Считается, что при коэффициенте Джини выше 0,3–0,4 в стране высокое неравенство.
Коэффициент Джини. Формула. Что показывает
Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам. Напомним, что квинтильные группы — это группы населения домашних хозяйств , образованные путем деления всего населения домашних хозяйств на 5 численно равных частей.
Так вот, коэффициент Джини в России в 2022 году опустился до 0,395 и стал минимальным с начала тысячелетия. Для сравнения, в 2021-м этот показатель составлял 0,409. Имеется в виду и зарплата, и самостоятельная предпринимательская деятельность. Богатейшие домохозяйства получают от бизнеса в среднем около 23 тысяч рублей в месяц, а беднейшие 2,2 тысячи. По данным агентства, Росстат также фиксирует заметную разницу в доле социальных выплат в общей структуре доходов обеих групп.
В России выросло неравенство доходов населения за 2023 год 29 февраля 2024, 16:25 ТСН24 Фото: ТСН24 В 2023 году в России наметился рост коэффициента Джини, который отражает степень неравенства в распределении доходов внутри различных групп населения. Эта информация содержится в докладе Росстата о социально-экономическом положении граждан.
Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам. Напомним, что квинтильные группы — это группы населения домашних хозяйств , образованные путем деления всего населения домашних хозяйств на 5 численно равных частей. На основании данных по распределению доходов в России за 2021 год составим сводную таблицу [1].
Доверять Джини или нет: вот в чем вопрос
Получается, у россиян есть деньги... По рядовым россиянам это ударяет не только повышением цен, но и, например, усложняя получение ипотеки без государственной поддержки. Еще один тренд «перегрева» экономики — это увеличение имущественного расслоения. Чтобы оценить его, используется так называемый коэффициент Джини: отношение доходов самых богатых в стране к самым бедным. Тенденция сокращения разрыва между богатыми и бедными, измеряемая коэффициентом Джини, сохранялась в России много лет. Как пишет аналитическое издание BNE Intellinews, посвященное трендам мировой экономики, одной из причин роста имущественного расслоения в России может быть нехватка квалифицированной рабочей силы. За счет этого и быстрее растут не низкие, а средние и высокие доходы. Сказывается это и на всей структуре экономики. Бедные тратят большую часть своих доходов на предметы первой необходимости — именно поэтому по ним болезненнее всего бьет продовольственная инфляция это главный фактор роста цен в России, а не, скажем, подорожание путевок в Турцию или айфонов. При этом средний класс и тем более богатые получают всё большую прибыль от повышения процентных ставок по депозитам, а продукты питания составляют гораздо меньшую и сокращающуюся долю в их корзине покупок.
Доктор экономических наук, профессор Российского экономического университета Юрий Ляндау говорит, что становится всё больше не только экономический, но и социальный разрыв между бедными и богатыми. Одна из основных причин — постоянный рост цен. Причем цены растут и на продукты, и на бытовые товары, и на коммунальные услуги.
А именно, через кривую Лоренца. Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2]. И на её основании можно вывести коэффициент Джинни. Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини.
Одна из причин этого явления - институты, которые позволяют богатым людям наращивать свои доходы. К плюсам такой системы можно отнести появление "компаний-единорогов" с миллиардными оборотами, таких как Apple, Google, Microsoft, Amazon, рассказывает Аникин. Но оборотной стороной становится экстремальное неравенство, когда доход руководителя компании в сотни раз отличается от зарплаты его самого низкооплачиваемого подчиненного.
Экстремальное неравенство наносит серьезный урон экономике, констатирует Аникин. Экстремальное неравенство искажает мотивы трудовой деятельности. Люди склонны к поиску быстрых социальных лифтов, а не к долгосрочным инвестициям в образование и навыки.
В то же время статистика Росстата свидетельствует, что в России разрыв заработных плат неуклонно снижается. Средняя зарплата по 10-процентным группам работников показывает, что в 2021 году зарплаты наиболее низкооплачиваемых сотрудников были в 13,5 раз ниже зарплаты наиболее высокооплачиваемых сотрудников. В 2000 году разрыв между теми же группами составлял 34 раза.
Разрыв между зарплатами руководителей и рабочих составлял 2,5 раза в октябре 2021 года по всем формам собственности.
Разрыв между зарплатами руководителей и рабочих составлял 2,5 раза в октябре 2021 года по всем формам собственности. При этом в сфере информации и связи он доходил до 4,9 раз. А в сфере добычи полезных ископаемых до 3,8 раза.
И в том числе с ее введением эксперты связывают снижение темпов роста доходов топ-менеджмента. В то же время есть и другие способы сократить этот разрыв. Дополнительной мерой мог бы стать налог на компании, которые допускают существенный разрыв доходов топ-менеджмента и рядовых сотрудников. Однако необходима работа и по увеличению доходов умственных работников бюджетной сферы.
А среди возможных мер он называет введение единых национальных тарифов - диапазонов заработных плат для каждого региона, привязанных к стоимости жизни в регионе и квалификационным различиям специалистов. Рост зарплат в этой сфере - это наиболее эффективный способ сократить разрыв зарплат в нашей стране, считает Аникин.
Как оценивается социальное неравенство
Индекс Джини это тот же коэффициент Джини, только значения здесь выражены в процентах. Итак, проведенный анализ динамики децильного коэффициента и коэффициента Джини в период с 2005 по 2007 гг. выявляет рост социального неравенства с некоторым его замедлением в период после 2007г. с 50,5% в 2010 году до 41,5% в 2019-м", - говорится в сообщении. Приведу еще ряд показателей по России и некоторым другим странам, которые подтверждают, что Россия превратилась в мире в «эталон» социальной несправедливости (табл.2). В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно.
Как оценивается социальное неравенство
По данным исследований Credit Suisse, коэффициент Джини по богатству в России достигает 0,88 [17]. Использование коэффициента Джини позволяет не только оценить уровень неравенства доходов, но и выявить его причины и последствия. По данным исследований Credit Suisse, коэффициент Джини по богатству в России достигает 0,88 [17]. В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении. Страны ближнего востока и северной Африки: Коэффициент Джини. Помимо Коэффициента Джини и Децильного коэффициента, народ постоянно пытается придумать другие коэффициенты и индексы, которые бы, так или иначе, отражали неравенство.
Эксперты ЦБ выявили негативный эффект неравенства для экономики России
Статистические агентства обычно публикуют коэффициент Джини наряду с основными экономическими показателями, такими как ВВП и среднедушевой доход. В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос. Росстат приводит несколько другие данные: по его оценкам, коэффициент Джини составлял в России в 2021 году 0,408. Коэффициент Джини в стране важен, поскольку он помогает выявить высокий уровень неравенства доходов, которое может иметь ряд нежелательных политических и экономических последствий.
Неравенство и экономический рост в России: эконометрические оценки зависимостей
Индекс Джини это тот же коэффициент Джини, только значения здесь выражены в процентах. В качестве показателя, который использовался для выявления межрегиональных зарплатных различий эксперты РИА Рейтинг применили коэффициент Джини. Децильный коэффициент (соотношение мин доходов 10% наиболее обеспеченного населения и макс доходов 10% наименее обеспеченного населения). По данным исследования, в целом неравенство зарплат в России находится примерно на уровне Японии или Португалии, где коэффициент Джини достигает 37,7 процента.
Коэффициент джини в России
Неравенство в россии на фоне других стран. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Коэффициент Джини (индекс концентрации доходов) характеризует степень отклонения линии фактического распределения общего объема доходов от линии их равномерного распределения. К чему может привести рост социального неравенства в России. По коэффициенту Джини (статистический показатель степени экономического неравенства в обществе) Россия уступает лишь Бразилии. Тенденция сокращения разрыва между богатыми и бедными, измеряемая коэффициентом Джини, сохранялась в России много лет.
Позорный скачок: Россия «впереди планеты всей»
Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Как рассчитать эту метрику?
Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать.
Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib. Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом «20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению.
Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов.
Это связано с ростом доходов от предпринимательской деятельности, инвестиций и других источников. Увеличение разрыва между городом и сельской местностью Неравенство доходов также проявляется в разрыве между городом и сельской местностью. В городах доходы обычно выше, чем в сельской местности, что приводит к увеличению разрыва между этими регионами. Это связано с различиями в доступе к образованию, здравоохранению, инфраструктуре и другим ресурсам. Влияние социальных и экономических факторов Неравенство доходов в России также зависит от различных социальных и экономических факторов. Например, образование, профессия, возраст, пол и другие факторы могут влиять на доходы людей. Также важную роль играют налоговая политика, социальные программы и другие государственные меры, направленные на снижение неравенства. В целом, тенденции неравенства доходов в России указывают на необходимость принятия мер для снижения разрыва между богатыми и бедными слоями населения. Это может включать в себя улучшение доступа к образованию и здравоохранению, создание равных возможностей для всех граждан, реформу налоговой системы и другие меры, направленные на создание более справедливого общества. Факторы, влияющие на неравенство доходов в России Неравенство доходов в России обусловлено множеством факторов, которые влияют на распределение доходов между различными слоями населения. Ниже приведены некоторые из основных факторов, которые оказывают влияние на неравенство доходов в России: Различия в заработной плате Одним из основных факторов, влияющих на неравенство доходов, являются различия в заработной плате. В России существует значительное различие в заработной плате между разными профессиями и отраслями экономики. Некоторые профессии, такие как финансовые специалисты и менеджеры, получают значительно более высокую заработную плату, чем рабочие в сфере обслуживания или сельском хозяйстве. Образование и квалификация Уровень образования и квалификация также оказывают существенное влияние на неравенство доходов. Люди с высшим образованием и специализированными навыками обычно имеют больше возможностей для получения высокооплачиваемой работы и, следовательно, зарабатывают больше. В то же время, люди с низким уровнем образования и ограниченными навыками часто оказываются на низкооплачиваемых работах и имеют меньше возможностей для повышения своего дохода. Региональные различия Россия — это огромная страна с различными регионами, и неравенство доходов может существенно различаться в разных частях страны. Некоторые регионы, такие как Москва и Санкт-Петербург, имеют более высокий уровень доходов и лучшие возможности для работы и развития, в то время как другие регионы, особенно сельская местность и отдаленные районы, могут страдать от низкого уровня доходов и ограниченных возможностей. Неравенство в собственности и бизнесе Неравенство доходов также связано с неравенством в собственности и бизнесе. Богатые люди и предприниматели имеют больше возможностей для создания и развития своего бизнеса, что позволяет им зарабатывать больше денег. В то же время, люди без собственности или с ограниченными возможностями для предпринимательства могут оказаться в более уязвимом положении и иметь меньше возможностей для улучшения своего дохода. Социальные и политические факторы Социальные и политические факторы также могут оказывать влияние на неравенство доходов. Например, наличие социальных программ и государственной поддержки может помочь снизить неравенство доходов, предоставляя бедным и уязвимым группам населения доступ к основным услугам и возможностям.