с активностью чёрных дыр в центрах галактик. Однако 12 событий были идентифицированы с высокой достоверностью, и все они были открыты впервые. Более того, все 12 новых событий приливного разрушения звёзд, зафиксированных в данных инфракрасных наблюдений, выявлены там, где раньше их не находили — в сильно запылённых галактиках.

Другими словами, если в земле выкопать яму и что-то туда бросить, то чем глубже будет отверстие, тем больше скорость падающего объекта, то есть он будет выделять больше энергии. Результат на Нобелевскую премию Ведущий научный сотрудник Института ядерных исследований РАН Вячеслав Докучаев в беседе с «360» объяснил, что современная астрофизика считает черные дыры самыми важными объектами во вселенной. До сих пор ученые имели только косвенные доказательства, что эти черные дыры существуют. Сегодня произошло выдающееся событие. Впервые человечеству была предъявлена фотография реального изображения черной дыры.

Физики ждали этого 100 лет. Эти объекты были предсказаны в теории Эйнштейна более 100 лет назад Вячеслав Докучаев. Докучаев уверен, что результат, полученный учеными, тянет на Нобелевскую премию, но ему обидно, что в таком значимом мероприятии не участвовала Россия. В том числе потому, что в стране нет ни одного мощного радиотелескопа. А это важно для осмысления нашего места во вселенной и смысла жизни не только отдельного человека, а всей цивилизации», — добавил Докучаев.

Важны не фото, а свойства Вице-президент РАН Юрий Балега в разговоре с «360» не был так обрадован новостью о полученной фотографии. По его мнению, мы увидели то, что интересно широкому обывателю, но для физики важны физические свойства объектов, чтобы «мы могли написать картину мира». Информация сегодня в астрофизике получается не по фотографиям, а на основе спектров, которые позволяют получить физические характеристики объектов в космосе: температуру, размеры, скорость, химический состав. Фотография — это тень черной дыры. Сама черная дыра не видна, она очень мала, мы видим только окрестности Юрий Балега.

Балега отметил, что важно изучить способ образования черных дыр, чтобы на основе этих данных узнать, когда они появились. На вопрос, зачем человечеству, которое вряд ли когда-нибудь встретится с черной дырой, знать об их происхождении и свойствах, вице-президент РАН ответил, что «смысл жизни человека является в познании мира, в котором мы живем».

Первое фото черной дыры в центре нашей галактики: когда его сделали на самом деле

Она отлично видна на других снимках телескопов. Однако только теперь ученым удалось получить изображение ее выхода из черной дыры. Этот научный прорыв открывает новые возможности для изучения черных дыр и их свойств. Ученые надеются, что новые изображения помогут им лучше понять физические процессы, происходящие в окрестности черных дыр.

Чтобы изучить это напрямую, нам нужно наблюдать происхождение джета, расположенного как можно ближе к черной дыре". На впервые опубликованном снимке как раз и запечатлен такой момент: основание джета соединяется с веществом, вращающимся вокруг сверхмассивной черной дыры. Добавим, что галактика M87 расположена в 55 миллионах световых лет от Земли.

Запечатленная на снимке черная дыра оказалась в 6,5 миллиарда раз массивнее Солнца. Поимо джета на снимке видно то, что ученые называют тенью черной дыры. Когда материя вращается вокруг черной дыры, она нагревается и излучает свет.

По сообщениям ученых, на полученных снимках они увидели галактику с активным ядром и сверхмассивной черной дырой. Масса обнаруженного объекта оказалась гораздо выше массы самой галактики. До сих пор специалисты не могут точно сказать, как именно образуются черные дыры.

Ранее «ФедералПресс» уже писал о том, за что хотят посадить ликвидаторов дзержинской «Черной дыры».

Астрономы нашли «беспокойную» черную дыру, блуждающую в пространстве

Интерфакс: Астрономы обнаружили древнейшую черную дыру из всех известных на данный момент, она появилась спустя 470 млн лет после Большого взрыва, сообщает Associated Press. Черная дыра возникает на финальных стадиях эволюции самых массивных звезд. Новость об обнаружении огромной чёрной дыры в Млечном пути. Gaia BH3, спящая чёрная дыра, не испускающая рентгеновские лучи. Черная дыра возникает на финальных стадиях эволюции самых массивных звезд. NASA удалось увидеть, как черная дыра разорвала звезду размером с Солнце Американским ученым удалось увидеть поглощение звезды черной дырой.

Открыта вторая по близости к Земле чёрная дыра, и она оказалась рекордно большой

Ученые создали черную дыру в лаборатории, а она принялась светиться - 19.04.2023, Sputnik Армения Группа международных астрономов, используя космический телескоп Gaia, обнаружила огромную черную дыру, расположенную относительно недалеко от Земли.
Обнаружена чёрная дыра, способная уничтожить Солнце за сутки Сверхмассивная чёрная дыра в центре галактики Messier 87 посылает лучи плазмы и разрушения в окружающий космос.
Обнаружена чёрная дыра, способная уничтожить Солнце за сутки «Вместо того чтобы подавлять звездообразование, черная дыра провоцирует рождение новых звезд», — сказал он.
Что будет, если попасть в чёрную дыру - Лайфхакер Анатомия чёрной дыры. С обывательской точки зрения чёрная дыра — это космический «пылесос», который затягивает всё, что окажется на его пути.

Похожие новости:

Оцените статью
Добавить комментарий