Новости коэффициент джини по странам

На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года). World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even.

Коэффициент Джини (распределение дохода)

На ней в России меньшее неравенство, чем в южноафриканских странах и Латинской Америке. Кому верить? Может показаться, что самый низкий коэффициент Джини существует только в Нарнии, но и на нашей карте все же есть страна, в которой удалось добиться равномерного распределения благ, — Словакия. Автор текста:Павел Шляпников.

Затем оценки складывались и делились на количество учтенных параметров. Рейтинг стран мира по уровню жизни 2024 Более справедливым распределение заработных плат стало в здравоохранении и предоставлении социальных услуг -3,47 , в сфере оптовой и розничной торговли автотранспортными средствами -2,27 , в сфере научных исследований и разработок -2,16. Фигура, образованная пересечением красной прямой линии и фиолетовой кривой, это и есть неравенство распределения доходов.

Перечислять можно очень долго все минусы, по всем отраслям, от сельского хозяйства до космоса. Везде катастрофа. Итог один. Мы пришли к культурной деградации, к мировой изоляции, к 30-ти млн человек, выживающим за счёт милостыни в виде субсидий, маткапиталов и пр.

Median 66: Aggregates are calculated as the median of available data for each time period. Values are not computed if more than a third of the observations in the series are missing. Min: Aggregates are set to the lowest available value for each time period. Sum: Aggregates are calculated as the sum of available data for each time period.

Sum 66: Aggregates are calculated as the sum of available data for each time period. Sums are not shown if more than one third of the observations in the series are missing. Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period. Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period.

No aggregate is shown if missing data account for more than one third of the observations in the series. Weighted Mean 66POP: Aggregates are calculated as weighted averages of available data for each time period.

Коэффициент Джини (распределение дохода)

Динамика Как видно из представленных цифр, коэффициент Джини в России значительно вырос, по крайней мере, по сравнению с первыми годами, когда Россия стала независимым государством после распада СССР. И даже сейчас он составляет почти 0,4, что означает, что коэффициент Джини почти удвоился. И это не оптимистичная тенденция для бедных слоев населения. Кстати, в скандинавских странах он составляет от 0,26 до 0,28. В менее равноправных странах Восточной Европы он также значительно ниже; за последние 10 лет он не превышал 0,3. Прогноз В настоящее время, учитывая сложную экономическую ситуацию и текущие международные политические условия, трудно ожидать улучшения в разбивке населения. В любом случае, согласно прогнозируемым данным и статистическим показателям, можно ожидать, что в лучшем случае это число останется в пределах текущего диапазона. В худшем случае число безработных увеличится.

Коэффициент Джини по странам Сравнение коэффициента Джини по данным за 2016 год показывает, что в то время самые высокие значения коэффициента Джини были у Южной Африки, Бразилии, Чили и Мексики. По данным Федеральной службы государственной статистики РФ в 2016 г. В пятерку «самых равных» стран также входят Япония, Швеция, Чешская Республика и Норвегия которая делит пятое место со Словакией. Интересно отметить, что десятку стран с наименьшим неравенством замыкает Украина, где согласно индексу неравенство даже ниже, чем в Германии. О том, почему в Украине такой низкий индекс Джини, мы поговорим позже. А пока давайте посмотрим, в каких странах неравенство процветает «во всей красе». Лесото, Сьерра-Леоне, Центральноафриканская Республика и Ботсвана также входят в пятерку стран с самым высоким уровнем неравенства.

Преимущества использования коэффициента Джини Коэффициент Джини позволяет: Провести сравнение распределения изучаемого признака в совокупностях с разным числом единиц и между разными популяциями. Например, в регионах с разным населением или между странами. Скорректировать данные по ВВП и доходу на душу населения. Проследить динамику неравномерного рассеивания исследуемого показателя. А также сравнить распределение показателя в неоднородных группах населения например, сельская местность против городской. Одним из несомненных преимуществ коэффициента Джини является его анонимность. Непонятно, о чьих доходах идет речь, поскольку в этом, по сути, нет никакой необходимости.

Недостатки коэффициента Джини Как и все статистические показатели, коэффициент Джини не может дать полную объективную оценку неравенства доходов. Коэффициент имеет следующие недостатки: Он делит население на группы, не описывая эти группы. Неизвестно, на какие компоненты и ценности делится население. Коэффициент «дается» без этих описаний. Чем больше групп, тем выше показатель. Коэффициент Джини «преуменьшает» источник дохода страны региона и т. В действительности его значение может быть низким.

В то же время некоторые граждане зарабатывают деньги тяжелым трудом, а некоторые получают доход от собственности. Для расчета коэффициента Джини требуются определенные статистические данные. Однако методы их сбора различны. Это делает процесс сравнения коэффициентов гораздо более сложным, а иногда даже невозможным. Существуют противоречия в использовании коэффициента Джини в плановой экономике, где материальные ресурсы находятся в собственности государства общества и распределяются централизованно. Поскольку коэффициент Джини учитывает только различия в доходах населения, а не государства общества , то именно в плановой экономике его значение может быть неправильным, более положительным. Коэффициент Джини и кривая Лоренца относятся только к денежным доходам граждан.

Между тем, многие работники получают свой заработок в натуральной форме.

Max: Aggregates are set to the highest available value for each time period. Mean: Aggregates are calculated as the average of available data for each time period. Mean 66: Aggregates are calculated as the average of available data for each time period. Values are not shown if more than one third of the observations in the series are missing.

Median: Aggregates are calculated as the median of available data for each time period. Median 66: Aggregates are calculated as the median of available data for each time period. Values are not computed if more than a third of the observations in the series are missing. Min: Aggregates are set to the lowest available value for each time period. Sum: Aggregates are calculated as the sum of available data for each time period.

Sum 66: Aggregates are calculated as the sum of available data for each time period.

In collating this survey data the World Bank takes steps to harmonize it where possible, but comparability issues remain. Pooling the data available from different kinds of survey data is unavoidable if we want to get a global picture of poverty or inequality. The two concepts are nevertheless closely related: the income of a household equals their consumption plus any saving, or minus any borrowing or spending out of savings. One important difference is that, while zero consumption is not a feasible value — people must consume something to survive — a zero income is a feasible value. A common example here is retired people who are using their savings: they may have a very low, or even zero, income, but still have a high level of consumption. Conversely, at the top end of the distribution, consumption is typically lower than income.

Несмотря на отсутствие официальных данных о росте зарплат в ВПК, полная загрузка производственных мощностей в отрасли увеличила спрос на кадры, а следовательно, и уровень дохода сотрудников. Дефицит кадров в определённых отраслях. Например, за счет значительного сокращения в 2022 г.

Эксперты считают, что тенденция продолжится Фото: pixabay. Сфера информационных технологий IT привлекательна на российском рынке труда из-за высоких зарплат и льготной ипотеки.

Росстат отметил рост доходного неравенства в России

Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Различия в равенстве доходов в разных странах по коэффициенту Джини. Albania Algeria Angola Argentina Armenia Australia Austria Azerbaijan Bangladesh Belarus Belgium Belize Benin Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Bulgaria Burkina Faso Burundi Côte d'Ivoire Cabo Verde Cameroon Canada Central African Republic Chad Chile China Colombia. Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. Как и коэффициент Джини, он позволяет сравнивать различные страны между собой и состояния одной страны в разные периоды времени. Latest numbers for economic inequality, which is the difference in how assets, wealth, or income are distributed among individuals and/or populations. It is also described as the gap between rich and poor, income inequality, wealth disparity, wealth and income differences, or the wealth gap.

Индекс Джини: в каких странах мира самая маленькая разница между доходами богатых и бедных

Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. В РФ, по данным конца 2014 года, коэффициент Джини по доходам был равен 0,42, а по имуществу – 0,921, что свидетельствует о высоком уровне общественного неравенства. По данным Росстата, в 2023-м году в стране коэффициент Джини вырос до 0,403 против 0,395 годом ранее.

Среди населения России растет доходное неравенство: почему ускорился этот процесс?

На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года): Коэффициент Джини карта. Сообразно общей картине различается и коэффициент Джини по странам. Распределенный за весь период существования России, как самостоятельного государства, коэффициент Джини выглядит следующим образом. Может показаться, что самый низкий коэффициент Джини существует только в Нарнии, но и на нашей карте все же есть страна, в которой удалось добиться равномерного распределения благ, — Словакия. Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели.

Gini inequality index - Country rankings

Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. В России коэффициент Джини в последние годы держится на уровне 0,41. Сравнение коэффициента Джини по странам, конечно, довольно условно, так как размер страны влияет на уровень неравенства: чем больше территория, население и ВВП, тем больше неравенство. Однако коэффициент Джини позволяет выяснить уровень неравенства также и по накопленному богатству. Другие недостатки коэффициента Джини включают такой уклон в сторону занижения неравенства для стран с небольшой численностью населения и для менее диверсифицированных экономик. Европейский союз коэффициенты Джини государств-членов, согласно Евростат.

Human Development Insights

Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. Социологи и экономисты оценивают реальные доходы людей в стране, а потом сравнивают их с «идеальным» миром, в котором коэффициент Джини равен нулю. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. По данным Росстата, в 2023-м году в стране коэффициент Джини вырос до 0,403 против 0,395 годом ранее.

Индекс Джини: новые горизонты применения

Распределение доходов может сильно отличаться от распределения богатства в стране см. Список стран по распределению богатства. Доход от экономической деятельности на черном рынке не включен и является предметом текущих экономических исследований.

Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом «20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца.

Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла.

В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib. Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом «20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1.

Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Как рассчитать эту метрику?

Похожие новости:

Оцените статью
Добавить комментарий