Новости профессии связанные с нейросетями

В этом году нейросети могут внедриться в целый ряд профессий, рассказал "Известиям" руководитель направления продаж "Авито Работы" Роман Губанов. Нейросеть выдаёт ответ, но не учитывает нововведения, которые появились в последние годы. Уже сейчас идут бурные обсуждения, что нейросети, вероятно, в будущем смогут полностью заменить специалистов ряда профессий. Профессия требует не только применять нейросети, но также строить и обучать модели для новых задач. «Яндекс» начал нанимать людей гуманитарных профессий для обучения своей нейросети — российского аналога ChatGPT, рассказали «Известиям» в компании.

Незаменимых нет: вытеснят ли нейросети творческие профессии?

«Как правило, специалистов, знающих как работать с нейросетью или для ее развития ищут работодатели из ИТ-сферы: 19% или каждая пятая вакансия с начала 2023, за год спрос на таких специалистов в этом секторе вырос на 94%. Нейросети вместо человека: каким специалистам впору задуматься о смене профессии. Анализ интернет-спроса на профессии, связанные с разработкой и ИТ, показал, что больше всего растет спрос на создание нейросетей (+1749%).

Нейросети наступают: специалистов каких профессий уже готов заменить искусственный интеллект

Также по теме Если объяснять термин «нейросеть» простыми словами, то это программа, которая способна самообучаться, извлекать опыт и накапливать... При этом продукт, который выдаёт нейросеть, обычно довольно банальный, невысокого качества. По сути, это всё равно имитация создания текстов, преобразователь текстовой информации. К слову, ChatGPT обучался на данных, собранных до 2021 года, так что задавать ему вопросы по актуальной повестке точно не стоит. При этом нужно понимать, что за появлением такой нейросети стоит серьёзный технологический прорыв. Во-первых, для обучения ChatGPT был собран колоссальный объём данных, во-вторых — очень большие вычислительные мощности, создание и обслуживание которых весьма затратно. Если у бизнеса возникнет соответствующий запрос, то подобная нейросеть может быть создана российскими специалистами на российских вычислительных ресурсах. Что вы думаете об этой истории?

Если честно, не очень понятно, что сенсационного в данной истории, что её так раздули в СМИ. Генераторы текстов появились уже давно, как и попытки студентов автоматизировать работу над дипломами и курсовыми. Другое дело, что раньше был более строгий отбор, подобные работы не допускались до защиты. На самом деле преподаватель может отличить работу, написанную нейросетью, — достаточно прочитать одну страницу такого диплома. Также по теме «Принципиально новый подход»: российские учёные применили искусственный интеллект для диагностики опасной болезни Российские учёные разработали программу для быстрой и точной диагностики опасного заболевания — врождённого гиперинсулинизма. При этой... Тот, о котором говорят обычно, был придуман Аланом Тьюрингом ещё в далёком 1950 году.

В принципе, генератор текста может обмануть людей, и формально можно было бы сказать, что тест Тьюринга пройден. Но на самом деле говорить о появлении настоящего человекоподобного искусственного интеллекта мы не можем — это не так. Нейросети решают только достаточно узкие задачи. В каких сферах они сейчас задействуются? И какие ещё области и процессы могут быть оптимизированы с помощью нейросетей в будущем? В широком смысле нейросеть — это анализатор информации. Они могут выявлять сложные закономерности в больших массивах данных, на что человеку потребовалось бы очень много времени и предельная внимательность.

Такие задачи есть практически в любой области народного хозяйства. Приведу пример: в экономике есть такое понятие, как бизнес-инжиниринг, когда мы выявляем «узкие места» в бизнес-цепочках и оптимизируем всю систему.

Обрабатывает и оцифровывает языковые данные, генерируя их в технологические и производственные процессы. Нейросеть видит в таком специалисте баланс между "технарем" и "гуманитарием", безупречную грамотность и системное мышление. Шансы у этой профессии будущего есть, по крайней мере, в компаниях, связанных с machine-to-machine-технологиями. Специалист, который создает оригинальные искусственные аналоги природным материалам, чтобы в дальнейшем использовать их в медицине, архитектуре, электронике и других областях. Впрочем, нынешние представители профессии отмечают, что отнюдь не все созданные на бумаге прототипы могут работать в реальности.

Кроме того, нейросети становятся все более распространенными во многих отраслях, и компании, которые желают сохранить свою конкурентоспособность, стремятся привлечь талантливых инженеров нейросетей. В ситуации, когда нейросети используются для решения критически важных задач, таких как медицинская диагностика, финансовый анализ или управление транспортом, спрос на высококвалифицированных специалистов в этой области может быть особенно высоким. Кроме того, многие компании инвестируют в исследования и разработку нейросетей, чтобы улучшить свои продукты и услуги. Инженеры нейросетей, которые могут эффективно работать с этими новыми технологиями и применять их к решению конкретных задач, будут в большом спросе. Также стоит отметить, что развитие технологий и программных инструментов в области нейросетей продолжается, что создает дополнительные возможности для инженеров нейросетей. Например, инженеры могут использовать новые библиотеки и фреймворки для облегчения создания и оптимизации нейронных сетей.

Для каких задач применяют ML и нейросети Есть много прикладных задач, которые решаются с помощью эксперта, простых правил и специально подобранных алгоритмов. Когда данных становится много, у нас появляется возможность извлекать из них полезные знания, обходя ограниченность простых подходов. С помощью ML можно рассчитывать риски — например, предсказать, выплатит ли человек кредит, или рассчитать будущие цены на квартиры. Есть отдельная группа задач, для которых нейросети особенно хороши: находить похожие картинки, звуки и посты, генерировать изображения и тексты. Конечно, искать похожие аудио можно и без нейросетей — приложение Shazam прекрасно работало даже в первых версиях. Но обучение алгоритмов с помощью нейросетей дает дополнительные возможности. Творчество нейросети Midjourney Как разрабатываются нейросети В этой части статьи будет немного хардовой информации, связанной с математикой и ML. Если вы ничего не поймете или захотите понять больше, советуем пройти наш курс по математической логике для программистов Нейросеть — это формула, которая из одного массива чисел делает другой массив. Формула большая и длинная, может быть с миллионами параметров, но собирается из довольно простых операций — арифметики, элементарных функций синусы, косинусы, экспоненты и даже более простые, вроде взятия степени и суперпозиции. Выше пример одной из решаемых задачек: классификация изображений на условные тысячу классов. Входной массив здесь — просто массив пикселей картинки, выходной — вектор с вероятностями, что изображено на картинке. Выходной массив может быть и картинкой например, как в задачах pix2pix на улучшение картинок или дорисовывание. Входной массив может быть не картинкой, а последовательностью слов — так, например, происходит в генерации картинок по тексту. С отдельными элементами входного массива обычно не работают: действия собирают в слои и применяют операцию ко всему массиву сразу. Котика на картинке распознают независимо от того, в какой части картинки он находится. Саму формулу пишут не как аналитическую формулу, а вычислительным графом — это рецепт для калькулятора, в каком порядке и что делать с входным и промежуточным массивами. Очень популярная, старая и довольно простая моделька. Она может показаться сложной, но операции — простые, а концепция вычислительного графа позволяет работать со сложными формулами. В этих слоях скрываются числа, они же — веса — коэффициенты в большой формуле. Сначала параметры инициализируют небольшими случайными числами, а затем улучшают с помощью градиентного спуска. Так система самообучается. Обвязку к этому движку обычно делают на Python. Но на них сейчас нейросети почти не пишут, кроме низкоуровневых сетей для устройств. Знания Python достаточно, чтобы писать крутые вещи. Есть библиотеки, позволяющие упростить процесс разработки. Крутые обертки и сборники моделей — одна из причин, почему сейчас стало популярно разрабатывать нейросети. Например, проект Hugging Face — это платформа для разработки и использования моделей и приложений на основе искусственного интеллекта, особенно в области обработки естественного языка Natural Language Processing. Интерфейсы моделей отвязаны от математики, это простые и конкретные инструкции, что именно сделать, чтоб получить результат. А вот при использовании фреймворков PyTorch, Jax и TensorFlow для работы с данными и машинного обучения придется плотнее взаимодействовать с математикой. Как попасть в индустрию Нейросетями можно заниматься как прикладной технологией в коммерческой разработке, так и использовать их в качестве инструмента для исследований в научных лабораториях. В 2016 году, чтобы попасть в лабораторию, занимающуюся нейросетями, ничего особенного знать и уметь не требовалось. Сейчас порог входа в исследовательские лаборатории, где применяют эту технологию, увеличился. Нужно соответствовать высоким требованиям: знать математику, хорошо кодить, иметь научные публикации. Такой уровень экспертизы есть у небольшой части людей. Вакансий публикуется больше не в области исследований, а в прикладных проектах. Прикладными проектами может заниматься обычный разработчик. Для этого нужно уметь кодить, решать задачи и использовать системный подход. Нужно учиться делать базовые вещи максимально аккуратно. А все остальное получится в свое время.

5 профессий, которые появились благодаря искусственному интеллекту

Вместо рождественского Нью-Йорка мрачные улицы и панельные дома, Кевин МакКаллистер выживает в суровой России и 90- х. После долгих съемок в России звезда боевиков Джейсон Стэйтем нашёл-таки своё счастье и к 60-ти годам остался жить в глубинке нашей необъятной родины, приворожённый борщом местной поварихи. Сценарий сериала, которому позавидует даже Тарантино, удалось воплотить в жизнь, благодаря технологии deepfake — нейросетевой программе, меняющей лица видеороликов. Сначала нейросети пришли за художниками, дизайнерами, композиторами, теперь добрались и до нас — работников телевидения. Знакомьтесь, новое ведущее прогноза погоды на Ставропольском телеканале. Образ, речь, студия — всё создано творческим тандемом нескольких нейросетей.

Включаю Mubert фоном, я могу это слушать бесконечно. Такое ощущение, я музыку не замечаю. Но при этом у меня в квартире есть фончик, который приятно радует ухо. Поэтому куча сегодня применений искусственному интеллекту и всему этому. Я помню, мы еще застали времена, когда компания Microsoft работала в России. И была огромнейшая презентация, как искусственный интеллект создал не только музыку, но и сопроводил это визуальным рядом. Это было потрясающе. Хочется, чтобы таких проектов становилось больше. Наверное, подвел я к чему… К тому, что какой ваш самый любимый логотип или проект, созданный с помощью Николая Иронова внутри студии Артемия Лебедева? Чем вы прямо гордитесь? Кулинкович: Ох, это сложный вопрос. Потому что в целом Иронов сделал уже больше миллиона логотипов и продолжает генерить. Гребенников: Понимаю. Кулинкович: Понятно, что, если отбросить весь контекст и посмотреть на логотипы живых людей и генеративные логотипы, то в целом они очень близкие. Едва ли человек или машина способен создать что-то вне контекста такое, что будет иметь какую-то невероятную силу само по себе. Поэтому логотип становится культовым, скорее, не из-за своей оригинальной формы. Они становятся культовыми из-за того контекста, в котором они в правильный момент появились. И конечно, ранний Николай, когда он выступал инкогнито и генерил еще такие… Мы еще не до конца могли и хотели попадать в жанр неотличимости от человеческих логотипов. Поэтому он был такой немного шероховатый. И этим вызывал недоумение. И при этом притягивал людей. И когда мы просто… Момент, когда ты вечером идешь домой, заходишь в магазин продуктовый. Ты просто видишь на полке такой ряд из бутылок пива, сделанных синтетически, и ты знаешь, что клиент это воспроизвел, не зная о том, что это был синтетический дизайн, к которому человек не прикасался. Это очень интересное чувство, ощущение. Или когда выходили большие обзоры логотипов для блогеров, которые недоумевали, как такое можно было им предложить за такие деньги, за которые это продалось. Это, конечно, генерировало очень много внутренних переживаний, приятных ощущений о том, что ты обладаешь некоторым секретом, который другие пока не знают. Поэтому все ранние работы Николая, которые были, когда он еще скрывал свое истинное обличие, они отличаются. Для меня особо… Я с особым трепетом их вспоминаю. Мы себе обещали, что мы не будем менять логотип. В качестве идеи. Есть ли возможность на открывающей панели представить логотип, который нарисовала нейронная сеть и показать, как это видит нейронная сеть? Кулинкович: Изи вообще. Коротнева: Я думаю, что мы придем с этим. Мне кажется, было бы прикольно. Коротнева: Коллеги, давайте ваши договоренности мы оставим на разговор после эфира. Сергей, у меня по ходу нашего диалога еще возник вопрос, который не дает мне покоя. Как вы думаете, не исчезнут ли сервисы стоковых изображений на фоне развития нейросетей? Что вообще будет с ними? Гребенников: Я бы мечтал, чтобы они исчезли. Кулинкович: Это происходит уже сейчас. Мы ведем переговоры с ребятами, изначально бизнес которых — это стоковые изображения. Поскольку сейчас мы, развивая технологию, подходим к моменту, когда мы готовы массово генерировать достаточно качественные семплы иконок в каком-то узком жанре. И можно их массово продавать. Это происходит уже прямо сейчас. Я полагаю, что мы не одни такие умные, что сейчас это наполнит стоки генеративная графика. Это нормально. Не то, чтобы что-то от этого поломается. Раньше вы использовали фотографии, которые снимались на фотики. А сейчас это фотографии, которые сделаны нейросетью. Разницы особой нет. Просто структура доходов людей поменяется, перераспределятся потоки и все. Сейчас мы разговариваем, например, про кейс с РИФом. По факту, если посмотреть, что происходит — искусственный дизайнер отбирает работу у реального. Потому что есть некоторые дополненные ценности в самом факте того, что он искусственный. Иногда приходят клиенты и говорят, что, несмотря на все преимущества работы с живым человеком, что его можно конкретно заставить что-то нарисовать, а клиенты видят, что в генеративности есть дополненная ценность, которая уже в некоторых контекстах превышает дополненную ценность живого человека. Когда только начали появляться эти генеративные технологии, все такие: «О Боже, роботы заберут работу у живых людей». И сейчас мы свидетели того, как это буквально происходит. Потому что мы не обсуждаем, что давайте вы нам сделаете просто логотип для рифа, мы обсуждаем — давайте нам нейросеть сделает логотип для РИФа. Это именно то, что происходит. Это то, как роботы забирают работу у живых людей. Коротнева: Да, у нас сегодня в студии два Сергея. Можно загадывать желание. Я загадаю, чтобы все-таки роботы не отобрали работу у наших дизайнеров. Подводя итог, как вы думаете, как бы вы могли определить главные задачи дизайнера будущего? Например, дизайнера следующего десятилетия? Что будет выходить на первый план? Кулинкович: Я считаю, что задачи дизайнера настоящего, будущего и прошлого не менялись. И самыми лучшими дизайнерами всегда являются те ребята, которые понимают контекст. Понятно, что та часть, которая касается непосредственно воспроизведения дизайнерского продукта будет постоянно трансформироваться. Но из-за того, что конечным потребителем дизайнерских услуг все равно являются люди, то люди являются, дизайнеры являются поставщиками системы ценностей, куда этот дизайн приземляется. И конечно, это будет нам облегчать работу. Всеми силами мы будем делать ее быстрее, более массово. Но все равно конечный потребитель дизайна — это человек. А самый лучший дизайнер — это тот, кто просто очень хорошо понимает потребности человека и находит прямо решения, как в паззле, куда какой-то объект дизайна пристроить, в какой контекст для того, чтобы он идеально туда вписался. Это если говорить более конкретно, то побеждают те дизайнеры, дизайн которых окупается и приносит больше денег заказчикам. А деньги — это следствие ценности очень часто. Более качественный дизайн больше стоит, потому что люди готовы больше за него платить, потому что он приносит больше ценности эстетической, практической и любой другой. И это не менялось уже сотни лет. И это будет еще сотни лет вперед. Просто дизайнер — прошаренный чел, который понимает, как устроена экономика, внимание. И понимает, как устроены технологии. Умеет это все дело перемножать и находить возможности. Коротнева: Я знаю, что нас сейчас смотрит не только наша привычная аудитория, но к нам подключились сегодня дизайнеры и иллюстраторы, потому что хотели увидеть этот эфир и услышать ваше мнение. На какие тренды в дизайне стоит обратить внимание в 2023 году? Кулинкович: Ой, с трендами такая тема… Как астрономы изучают историю звезд, потому что к тому моменту, когда сигнал от какой-то звезды успевает долететь, мы уже не знаем, что фактически с этой звездой было. Так и с трендами. Если вдруг все о чем-то говорят или все понимают, куда идет какой-то тренд, это единственный сигнал, который можно из этого достать — это то, что уже поздно этим заниматься. Потому что это уже стало трендом. В целом я внутри не тот человек, который ориентируется на тренды, скорее, просто… Мы сейчас… Тренды очевидны. Просто заходим на любой дизайнерский или просто технологический сайт и видим все материалы с меткой «Дизайн» о том, куда все идет. Да, автоматизация. Да, сужение attention span, времени кредита внимания, которое пользователь дает новому продукту в своей жизни. Именно поэтому сейчас появление всех систем быстрого обмена контентом, типа «Тик-Токов», рилсов, начинают играть очень большую роль играть первые две секудны… Но это все уже разыгранные карты, это уже существующие рынки. Про них говорить бессмысленно, потому что к тому моменту, когда какой-то дизайнер, который захочет овладеть этим мастерством, успеет им овладеть, конъюнктура уже поменяется. Поэтому нужно слушать сердце. Коротнева: Это хорошая рекомендация не только дизайнерам, к слову сказать. Сергей, вижу еще какой-то вопрос в ваших глазах.

Разбираем ваши кейсы и проекты на живых практиках Cпециалист профессия будущего Займем еще минуту. Вы узнаете какие задачи можно решать с помощью популярных нейросетей, познакомитесь с бесплатными инструментами, которые можно освоить в пару кликов и научитесь делегировать ИИ рутинные задачи. Заполните форму ниже и сразу получите доступ к документу. Забрать гайд Обещаем, что обойдемся без спама и навязчивых сообщений. Изучите топовые AI и отдайте им всю рутину Генерируйте сеты иконок, детализированные фотографии, арты и прототипы в Midjourney Научите ИИ говорить на вашем языке, задайте ему роли и пишите тысячи текстов в ChatGPT Оживляйте изображения и создавайте анимацию и видео с нуля, используя только промт и силу Runaway и Stubble Diffusion Интеллект искусственный, Генерируйте сотни уникальных идей для постов, статей или дизайна Пишите эффективные промты для любых нейросетей и получайте предсказуемые результаты Создавайте эффектные изображения и проводите фотосессии всего за пару кликов Генерируйте контент-планы, статьи для блогов и SEO-оптимизированные тексты самостоятельно Разрабатывайте прототипы интерфейсов, дизайн посадочных страниц и фирстиль без подрядчиков Получите преимущества на рынке труда за счет навыков работы с искусственными интеллектом Программа «Cпециалист по нейросетям: профессия промт-инженер» — это большая программа повышения квалификации. Вы можете освоить ее целиком или выбрать для изучения только один из модулей. Знакомство с нейросетями. Принципы работы, направления развития. ИИ-этика — 11 часов Тема 1.

Представители новой профессии обучают нейросеть YaLM 2. Они определяют хорошие и плохие ответы, ранжируют их и сами пишут тексты, на которых учится нейросеть. Кандидатов, которые пройдут первичный отбор по резюме, ждёт задание из двух частей. В первой — тесты на грамотность, этику и фактчекинг. Во второй предстоит написать за нейросеть тексты на заданную тему. Пока AI-тренеров ищет только «Яндекс». Найти вакансию можно на сайте компании и на карьерных платформах вроде hh. Кроме того, весной компания запустила бесплатную школу AI-тренеров , в которой желающие смогут освоить профессию будущего, из чего можно сделать вывод, что для «Яндекса» это очень важный проект «в долгую». Видимо, компания всерьёз планирует потеснить OpenAI на рынке больших языковых моделей. Читайте также: Пример вакансии Промпт-инженер Что делает: решает широкий круг задач с помощью нейросетей, тестирует запросы и ведёт базу промптов, вместе с другими специалистами улучшает модели ИИ.

Нейросети на работе: какие задачи они могут взять на себя уже сейчас

Промт-инженер знает, как получить доступ к нейросетям и взаимодействовать с ними через различные платформы и инструменты. Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект. — Какие профессии заменят нейросети? 19 реальных примеров! — Заменит ли ИИ специалистов этих профессий на 100%? Профессионально овладеете нейросетями, сформируете клиентскую базу, что позволит вам выйти на 5-10 т.р. в ДЕНЬ. На наших глазах под влиянием нейросетей меняются традиционно «гуманитарные» и творческие профессии.

«Подстегнуть людей к развитию»: доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ

– Безусловно, нейросеть будет помогать и упрощать рабочие процессы, – рассказывает руководитель направления информационной безопасности Центра цифровой экспертизы Роскачества Сергей Кузьменко. Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney. «Cпециалист по нейросетям: профессия промт-инженер» – это большая программа повышения квалификации. Нейросети породили новые профессии, спрос на специалистов, умеющих с ними работать, растет день ото дня, отмечают крупные IT-компании. Профессии, связанные с нейросетями, технологиями Big Data и VR/AR, визуальным скриптингом, киберспортом и машинным обучением будут востребованы в России в ближайшие пять лет.

Что еще почитать

  • Специалист по нейронным сетям: кто это
  • Как стать тренером нейросетей и почему сегодня это востребованная профессия
  • Работа и вакансии "специалист по нейросетям" в Санкт-Петербурге
  • Лучшие онлайн курсы программирования для детей: топ 20

«Моя мама учит нейросети говорить»: история многодетной челябинки, которая завязала с журналистикой

И нейросеть помогает сэкономить не только деньги, но и время, говорит основатель компании Екатерина Козырева. ОБУЧЕНИЕ МАРКЕТИНГУ ?utm_source=yt_m&utm_campaign=top6neiroprofВ 2024 году с помощью нейросетей можно не только подрабатывать, но и. Один из примеров, связанных с использованием нейросетей на рынке труда — это автоматизация работ, которые ранее выполняли люди. На модуле по Deep Learning студентов знакомят с продвинутыми технологиями по работе с нейросетями, например трансформерами — архитектурой нейронных сетей, которая лежит в основе ChatGPT. При этом 30% участников убеждены, что на их профессию нейросети и ИИ не повлияют вообще (чаще всего так отвечали представители производственных специальностей).

Специалист по нейросетям — что это за профессия

Инженер нейросетей – это перспективная профессия, представители которой востребованы в разных отраслях. Из этой статьи вы узнаете о трех новых профессиях, которые стали востребованными на рынке после появления нейросетей, и какие навыки нужны для того, чтобы успешно в них развиваться. В ближайшие годы ИИ сможет заменить профессии, связанные с работой с повторяющимися рутинными операциями. Это приводит к появлению все большего числа вакансий для инженеров нейросетей, и перспективы роста этой профессии в ближайшие годы кажутся очень многообещающими. Эта специальность ИИ занимается созданием изображений, используя технологии искусственного интеллекта и нейросетей.

Профессии будущего. Как нейросети открывают новые направления в edtech

Зарплата: пока совсем узкая ниша, но если у вас талант генерировать идеи в текстовом виде, то это можно использовать для поиска удачных "промптов", которые продавать тем же ИИ-художникам. Ведь именно благодаря ученым и разработчикам в области ИИ появились такие крутые нейросети. Однако путь в профессию довольно сложный, особенно, если вы хотите не просто применять нейросети, но строить и обучать модели для абсолютно новых задач. В основном требуются хорошие знания математики, Python, а также алгоритмов и библиотек машинного обучения. Профессия в целом не новая, но вероятно мы еще увидим больше вакансий и рост зарплат, так как новые достижения могут сильно изменить экономику разных отраслей. Представьте, что кто-то нехороший нарисует несколько тысяч или даже миллионов оскорбительных картинок, да еще в разных стилях, и потом начнет заливать их в соцсети. Именно поэтому может вырасти нужда в специалистах по модерации. Конечно, часть контента уже фильтруют с помощью алгоритмов компьютерного зрения, но определять к примеру на сколько оскорбителен контент для каких-то групп пользователей все еще очень сложная задача.

Вероятно, вырастет потребность в модераторах более "высоких" сущностей: смешная ли картинка, красивая ли?

Если опыта нет, полезно работать над опенсорс-проектами. Есть такое движение — AI for social good, когда специалисты по ML решают какую-нибудь общественно полезную задачу. Например, были проекты помощи в поисках пропавших людей или затонувших кораблей. Это очень хорошее направление деятельности, в которое можно прийти новичком с горящими глазами, а уйти с ценным опытом. Читайте также: Как выбрать свой первый опенсорс проект: большая инструкция от Хекслета Необязательно ставить высокие благородные цели. Важно взять задачу и довести ее до конца, наступив на положенное количество граблей. Почти наверняка у каждого разработчика есть знакомый ML-специалист, преподаватель в области искусственного интеллекта или блогер, который делает материалы на эту тему. Имеет смысл написать ему и попросить задачку для новичка — так можно найти ментора или научного руководителя. У IT в целом репутация непыльной работы.

Во многих компаниях сотрудники перерабатывают и выгорают. Работа может быть и не пыльная, но стресс и нервы тут точно есть. Прошлое, настоящее и будущее Картины, нарисованные нейросетями, которые так восхищают современных пользователей, — не новость для нашей индустрии. GANы для генерации картинок появились еще в 2014 году и произвели фурор среди специалистов, но для широкой публики результаты получались невзрачными. Большие компании копят данные и контент всю историю своего существования. С картинками прорыв случился в 2012 со знаменитым Imagenet, а вот в текстах Imagenet-момент зрел почему-то дольше. Теперь, когда нашлось столько вариантов применения для картинок и текстов, созданных нейросетями, дело за музыкой и голосом. Сфера AI получила такое развитие только тогда, когда крупные компании увидели в этом перспективу. Нейросети помогают захватывать новые рынки, привлекать аудиторию. Поиск Google и Яндекс долгое время был построен на солидных, классических технологиях.

Нейронные сети появились здесь совсем недавно. Сначала это были алгоритмы, потом — эвристики с подобранными параметрами, потом — какие-то простые ML-вещи. Нейросетей долго не было, потому что отвечать на запросы пользователей с их помощью сильно дороже, чем с помощью классических решений. А в поиске время ответа важно. Раньше нужно было потратить год работы команды из ста человек, чтобы улучшить пользовательский опыт на пару процентов. С приходом нейросетей оказалось, что можно увеличить показатели качества на те же два процента, если в течение месяца обучать алгоритм. Стало ясно, что в это выгодно вкладываться. За годы работы крупные компании — Google, Microsoft, Яндекс — накопили много данных. Они начали тренировать на этих данных большие нейросети, чтобы решить множество внутренних и внешних задач. Пару лет назад «Яндекс» запустил нейросеть «Балабоба».

Технология позволяла решать различные задачи, связанные с текстами. Это выглядело как простой сервис для генерации текстов, но технология позволила решать разные прикладные задачи внутри компании — без сбора больших датасетов и привлечения разработчиков. Это очень прикладные вещи: иногда нужно переписать формулировки, иногда найти в объявлении контактную информацию. Затратив пару месяцев работы команды, можно не просто увеличить показатели счастья юзеров, но и сразу решить целую пачку проблем на нескольких проектах. Вот такой странноватый анекдот сочинила нейросеть «Балабоба» Благодаря вложениям больших компаний на рынке стали появляться результаты работы разработчиков нейросетей. Сейчас люди успешно пишут письма и дипломы с помощью ChatGPT, генерят картинки с помощью StableDiffusion и делают потрясающие аватарки в Lensa или Prisma. Пользователи любят с их помощью менять и стилизовать изображения. Я тоже пользуюсь этой технологией: у меня на аватарке стоит картинка, сгенерированная нейросетью. Трудно сказать, почему это так популярно. Но факт остается фактом: в этой области все еще много стартапов, которые легко привлекают инвестиции.

Recommender Systems: Создание рекомендательных систем, которые предлагают пользователям персонализированные рекомендации. Robotics: Применение нейросетей в робототехнике, включая разработку алгоритмов для управления роботами и решения сложных задач. Успешные специалисты в области нейросетей обладают глубокими знаниями теории нейросетей и умеют применять их на практике для решения реальных проблем и задач.

Они также постоянно обновляют свои навыки и следят за последними тенденциями в области нейросетей. Важно помнить, что обучение и достижение успеха в области нейросетей требует постоянного обновления знаний и самообразования. Нейросети постоянно развиваются и эволюционируют, поэтому важно оставаться в тренде и изучать современные подходы и технологии.

Стать специалистом по нейросетям требует образования и специализации в этой области. При выборе пути обучения важно учитывать свои интересы, карьерные цели и доступные ресурсы. Независимо от выбранного пути, самообразование и актуализация знаний являются важными компонентами успешной карьеры в области нейросетей.

Профессия «Специалист по нейросетям» относится к профилю инженерных и научных исследований и разработок в области искусственного интеллекта. Инженерные и научные исследования и разработки в области искусственного интеллекта — это профиль деятельности, в котором специалисты работают над созданием и оптимизацией нейросетей для решения различных задач. Такие задачи могут включать распознавание образов, анализ данных, обработку естественного языка и другие приложения искусственного интеллекта.

Специалисты по нейросетям проводят исследования, разрабатывают новые алгоритмы и модели, а также оптимизируют и обучают нейронные сети для достижения высокой точности и эффективности. Специалист по нейросетям рассматривает процессы обработки и анализа данных, создания и обучения нейронных сетей, разработки новых моделей и алгоритмов машинного обучения. Он активно применяет математические методы и алгоритмы для работы с данными, анализа их структуры, построения и обучения моделей нейросетей.

Ключевые задачи специалиста по нейросетям: Исследование и разработка новых алгоритмов и моделей нейросетей; Анализ данных и разработка структур нейросетей для решения конкретных задач; Обучение нейронных сетей на основе различных наборов данных; Оптимизация работы нейросетей и повышение их эффективности; Развитие и оптимизация существующих методов машинного обучения и искусственного интеллекта; Применение нейросетей для решения различных задач, таких как распознавание образов, анализ текстов, прогнозирование и т. Навыки Описание Знание алгоритмов и моделей нейросетей Специалист по нейросетям должен обладать глубоким пониманием принципов работы различных алгоритмов и моделей нейросетей, а также уметь выбирать наиболее подходящие методы для решения конкретных задач. Математические и статистические знания Для работы с нейросетями необходимо владеть знаниями в области линейной алгебры, математического анализа и статистики.

Это позволит эффективно анализировать данные, реализовывать алгоритмы и оптимизировать работу нейросетей. Программирование и работа с фреймворками Специалисту по нейросетям необходимы навыки программирования, особенно знание языков Python и R. Кроме того, важно уметь работать с фреймворками для машинного обучения и нейронных сетей, такими как TensorFlow, PyTorch и другими.

Аналитическое мышление Специалист по нейросетям должен обладать аналитическим мышлением, способностью анализировать сложные данные, выявлять закономерности и принимать взвешенные решения на основе результатов анализа. Коммуникационные навыки Специалист по нейросетям должен уметь эффективно общаться с коллегами, владеть навыками презентации результатов своей работы и объяснения сложных концепций простым и понятным языком. Специалисты по нейросетям могут работать в научно-исследовательских институтах, компаниях, занимающихся разработкой и внедрением искусственного интеллекта, а также вузах и лабораториях.

Рынок труда в области искусственного интеллекта постоянно растет, и специалисты по нейросетям востребованы в различных сферах, включая медицину, финансы, транспорт, розничную торговлю и многие другие. Развитие карьеры в области нейросетей В данной статье мы рассмотрим возможности развития и перспективы карьерного роста в области нейросетей. Специалист по нейросетям Основной целью специалиста по нейросетям является создание, разработка и обучение нейронных сетей для решения сложных задач.

Исследователь Возможность заниматься научной деятельностью и проводить собственные исследования в области нейросетей. Аналитик данных Анализ данных с использованием нейросетей для получения ценной информации и практических рекомендаций. Инженер Разработка и оптимизация алгоритмов нейросетей на основе специфических требований проекта.

Разработчик приложений для машинного обучения Создание приложений и программного обеспечения, которые используют нейросети для решения различных задач. Консультант по машинному обучению Предоставление экспертных знаний и консультаций в области нейросетей для различных компаний и организаций. Преподаватель или тренер по нейросетям Обучение и передача знаний в области нейросетей другим людям.

Ученый Проведение научных исследований и разработка новых методов и алгоритмов в области нейросетей. Карьера специалиста по нейросетям предоставляет широкий спектр возможностей для карьерного роста и развития. Так как материал по нейросетям исследуется и развивается, становятся доступными новые методики, технологии и инструменты.

Специалисты по нейросетям имеют возможность участвовать в разных проектах, применять накопленные знания и навыки и постоянно совершенствоваться. Специалисты в области нейросетей могут также развивать свои общие профессиональные навыки в таких областях, как коммуникация, руководство, управление проектами и других областях, связанных с их специализацией. Итак, карьера в области нейросетей обещает интересные и перспективные возможности для роста и развития специалистов.

Это эволюционирующая область, которая предоставляет возможности для исследований, инноваций и внедрения новых технологий. Специалисты по нейросетям востребованы в различных секторах, включая научные исследования, бизнес-аналитику и разработку программного обеспечения, и могут ожидать карьерного роста и достижения успеха в своей области. Востребованность В настоящее время профессия специалиста по нейросетям пользуется высоким спросом и ценится на рынке труда.

Это связано с быстрым развитием сферы искусственного интеллекта и машинного обучения, а также с возросшими потребностями в применении нейросетей в различных секторах экономики. Текущая ситуация на рынке труда В настоящее время специалисты по нейросетям являются одними из самых востребованных специалистов в IT-сфере. Вакансии для таких специалистов открываются как в крупных IT-компаниях, так и в других отраслях, которые активно применяют искусственный интеллект в своей деятельности.

Стартапы стали получать значительно меньше инвестиций и перестали нанимать стажеров. Мы вынуждены указывать это по требованию российских властей , Google, Microsoft привели к уменьшению вакансий, и это беда. Кризис в основном бьет по джунам и мидлам, которые хотели вкатиться в эту область. Кажется, Яндекс все еще приглашает на стажировки. Это хорошо, потому что прийти стажером в крупную технологическую компанию — большая удача. На стажировку берут вчерашних выпускников и собеседуют их не так, как опытных разработчиков: смотрят, хороши ли они в математике — в области, релевантной задачам компании. Мидлов на собеседованиях спрашивают про опыт работы, а по математике не гоняют.

Если опыта нет, полезно работать над опенсорс-проектами. Есть такое движение — AI for social good, когда специалисты по ML решают какую-нибудь общественно полезную задачу. Например, были проекты помощи в поисках пропавших людей или затонувших кораблей. Это очень хорошее направление деятельности, в которое можно прийти новичком с горящими глазами, а уйти с ценным опытом. Читайте также: Как выбрать свой первый опенсорс проект: большая инструкция от Хекслета Необязательно ставить высокие благородные цели. Важно взять задачу и довести ее до конца, наступив на положенное количество граблей. Почти наверняка у каждого разработчика есть знакомый ML-специалист, преподаватель в области искусственного интеллекта или блогер, который делает материалы на эту тему.

Имеет смысл написать ему и попросить задачку для новичка — так можно найти ментора или научного руководителя. У IT в целом репутация непыльной работы. Во многих компаниях сотрудники перерабатывают и выгорают. Работа может быть и не пыльная, но стресс и нервы тут точно есть. Прошлое, настоящее и будущее Картины, нарисованные нейросетями, которые так восхищают современных пользователей, — не новость для нашей индустрии. GANы для генерации картинок появились еще в 2014 году и произвели фурор среди специалистов, но для широкой публики результаты получались невзрачными. Большие компании копят данные и контент всю историю своего существования.

С картинками прорыв случился в 2012 со знаменитым Imagenet, а вот в текстах Imagenet-момент зрел почему-то дольше. Теперь, когда нашлось столько вариантов применения для картинок и текстов, созданных нейросетями, дело за музыкой и голосом. Сфера AI получила такое развитие только тогда, когда крупные компании увидели в этом перспективу. Нейросети помогают захватывать новые рынки, привлекать аудиторию. Поиск Google и Яндекс долгое время был построен на солидных, классических технологиях. Нейронные сети появились здесь совсем недавно. Сначала это были алгоритмы, потом — эвристики с подобранными параметрами, потом — какие-то простые ML-вещи.

Нейросетей долго не было, потому что отвечать на запросы пользователей с их помощью сильно дороже, чем с помощью классических решений. А в поиске время ответа важно. Раньше нужно было потратить год работы команды из ста человек, чтобы улучшить пользовательский опыт на пару процентов. С приходом нейросетей оказалось, что можно увеличить показатели качества на те же два процента, если в течение месяца обучать алгоритм. Стало ясно, что в это выгодно вкладываться. За годы работы крупные компании — Google, Microsoft, Яндекс — накопили много данных. Они начали тренировать на этих данных большие нейросети, чтобы решить множество внутренних и внешних задач.

Пару лет назад «Яндекс» запустил нейросеть «Балабоба». Технология позволяла решать различные задачи, связанные с текстами. Это выглядело как простой сервис для генерации текстов, но технология позволила решать разные прикладные задачи внутри компании — без сбора больших датасетов и привлечения разработчиков. Это очень прикладные вещи: иногда нужно переписать формулировки, иногда найти в объявлении контактную информацию.

Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться

Ну а что в будущем? Кто может остаться без работы из-за этого научно-технического прогресса? По мнению опрошенных Зарплатой. Копирайтеры, дизайнеры, переводчики, администраторы, бухгалтеры и специалисты по кадрам и документам уже сейчас должны задуматься - нет, не об увольнении и бедности, а о том, в какую сторону развивать свою карьеру. Так как в привычном сейчас виде многих профессий может не остаться уже через 10 лет. Автоматизация и цифровизация процессов, по прогнозам экспертов ВЭФ Всемирный Экономический Форум , в ближайшие несколько лет ликвидируют 85 млн рабочих мест по всему миру. Но создадут 97 млн новых.

Очный этап. Проходит в московском офисе «Яндекса», где под руководством опытных шеф-редакторов ученики решают реальные задачи.

Участникам из других городов России компания оплачивает проезд и проживание. Куда пойти работать AI-тренеру Работа тренера нейросети — полностью удаленная. Количество рабочих часов можно выбрать: от 20 до 40 в неделю. Заработная плата составляет: от 75 до 150 тысяч рублей. Такие вакансии сейчас размещают «Яндекс» и «Тинькофф-банк».

На курс по нейросетям лучше идти уже с небольшой базой: будет достаточно тех знаний по математике, Python и SQL, которые вы изучали самостоятельно или в университете. Курсы помогут обновить и дополнить базу, чтобы двигаться к главному — Machine Learning и работе с искусственным интеллектом. Погружаемся в машинное обучение Зная методы линейной алгебры и владея языком программирования Python, вы можете строить модели анализа данных, которые помогают реальному бизнесу оптимизировать процессы и больше зарабатывать. Сначала вы получаете задачу: например, спрогнозировать отток клиентов в следующем месяце.

Для решения этой задачи вам нужно собрать данные за прошлые периоды, очистить их, подготовить признаки, по которым модель будет работать с информацией, а затем построить и внедрить эту модель. На выходе вы получите прогноз, который бизнес использует для построения стратегии маркетинга на следующий месяц, чтобы уменьшить отток — так специалист по big data сэкономит ему миллионы рублей. Именно поэтому спрос на специалистов по машинному обучению высокий: прибыль в разы перекрывает затраты на работу с большими данными. На курсе GeekUniversity после модуля про машинное обучение вы научитесь оценивать эффективность и повышать качество своих моделей анализа данных, а для закрепления знаний самостоятельно выполните курсовой проект на выбор: классификация людей с сердечно-сосудистыми заболеваниями, предсказание спроса на товар, предсказание стоимости акций или классификация отзывов в приложении. Все проекты — примеры реальных задач, которые вам предстоит решать в будущем в качестве специалиста по машинному обучению. Посмотрите большой вебинар о нейросетях и их использовании в жизни и бизнесе от GeekBrains: Введение в нейронные сети Понимая, как собирать и анализировать большие данные, вы можете работать с более сложными моделями и задачами. Нейросети в какой-то степени пытаются приблизиться к человеческому мозгу: мы распознаем окружающие предметы мгновенно, знаем, когда перед нами такса, а когда — персидская кошка, а компьютеру для выполнения таких задач нужно обучиться и обработать миллионы изображений кошек и собак разных пород.

В среднем специалисты на таких должностях могут зарабатывать более 100 тысяч рублей. По словам Пименова, на рынке стремительно растет спрос на операторов нейросетей. Реклама «Нейросети наподобие GPTChat, Dall-E 2 или Midjourney способны обрабатывать информацию в режиме реального времени, широко применяются в дизайне, образовании, создании изображений, а также написании и переводе текстов. То же самое касается специалистов по Big Data, чья задача заключается в анализе огромного массива данных», — объяснил аналитик.

Неожиданные профессии, где используют нейросети

Художники творили свои произведения месяцами, нейросеть справится за несколько часов. А вот ещё одно преображение и на фасаде дома в стиле фильмов Алексея Балабанова. Вместо рождественского Нью-Йорка мрачные улицы и панельные дома, Кевин МакКаллистер выживает в суровой России и 90- х. После долгих съемок в России звезда боевиков Джейсон Стэйтем нашёл-таки своё счастье и к 60-ти годам остался жить в глубинке нашей необъятной родины, приворожённый борщом местной поварихи. Сценарий сериала, которому позавидует даже Тарантино, удалось воплотить в жизнь, благодаря технологии deepfake — нейросетевой программе, меняющей лица видеороликов. Сначала нейросети пришли за художниками, дизайнерами, композиторами, теперь добрались и до нас — работников телевидения.

Искусственный интеллект может анализировать большое количество данных и формировать документы быстрее и точнее, чем человек. Это значит, что в будущем технические писатели могут столкнуться с уменьшением спроса на свои услуги. Специалисты по вводу данных.

Ввод данных — это рутинная и трудоемкая задача, которую можно автоматизировать с помощью систем ИИ. Такой тип работы предполагает ввод больших объемов данных в компьютерную систему. Эта работа может быть выполнена намного быстрее и точнее с помощью ИИ. Специалисты по телемаркетингу. Телемаркетинг включает в себя повторные звонки потенциальным клиентам и является еще одной задачей, которую можно автоматизировать с помощью ИИ. Системы искусственного интеллекта можно запрограммировать на совершение звонков и общение с потенциальными клиентами, что устраняет необходимость в привлечении людей. Служба поддержки клиентов. Системы искусственного интеллекта можно запрограммировать для обработки простых запросов в службу поддержки клиентов, таких как ответы на вопросы о продуктах и услугах.

Этот тип работы часто включает однотипные задачи и может быть автоматизирован с помощью ИИ, что снижает потребность в представителях службы поддержки клиентов. Что касается копирайтеров и программистов, то эти профессии с меньшей вероятностью будут непосредственно затронуты искусственным интеллектом в краткосрочной перспективе.

В современном мире нейросети применяются во многих областях, таких как медицина, финансы, транспорт, реклама, робототехника и другие. Развитие и использование нейросетей требует специалистов, способных создавать и обучать целевые модели, анализировать данные и искать оптимальные решения. Где работать: Специалисты по нейросетям могут работать как в государственных, так и частных компаниях, которые занимаются разработкой и внедрением искусственного интеллекта и нейросетей. Также, они могут работать в научно-исследовательских институтах и университетах, проводя исследования и разработки в области ИИ и нейротехнологий. Лицензия: Для работы специалистом по нейросетям обычно не требуется специальная лицензия. Однако, в некоторых случаях, для выполнения определенных видов работ в области нейросетей могут требоваться специализированные разрешительные документы. Плюсы и минусы Плюсы работы Востребованность.

Спрос на специалистов по нейросетям постоянно растет в связи с расширением области применения искусственного интеллекта в различных сферах, таких как медицина, финансы, технологии и другие. Хорошая заработная плата. Специалисты по нейросетям востребованы на рынке труда и получают высокую оплату за свои услуги. Творческий подход к задачам. Работа с нейросетями требует постоянного исследования, тестирования и оптимизации моделей, что позволяет проявить себя в творческом плане и находить новые подходы к решению задач. Развитие навыков. Работая в профессии Специалиста по нейросетям, можно постоянно совершенствоваться, изучать новые подходы и методы машинного обучения, следить за последними тенденциями в области искусственного интеллекта. Минусы работы Высокие требования к квалификации. Работа с нейросетями требует глубоких знаний в области математики, статистики, программирования и алгоритмов.

Для достижения успеха в этой профессии необходимо постоянно обновлять свои навыки и изучать новые технологии. Сложность задач. Работа с нейросетями связана с решением сложных задач, требующих глубокого анализа данных и высокой точности прогнозирования. Это может быть вызовом для специалиста и требовать больших усилий и времени. Неопределенность результатов. При работе с нейросетями не всегда предсказуемы результаты. Иногда модели могут давать ошибочные ответы или не работать эффективно. Это требует тщательного тестирования и оптимизации моделей перед их практическим применением. В целом, работа в профессии Специалиста по нейросетям предоставляет отличные возможности для профессионального роста и развития.

Она требует высокой квалификации и интеллектуальных усилий, но приносит удовлетворение от решения сложных задач и внедрения инновационных технологий. Специализации Профессия «Специалист по нейросетям» предполагает глубокие знания и специализацию в различных областях, связанных с нейросетями. Ниже приводится краткое описание различных специализаций в данной профессии: Разработка архитектуры нейросетей: специалисты этой специализации занимаются проектированием и разработкой структуры нейронных сетей. Они определяют количество слоев, типы нейронов, связи и другие параметры, чтобы достичь оптимальной производительности и эффективности работы нейросети. Обработка и предобработка данных: такой специалист занимается подготовкой и анализом данных, которые будут использоваться для обучения нейросетей. Он выполняет очистку данных, масштабирование, выбор признаков и другие подготовительные этапы, чтобы обеспечить качественное обучение нейросети. Обучение нейросетей: этот специалист занимается выбором оптимальных алгоритмов и методов обучения нейросетей. Он проводит обучение на выбранных данных, настраивает гиперпараметры и оптимизирует процесс обучения для достижения максимальной точности и эффективности работы нейросети. Оптимизация нейросетей: задача этого специалиста — разработка и применение алгоритмов и методов оптимизации работы нейросетей.

Он стремится увеличить скорость работы нейросети, уменьшить потребление ресурсов и повысить стабильность ее функционирования. Применение нейросетей в компьютерном зрении: такой специалист занимается разработкой и применением нейронных сетей для решения задач компьютерного зрения, таких как распознавание образов, сегментация изображений, классификация и др. Он использует глубокое обучение для обработки и анализа изображений. Прогнозирование временных рядов с помощью нейросетей: данный специалист применяет нейронные сети для анализа и прогнозирования временных рядов. Он исследует и анализирует временные данные, разрабатывает модели нейросетей и использует их для прогнозирования будущих значений временных рядов. Разработка нейросетей для обработки естественного языка: такой специалист занимается разработкой и применением нейронных сетей для обработки и анализа естественного языка. Он работает с текстовыми данными, выполняет задачи, такие как классификация текстов, анализ тональности, машинный перевод и др. Вышеуказанные специализации являются лишь некоторыми примерами областей, в которых специалисты по нейросетям могут углубить свои знания и навыки. Они могут также специализироваться в других областях, таких как обработка звука, рекомендательные системы, генетические алгоритмы и т.

Благодаря широкому спектру областей применения нейросетей, специалисты могут выбирать ту область, которая наиболее интересна и подходит для их целей и интересов. Качества и навыки Работа в области нейросетей требует определенных личных качеств и навыков, которые позволят успешно выполнять профессиональные задачи.

Последние 4 года, начиная с ковида, мы живем в таких реалиях, что много людей боятся настоящего. Это настоящее еще надо пережить. Читайте также: « 2023 — год нейросетей в SMM: учимся автоматизировать всё ». Как стать высокооплачиваемым SMM-специалистом в 2023 году Я вам скажу парадоксальный ответ: не быть SMM-специалистом в привычном понимании. Объясню: простое ведение соцсетей стоит дешево. Это вопрос не нейросетей, а спроса и предложения. За годы существования SMM не стал в России дорогой и высокооплачиваемой нишей.

Чтобы стать высокооплачиваемым SMM-специалистом, нужно очень хорошо понимать бизнес: его конкурентные преимущества, ценность. Нужно говорить заказчику: «Я не про SMM, я знаю, как вырастить ваш бизнес — в продажах, подписчиках или других метриках». В России основная проблема: «Сделайте нам рост, но с очень малым бюджетом». Если вы умеете это делать и у вас есть хорошие кейсы, вы можете стоить бесконечно дорого. Особенно в таких нишах, как development. Изучайте комьюнити-менеджмент — сейчас у бизнеса есть спрос на лояльное комьюнити вокруг бренда. Вам нужно: иметь действительно мощные работы в портфолио, как минимум больше 3-х кейсов; хорошо понимать суть бизнеса. Еще нужно уметь раскрутить себя. Согласитесь, странно, если вы SMM-специалист без личного бренда.

Когда вы это сделаете, то сможете работать на очень высоком чеке — все хотят работать с лучшими. Если вы ведете интересный блог с классными постами, вас рано или поздно купит крупный клиент за этот контент. Это история про то, что вы делаете это для себя, вам интересно, а потом этот труд монетизируется. В последние 2 года я стала писать меньше — примерно по посту раз в 3 дня. Ни с каким выгоранием я не сталкивалась. Выгораете вы от низких расценок и оттого, что беретесь за то, что вам неинтересно. Например, можно взять 15 компаний, в которых SMM стоит по 15 тысяч рублей в месяц. В результате приходится писать большое количество неинтересных текстов на неинтересные темы за низкий прайс клиентам, которые еще и всю душу вынут.

Похожие новости:

Оцените статью
Добавить комментарий