В Копенгагенском университете, куда Нильс Бор поступил в 1903 году, его считали «тяжёлым студентом». Нильс Хенрик Давид Бор родился в датской столице поздней осенью 1885-го. Нильс Хенрик Давид Бор (дат – Самые лучшие и интересные новости по теме: Истории, факты, физики на развлекательном портале Томсоном, который открыл электрон в 1897 г. Правда, к тому времени Томсон начал заниматься уже другими темами, и он выказал мало интереса к диссертации Бора и содержащимся там выводам. В 1922 году за работу в области структуры атома и радиации Нильс Бор удостаивается Нобелевской премии по физике.
ФутБОРный клуб. Как великие ученые оставили след в спорте
Вылетев из Шотландии на большой высоте, самолет приземлился на пустынной местности, где его уже ждал Бор. Поскольку шлем с бортовой радиосвязью оказался тесным, он его отложил в сторону, и не услышал приказа пилота надеть кислородную маску, когда самолет поднялся на высоту 10 тысяч метров, чтобы уйти от немецких зениток и ночных истребителей. Во время полета на большой высоте Бор потерял сознание, но после приземления быстро пришел в себя и пошутил, что «зато хорошо выспался». Его знания о делении и расщеплении атомов были использованы для создания процесса цепной реакции, который в конечном итоге проложил путь к созданию атомной бомбы. Инициатором Манхэттенского проекта стал Альберт Эйнштейн, который еще в 1939 году написал письмо президенту Франклину Рузвельту. В нем физик предупредил, что у немцев есть технология создания чрезвычайно разрушительной бомбы.
Рузвельт созвал группу ученых, в которую вошли многие европейцы, бежавшие в Америку от нацистских репрессий, чтобы разработать ядерную бомбу раньше, чем это сделает Гитлер. Поначалу ученый был обеспокоен опасностью гонки ядерных вооружений. Но после своего изгнания из Дании он все больше приходил к убеждению, что союзникам необходимо опередить нацистов, а само ядерное оружие должно способствовать новому подходу к международным отношениям, обеспечению взаимного военного сдерживания и налаживания диалога между странами. Он раньше других понял, что нельзя засекречивать атомные исследования и считал, что об этом проекте необходимо проинформировать Советский Союз, который являлся союзником англичан и американцев во Второй мировой войне. По мнению Бора, это могло бы стать важным шагом для предотвращения послевоенной гонки ядерных вооружений.
Возвращение в Копенгаген Нильс Бор После окончания войны Бор вернулся в Копенгаген, где упорно продолжал выполнять возложенную на себя миссию по созданию «открытого мира», настаивая на рассекречивании информации о ядерном оружии и обмене этой информацией между странами. Он был убежден, что это единственный путь к установлению мира на планете. В 1950 году он написал открытое письмо в Организацию Объединенных Наций и обратился к главам государств с меморандумом, призывая сделать достоянием гласности самые секретные сведения о ядерном оружии. Продолжая руководить Институтом теоретической физики в Копенгагене, Нильс Бор постоянно расширял поле своей деятельности. Помимо научных исследований, он публиковал свои научные работы, читал лекции, проводил различную общественную деятельность и до конца своих дней выступал за открытое сотрудничество между странами в области ядерной энергии.
Понравилась статья?
Контент доступен только автору оплаченного проекта Нобелевская премия Нильса Бора Исследование причин присуждения Нобелевской премии Нильсу Бору, его вклада в физику, а также последствий этого признания для научного сообщества. Контент доступен только автору оплаченного проекта Научные достижения Нильса Бора Обзор основных научных достижений Нильса Бора, их влияния на развитие физики и научные открытия, которые сделали его выдающимся ученым. Контент доступен только автору оплаченного проекта Философские взгляды Нильса Бора Исследование философских убеждений и взглядов Нильса Бора на природу реальности, квантовую механику и фундаментальные принципы физики. Контент доступен только автору оплаченного проекта Влияние Нильса Бора на современную научную мысль Анализ влияния Нильса Бора на развитие современной научной мысли, его научные концепции и идеи, которые оказали влияние на последующие поколения ученых. Контент доступен только автору оплаченного проекта Критика и контроверсии вокруг научных идей Нильса Бора Обзор критики и споров, связанных с научными идеями Нильса Бора, а также контроверсий вокруг его теорий и концепций в физике.
Контент доступен только автору оплаченного проекта Нильс Бор и развитие ядерной физики Исследование вклада Нильса Бора в развитие ядерной физики, его работы в этой области и влияние на современные ядерные технологии. Контент доступен только автору оплаченного проекта Нильс Бор как общественный деятель Анализ общественной деятельности Нильса Бора, его вклада в научное сообщество, образование и науку, а также влияния на общественные процессы.
С этой целью он беседует с президентом США Франклином Рузвельтом, ссорится с Черчиллем, борется против атомной монополии Англии и США — выдвигает идею «международного контроля» над вооружением. Его усилия тщетны... Нильс Бор возвращается в Данию в Институт теоретической физики.
Он помогает основать Европейский центр ядерных исследований и играет активную роль в его научной программе. В 1950 г. Но письмо Бора не удосужилось даже тени того внимания, которое заслуживало [С. Мусский, с. В августе 1955 г.
Его слушали, ему аплодировали 1200 физиков-атомщиков, съехавшихся со всех концов земли. Нильсу Бору — 72 года. Ему присуждается первая премия «За мирный атом», учрежденная Фондом Форда в 1957 г. Он признался: «Квантовая теория меня больше не влечет к своим проблемам. Ныне первостепенная проблема — найти путь к предотвращению ядерной войны».
Как и всех, его не миновала старость, но, как немногих, миновало старение духа... Во всех путешествиях последнего десятилетия своей жизни — по Европе и Ближнему Востоку, по Индии и Гренландии, по Америке и Советскому Союзу, на физических конгрессах и в лекционных турне, в деловых поездках и во время юбилейных визитов, в официальных беседах и в дружеском застолье — всюду он заговаривал об «открытом письме». Это стало его страстью, потребностью души [Д. Нильсу Бору — 76 лет. Он в третий раз приехал в Советский Союз.
Тбилисские физики пригласили его прилететь в Грузию.
Модель Бора, предполагающая, что электроны движутся вокруг атомного ядра подобно планетам, обращающимся вокруг звезды, позволила объяснить химические и оптические свойства атомов. В 1922 году за эту работу Нильс Бор был награжден Нобелевской премией. Опыты по изучению прохождения электрического тока через жидкости, проводимые Фарадеем, дали представление об электричестве как отдельных единичных зарядах. Величины этих зарядов были определены при изучении прохождения электрического тока через газы.
Институт Нильса Бора опубликовал снимок с черной дырой, пожирающей звезду
Начиная с 1944 года Нильс Бор включается в активную политическую борьбу. Датский физик Нильс Бор смог описать современную модель атома благодарю сну о солнечной системе. Бор Нильс — чем известен, биография, открытия и достижения, работы и цитаты — РУВИКИ: Интернет-энциклопедия. Томсоном, который открыл электрон в 1897 г. Правда, к тому времени Томсон начал заниматься уже другими темами, и он выказал мало интереса к диссертации Бора и содержащимся там выводам.
Институт Нильса Бора опубликовал снимок с черной дырой, пожирающей звезду
Бор, Нильс — Абсурдопедия | Нильс Бор устроил революцию в физике и уже в 37 получил нобелевку. |
НИЛЬС БОР: БИОГРАФИЯ И ВКЛАД - НАУКА - 2024 | Датский физик Нильс Бор смог описать современную модель атома благодарю сну о солнечной системе. |
Нобелевские лауреаты 2022: кто и за какие открытия получил премию | Бор уже в 1939 году понимал, что открытие ядерного деления позволяло создать атомную бомбу, однако полагал, что инженерные работы по отделению урана-235 потребуют колоссальных, а потому непрактичных промышленных затрат. |
Нильс Бор: гений, который не боялся называть себя дураком | Однажды после очередного слабого и невразумительного выступления на коллоквиуме Нильс Бор объяснил аудитории: «Я выслушал здесь так много плохих выступлений, что прошу рассматривать мое нынешнее как месть!». |
Бор Нильс. Книги онлайн
Отталкиваясь от формализма квантовой теории, Бор предложил общефилософский «принцип дополнительности» и, вместе с Гейзенбергом, «копенгагенскую интерпретацию» квантовой физики. Бор родился в семье научной отец, профессор физиологии Копенгагенского университета а также политической и финансовой еврейской мать элиты Дании. Его младший брат Харальд стал крупным математиком. Оба брата были еще и крутейшими футболистами. Нильс был вратарем одного из ведущих датских клубов, а Харальд полузащитником.
В 1908г. Харальд играл за сборную страны на Олимпиаде, где Дания получила серебро, уступив в финале англичанам. От своего начала, физика подразумевала бинарность существования: «атом», элементарная частица либо есть, либо нет; третьего не дано. Квантовая механика сняла уверенность в этой казавшейся незыблемой самоочевидности.
Согласно предложенной Бором в конце двадцатых годов интерпретации квантовой механики, субатомные частицы вроде электронов существуют в вероятностном «лимбе» наложенных одно на другое состояний, пока взаимодействие с макроскопическим объектом не выбрасывает их в иное, уже настоящее, наблюдаемое существование. Как писал Гейзенберг, «Волна вероятности означала количественное выражение старого понятия «потенция» аристотелевской философии. Она ввела странный вид физической реальности, который находится приблизительно посредине между возможностью и действительностью. Бор допускал, что непредопределенная редукция квантового состояния может быть связана с проблемой свободы воли.
Гейзенберг и Бор в Копенгагене, 1934г. Удивительно, что Бор, при его выраженном интересе к философским аспектам физики, никогда не высказывался о том чуде, в самом центре которого он находился — раскрывающейся познаваемости вселенной. Это тем более удивительно, что его главные собеседники на этом поле не скрывали своего изумленного восхищения как тем познанием, что уже было, так и тем, что творилось на их глазах и ими самими.
В частности, его учеником был Лев Ландау. На вопрос, как ему удается объединять столь разных по темпераменту гениальных и сложных людей, особенно новое поколение физиков, Бор ответил, что просто «не боится показаться глупым перед молодежью».
Еще три причины, по которым я интересуюсь историей физики. Некоторое время назад мне довелось работать на научно-производственном предприятии, базировавшемся на физфаке МГУ, все коллеги и начальство были физики и один биолог. В данный момент работаю в венчурном фонде Runa Capital, экосистема которого во многом сформирована МФТИ Физтех одного из ведущих физико-математических вузов страны, российского MIT , основатели Фонда — выпускники Физтеха, а также сооснователи Российского квантового центра и фонда QWave Capital первый в мире фонд, делающий инвестиции в квантовые технологии. Кстати, Юджин Ползик Eugene Polzik , автор пионерских исследований в области экспериментальной квантовой оптики и квантовой коммуникации, Ph. Но моя поездка в NBI была, можно сказать, «дикарской», то есть полностью самостоятельной.
Сама я окончила Гидрометеорологический университет в Петербурге, где первые два курса изучала физику атмосферы. Надо сказать, что я совершенно не ожидала, насколько масштабными будут празднования столетия теории Бора. Весь Копенгаген был увешан плакатами с фото ученого, в музеях и библиотеках проходили открытые мероприятия и лекции, посвященные физике. Конечно, Дания небольшая страна, но все-таки такая сосредоточенность на научном событии, согласитесь, приятно удивляет и как-то радует. Примечательно, что национальный банк Дании выпустил монеты, посвященные юбилею теории атома.
Презентация монет как раз и была намечена на тот самый понедельник, когда я нацелилась посетить альма-матер квантовой механики. Ученые института, помимо научной деятельности, читают лекции студентам, принимают экзамены и работают с аспирантами. Нильс Бор, которого еще называют одним из «отцов» ядерной физики, основал институт в 1920 году и руководил им до конца своих дней. Так вот, в тот праздничный понедельник я попала в Институт Бора безо всяких проблем — никаких проходных, никакой охраны. Казалось, что посещаю вовсе не научное учреждение, наполненное гениями и огромным количеством дорогостоящей аппаратуры, а студенческий кампус.
Стены завешаны плакатами научных событий, ярмарок и выставок, а также постерами фильмов о Боре и его наследии. После 20-минутной прогулки по главному корпусу, подумалось, что пора войти в контакт с кем-то из сотрудников. На ресепшене не удивились, а сразу же позвали штатного экскурсовода. Это была милая дама преклонных лет по имени Герти. Она отреагировала на меня воодушевленно.
Изображение эволюции Darwinian evolution in the genealogy of haemoglobin 4. Луи Пастер До того, как французский химик Луи Пастер начал эксперименты с бактериями в 1860-х годах, люди не знали, что вызывает болезнь. Он не только обнаружил, что болезнь вызывается микроорганизмами, но также понял, что бактерии можно убить нагреванием и дезинфицирующим средством.
Эта идея заставила врачей мыть руки и стерилизовать инструменты, что спасло миллионы жизней. Эксперименты с бактериями Louis Pasteur 1822—1895 5. Теория относительности Специальная теория относительности Альберта Эйнштейна, которую он опубликовал в 1905 году, объясняет отношения между скоростью, временем и расстоянием.
Сложная теория утверждает, что скорость света всегда остается неизменной независимо от того, насколько быстро кто-то или что-то движется к нему или от него. Эта теория стала основой для большей части современной науки. Специальная теория относительности The General Theory of Relativity 6.
Теория большого взрыва Никто точно не знает, как возникла Вселенная, но многие ученые считают, что это произошло около 13,7 миллиардов лет назад в результате мощного взрыва, называемого Большим взрывом. Теория гласит, что вся материя во Вселенной изначально была сжата в крошечную точку. За долю секунды точка расширилась, и вся материя мгновенно заполнила то, что сейчас является нашей Вселенной.
Это событие положило начало времени. Научные наблюдения, кажется, подтверждают теорию. The Discovery of the Big Bang 7.
Пенициллин Антибиотики — это сильнодействующие лекарства, которые убивают опасные бактерии в нашем организме, вызывающие болезни. В 1928 году Александр Флеминг, участвовавший в нашем блоге «Величайшие шотландские ученые», открыл первый антибиотик, пенициллин, который он вырастил в своей лаборатории с использованием плесени и грибков. Без антибиотиков такие инфекции, как острый фарингит, могут быть смертельными.
Общая структура пенициллинов Penicillin: its discovery and early development 8. Двое ученых обнаружили структуру двойной спирали ДНК. Он состоит из двух нитей, которые переплетаются друг с другом и имеют почти бесконечное разнообразие химических паттернов, которые создают инструкции для человеческого тела.
Наши гены состоят из ДНК и определяют, каковы наши вещи, например, какой у нас цвет волос и глаз. В 1962 году за эту работу они были удостоены Нобелевской премии. Периодическая таблица Периодическая таблица основана на Периодическом законе 1869 года, предложенном русским химиком Дмитрием Менделеевым.
Он заметил, что при упорядочении по атомному весу химические элементы выстраиваются в группы со сходными свойствами. Он смог использовать это, чтобы предсказать существование неоткрытых элементов и отметить ошибки в атомных весах. В 1913 году Генри Мозли из Англии подтвердил, что таблицу можно сделать более точной, расположив элементы по атомному номеру, то есть количеству протонов в атоме элемента.
Старейшая периодическая таблица The discovery of the periodic table as a case of simultaneous discovery 10.
К 135-летию со дня рождения Нильса Бора, одного из создателей современной физики, лауреата Нобелевской премии и основоположника первой квантовой теории атома, «Московская электронная школа» «МЭШ» представила подборку приложений по физике из своей библиотеки. В приложении «Ученые-физики и их эксперименты» можно будет вспомнить самые значимые открытия в области физики и их авторов. Например, того, кто доказал существование в атомах положительно заряженного ядра и отрицательно заряженных электронов вокруг него или кто открыл закон плавания тел, ставший основой гидростатики. Датский физик Нильс Бор внес весомый вклад в развитие теории атомного ядра и ядерных реакций.
Институт Нильса Бора опубликовал снимок с черной дырой, пожирающей звезду
Во втором томе помещены работы Нильса Бора, опубликованные после 1925 г. Они охватывают в основном вопросы квантовой механики, квантовой электродинамики и теории атомного ядра. Нильс Бор писал, что этому открытию он обязан сну. К концу 1930-х ученые из многих стран мира, включая Нильса Бора, Энрико Ферми, Ирен Кюри и ее мужа Фредерика Жолио, находились на пороге эпохального достижения, но первыми все равно стали немцы.
История Бора
Нильс Бор, которому Фриш сообщил об этом, в первый момент потерял дар речи. В Копенгагене Нильс Бор, постулировавший квантовые скачки электронов, для обсуждения проблем новой физики собирал молодых физиков, среди которых был тогда еще советский физик-теоретик Георгий Гамов. Телеграф новостей. Новости. Еще в 1920 году Нильс Бор стал основателем подразделения университета Копенгагена. Эта теория, за которую Нильс Бор был награжден Нобелевской премией, позволила объяснить химические и оптические свойства атомов.
100 лет атому Бора, отмеченные на родине знаменитой теории
Здесь его посещали знаменитости не только научного например, Резерфорд , но и политического мира королевская чета Дании, английская королева Елизавета , президенты и премьер-министры различных стран [50]. В 1934 Бор пережил тяжёлую личную трагедию. Во время плавания на яхте в проливе Каттегат штормовой волной был смыт за борт его старший сын — 19-летний Христиан; обнаружить его так и не удалось [51]. Всего у Нильса и Маргарет было шестеро детей.
Один из них, Оге Бор, также стал выдающимся физиком, лауреатом Нобелевской премии 1975. В 1930-е годы Бор увлёкся ядерной тематикой , переориентировав на неё свой институт: благодаря своей известности и влиянию он сумел добиться выделения финансирования на строительство у себя в Институте новых установок — циклотрона , ускорителя по модели Кокрофта — Уолтона, ускорителя ван-де-Граафа [52]. Сам он внёс в это время существенный вклад в теорию строения ядра и ядерных реакций.
В 1936 Бор, исходя из существования недавно наблюдавшихся нейтронных резонансов, сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций : он предположил существование так называемого составного ядра «компаунд-ядра» , то есть возбуждённого состояния ядра с временем жизни порядка времени движения нейтрона через него. Тогда механизм реакций, не ограничивающийся лишь нейтронными реакциями, включает два этапа: 1 образование составного ядра, 2 его распад. При этом две эти стадии протекают независимо друг от друга, что обусловлено равновесным перераспределением энергии между степенями свободы компаунд-ядра.
Это позволило применить статистический подход к описанию поведения ядер, что позволило вычислить сечения ряда реакций, а также интерпретировать распад составного ядра в терминах испарения частиц [53]. Однако такая простая картина имеет место лишь при больших расстояниях между резонансами уровнями ядра , то есть при малых энергиях возбуждения. Как было показано в 1939 в совместной работе Бора с Рудольфом Пайерлсом и Георгом Плачеком, при перекрытии резонансов компаунд-ядра равновесие в системе не успевает установится и две стадии реакции перестают быть независимыми, то есть характер распада промежуточного ядра определяется процессом его формирования.
Развитие теории в этом направлении привело к созданию в 1953 Виктором Вайскопфом, Германом Фешбахом и К. Портером так называемой «оптической модели ядра», описывающей ядерные реакции в широком диапазоне энергий [54]. Одновременно с представлением о составном ядре Бор совместно с Ф.
Калькаром предложил рассматривать коллективные движения частиц в ядрах, противопоставив их картине независимых нуклонов. Такие колебательные моды жидкокапельного типа находят отражение в спектроскопических данных в частности, в мультипольной структуре ядерного излучения. Идеи о поляризуемости и деформациях ядер были положены в основу обобщённой коллективной модели ядра, развитой в начале 1950 -х годов Оге Бором, Беном Моттельсоном и Джеймсом Рейнуотером [55].
Велик вклад Бора в объяснение механизма деления ядер, при котором происходит освобождение огромных количеств энергии. Деление было экспериментально обнаружено в конце 1938 Отто Ганом и Фрицем Штрассманом и верно истолковано Лизе Мейтнер и Отто Фришем во время рождественских каникул. Бор узнал об их идеях от Фриша, работавшего тогда в Копенгагене , перед самым отъездом в США в январе 1939 [56].
В Принстоне совместно с Джоном Уилером он развил количественную теорию деления ядер, основываясь на модели составного ядра и представлениях о критической деформации ядра, ведущей к его неустойчивости и распаду. Для некоторых ядер эта критическая величина может быть равна нулю, что выражается в распаде ядра при сколь угодно малых деформациях [57]. Теория позволила получить зависимость сечения деления от энергии, совпадающую с экспериментальной.
Кроме того, Бору удалось показать, что деление ядер урана-235 вызывается «медленными» низкоэнергетичными нейтронами, а урана-238 — быстрыми [58]. Противостояние нацизму. Борьба против атомной угрозы 1940—1950 [ ] После прихода к власти в Германии нацистов Бор принял активное участие в устройстве судьбы многих учёных-эмигрантов, которые переехали в Копенгаген.
В 1933 усилиями Нильса Бора, его брата Харальда, директора Института вакцин Торвальда Мадсена и адвоката Альберта Йоргенсена был учреждён специальный Комитет помощи учёным-беженцам [59]. После оккупации Дании в апреле 1940 года возникла реальная опасность ареста Бора в связи с его полуеврейским происхождением. Тем не менее, он решил оставаться в Копенгагене, пока это будет возможно, чтобы гарантировать защиту института и своих сотрудников от посягательств оккупационных властей.
В октябре 1941 Бора посетил Гейзенберг , в то время руководитель нацистского атомного проекта. Между ними состоялся разговор о возможности реализации ядерного оружия, о котором немецкий учёный писал следующим образом: Копенгаген я посетил осенью 1941 г. К этому времени мы в «Урановом обществе» в результате экспериментов с ураном и тяжёлой водой пришли к выводу, что возможно построить реактор с использованием урана и тяжёлой воды для получения энергии.
Такой разговор состоялся во время вечерней прогулки в районе Ни-Карлсберга. Зная, что Бор находится под надзором германских политических властей и что его отзывы обо мне будут, вероятно, переданы в Германию, я пытался провести этот разговор так, чтобы не подвергать свою жизнь опасности. Беседа, насколько я помню, началась с моего вопроса, должны ли физики в военное время заниматься урановой проблемой, поскольку прогресс в этой области сможет привести к серьёзным последствиям в технике ведения войны.
Бор сразу же понял значение этого вопроса, поскольку мне удалось уловить его реакцию лёгкого испуга. Он ответил контрвопросом: «Вы действительно думаете, что деление урана можно использовать для создания оружия? Бор был потрясён моим ответом, предполагая, очевидно, что я намереваюсь сообщить ему о том, что Германия сделала огромный прогресс в производстве атомного оружия.
Хотя я и пытался после исправить это ошибочное впечатление, мне все же не удалось завоевать доверие Бора… [60] Таким образом, Гейзенберг намекает, что Бор не понял, что он имел в виду. Однако сам Бор был не согласен с такой трактовкой своей беседы с Гейзенбергом. В 1961 в разговоре с Аркадием Мигдалом он заявил: Я понял его отлично.
Он предлагал мне сотрудничать с нацистами… [61] К осени 1943 оставаться в Дании стало невозможно, поэтому Бор вместе с сыном Оге был переправлен силами Сопротивления сначала на лодке в Швецию , а оттуда на бомбардировщике в Англию , при этом они едва не погибли [62]. Тётя Бора старшая сестра его матери — известный датский педагог Ханна Адлер 1859 — 1947 — была депортирована в концлагерь несмотря на 84-летний возраст и правительственную защиту. Вместе с тем, уже начиная с 1944 , Бор осознавал всю опасность атомной угрозы.
В своём меморандуме на имя президента Рузвельта 3 июля 1944 он призвал к полному запрещению использования ядерного оружия , к обеспечению строгого международного контроля за этим и, в то же время, к уничтожению всякой монополии на мирное применение атомной энергии [62].
Идеальная наука Только… Возможны ли вообще революции в науке, где, как считают твердокаменные рационалисты, вроде Карла Поппера, царит эксперимент и разумное убеждение? Высокочтимый в начале 20 века Эрнст Мах очень убедительно сформулировал, какой должна быть идеальная наука: ученым не следует спорить о том, кто прав, чья модель лучше отражает реальность, ибо все мы имеем дело не с реальностью, но лишь с порождаемыми ею комплексами ощущений.
Поэтому дело науки только давать наиболее «экономные» описания изучаемых комплексов, изгоняя из своего языка все, чего нельзя увидеть, потрогать, понюхать, полизать. И Мах был бы совершенно прав, если бы потребность в экономии мышления была единственной человеческой потребностью. Но, увы, человеку нужна еще и всегда иллюзорная, но от того не менее необходимая психологическая уверенность, что в мире все в основном действительно обстоит так, как ему представляется в его воображении.
Ученые и художники Однако и ученые всего лишь люди. Боюсь, Планк прав. Боюсь, пресловутый махизм очень хорош для взламывания стереотипов, но почти бесполезен для поиска и созидания.
Но это лишь на первый взгляд: речь ученых фанатиков всегда пересыпана такими выражениями, как «красота», «гармония», «захватывающее приключение», «святая любознательность», «волшебная сказка», «смелая предприимчивость». При этом Эйнштейн прямо объявлял математику искусством ухода от существа дела хотя о каком еще «существе дела» может идти речь, если математика позволяет экономно описывать собранные факты? Бор же в силу своей деликатности и, так сказать, принципиального плюрализма столь резко не высказывался, но во всех своих эпохальных открытиях использовал предельно простые, можно сказать, будничные аналогии капля, чаша с шарами.
Его выдающиеся коллеги без конца говорили о его гениальной интуиции, но что такое интуиция, как не обладание моделями, которыми мы умеем пользоваться, но не умеем передать другим? То есть к наипримитивнейшей реальности обыденной жизни. Наука как миф Среди гуманитариев довольно популярно, если не сказать модно, эпатажное утверждение А.
Ну, о том, скучно или наоборот захватывающе интересно живется внутри этого мифа, могут судить только те, кто им зачарован. А вот насчет эквивалентности науки всем прочим мифам… Я уж не стану говорить о такой очевидности, как ее уникальные практические достижения, но уже и своей предельной консервативностью, своим стремлением без крайней необходимости не обновлять арсенал используемых образов аналогий наука являет собой все-таки тоже уникальную систему грез. Если все прочие мифологические системы свободны использовать любые эффектные образы, ни в чем не стесняя своей фантазии, то наука требует придерживаться максимально медленного эволюционного пути: даже в тех случаях, когда без привлечения новых аналогий, новых моделей обойтись уже совершенно невозможно, новые конструкции, новые абстракции все равно должны быть максимально сходны с образцами предыдущих слоев.
И в этом смысле Бор был еще более глубоким революционером, нежели Эйнштейн. Уже не имея никаких рациональных возражений, он отказывался принимать вероятностную картину мира уже по чисто психологическим мотивам не случайно Макс Борн, один из главных идейных доноров новой парадигмы, назвал детерминизм суеверием : если миром правит случай, ему, Эйнштейну, лучше уйти из физики в казино. Официально, правда, Эйнштейн выражался более сдержанно: детерминизм в микромире исчезает потому, что нам известны еще не все параметры, управляющие тамошними процессами, давайте не делать слишком поспешных обобщений.
Но как же узнать, поспешны эти обобщения или не поспешны? С этой точки зрения и первый революционный прорыв двадцативосьмилетнего Бора три статьи, которые потрясли мир в «Philosophical Magazine» летом и осенью 1913 года вовсе не выглядит таким уж революционным.
Согласно экзаменационному вопросу, студент должен был объяснить, как с помощью барометра можно определить высоту здания.
Студент ответил, что для этого нужно привязать барометр к длинной веревке, подняться с ним на крышу здания, опустить его к земле и замерять длину веревки ушедшей вниз. С одной стороны, ответ был абсолютно верным и полным, но с другой — он имел мало общего с физикой. Тогда Резерфорд предложил студенту еще раз попытаться ответить.
Он дал ему шесть минут, и предупредил, что ответ должен иллюстрировать понимание физических законов. Через пять минут, услышав от студента, что он выбирает лучшие из нескольких решений, Резерфорд попросил его досрочно ответить. На это раз студент предложил подняться с барометром на крышу, сбросить его вниз, замерять время падения и, воспользовавшись специальной формулой, выяснить высоту.
Этот ответ удовлетворил преподавателя, однако он с Резерфордом не могли отказать себе в удовольствии прослушать остальные версии студента. Следующий способ был основан на измерении высоты тени барометра и высоты тени здания, с последующим решением пропорции. Это вариант понравился Резерфорду, и он с энтузиазмом попросил студента осветить оставшиеся способы.
Тогда студент предложил ему самый простой вариант. Нужно было просто прикладывать барометр к стене здания и делать отметки, а затем сосчитать количество отметок и умножить их на длину барометра. Студент считал, что столь очевидный ответ точно нельзя упускать из виду.
Дабы не прослыть в глазах ученых шутником, студент предложил и самый изощренный вариант. Привязав к барометру шнурок — рассказывал он, — нужно раскачать его у основания здания и на его крыше, замерев величину гравитации. Из разницы между полученными данными, при желании можно узнать высоту.
Кроме того, раскачивая маятник на шнурке с крыши здания, можно определить высоту по периоду прецессии. Наконец, студент предложил найти управляющего здания и взамен на замечательный барометр выведать у него высоту. Резерфорд спросил, неужели студент и впрямь не знает общепринятого решения задачи.
Он не стал скрывать, что знает, но признался, что сыт по горло навязыванием учителями своего образа мышления подопечным, в школе и колледже, и отверганием ими нестандартных решений. Как вы наверняка догадались, этим студентом был Нильс Бор. Переезд в Англию Проработав в университете три года, Бор переехал в Англию.
Лаборатория Резерфорда на тот момент считалась наиболее выдающейся. Последнее время в ней проходили эксперименты, породившие открытие планетарной модели атома. Точнее, модель тогда пребывала еще на стадии становления.
Опыты по прохождению альфа-частиц через фольгу позволили Резерфорду осознать, что в центре атома располагается небольшое заряженное ядро, на которое приходится едва ли вся масса атома, а вокруг него располагаются легкие электроны. Так как атом электронейтрален, сумма зарядов электронов должна равняться модулю заряда ядра. Заключение о том, что заряд ядра кратен заряду электрона было центральным в этом исследовании, но пока что оставалось неясным.
Зато были выявлены изотопы — вещества, имеющие одинаковые химические свойства, но различную атомную массу. Атомный номер элементов. Закон смещения Работая в лаборатории Резерфорда, Бор понял, что химические свойства зависят от числа электронов в атоме, то есть от его заряда, а не массы, что и объясняет существования изотопов.
За свои исследования отец Нильса трижды номинировался на Нобелевскую премию по физиологии и медицине. Нужно сказать, что семья Боров вообще была исключительно талантлива и одарена во всем. Взять хотя бы брата Нильса, Харальда. Он не только стал математиком, но и был очень сильным датским футболистом.
Впрочем, Нильс в юности тоже был приличным вратарем: в одно время Харальд и Нильс оба играли за датский футбольный клуб Akademisk Boldklub Gladsaxe этот профессиональный футбольный клуб и поныне выступает во втором дивизионе Датской футбольной лиги. А вот байка о том, что будущий нобелиат играл за сборную Данию по футболу — неправда. Не играл, в отличие от Харальда, который с датской командой на олимпиаде 1908 года в Лондоне дошел до полуфинала. Уже в школе он активно интересовался физикой, математикой и философией: гости и друзья отца были соответствующие.
Например, известный датский философ Харальд Геффтинг или специалист по скандинавско-славянским связям, лингвист Вильгельм Томсен. В 1903 году он поступил в Копенгагенский университет, и первая же его крупная исследовательская работа по измерению поверхностного натяжения воды по колебанию водной струи удостоилась Золотой медали Датской королевской академии наук 1905. Это была чисто теоретическая работа, но в последующие два года Бор оккупировал физиологическую лабораторию отца и дополнил работу экспериментальной частью. Пользуясь случаем, хочется развеять давно гуляющую по Интернету байку о том, как студент-Бор поставил на место профессора физики в университете видимо, Кристиана Кристиансена, в 1884 году подтвердившего закон Стефана-Больцмана — в те годы он был единственным профессором физики , и как его поддержал Резерфорд , к которому Бор со своим профессором обратились в качестве третейского судьи.
В истории рассказывается, как студент Бор отказывался решать «скучную» физическую задачу о том, как измерить высоту башни при помощи барометра стандартным методом измерить давление у подножия и на вершине , а предлагал другие, «издевательские» — бросить барометр с башни и замерить время падения, измерить тень, отбрасываемую барометром и тень, отбрасываемую башней, и сам барометр — и по пропорции узнать высоту башни, и даже обменять барометр на информацию о высоте башни у смотрителя здания. Доверимся словам самого Бора — он в 1953 году опубликовал статью памяти друга: «Впервые мне посчастливилось видеть и слышать Резерфорда осенью 1911 г. Томсона , а Резерфорд приехал из Манчестера, чтобы выступить на ежегодном Кавендишском обеде». При этом даже тогда Бор с Резерфордом не познакомились, а «дружить семьями» они начали двумя годами позже.
В 1910 году Бор стал магистром. Одновременно с получением последней «учебной» степени, в жизни будущего нобелиата случилось и еще одно важное событие: он познакомился с Маргрет Норлунд, сестрой математика Нильса Норлунда. В 1912 году они зарегистрируют свой брак.
Ядерная сила Нильса Бора
- Нильс Бор и модель атома
- Открытия, сделанные во сне
- НИЛЬС БОР: БИОГРАФИЯ И ВКЛАД - НАУКА - 2024
- Голкипер с Нобелевской премией. 12 фактов о гениальном физике Нильсе Боре | Аргументы и Факты
- Нильс Хенрик Давид Бор
- Новость детально
Ларри Пейдж и Google
- История Бора // — Глобальный еврейский онлайн центр
- Нильс Бор, физика, Нобелевская премия | Журнал ПАРТНЕР
- ФутБОРный клуб. Как великие ученые оставили след в спорте
- Исследования
- Нильс Бор: физик и философ
- 135 лет со дня рождения Нильса Бора: лучшие приложения «МЭШ» по физике
1. Система Коперникум
- Статьи по теме «Нильс Бор» — Naked Science
- Исследование Нильса Бора: теоретик и создатель современной физики
- Нильс Бор - биография и открытия ученого физика
- Предыстория появления системы химических элементов
Открытия, сделанные во сне
Google В 1996 г. Он записал увиденное во сне. Конспект стал основой алгоритма для поисковой системы. Так родился Google. И знаете, да — что если нет под рукой карандаша с блокнотом, то наутро все непременно забудешь? Вот и мне приснился такой сон, когда мне было 23 года. Вдруг проснувшись, я задумался: а что, если бы мы могли скачать весь интернет, сохранить все ссылки и… Я схватил ручку и начал писать!
Иногда важно проснуться и перестать мечтать. Искусство изготовления таких мечей считалось утерянным, потому что во время «культурной революции» коммунисты сжигали книги о традиционной культуре. Часть знаний, как изготавливать такие мечи, Чэнь получил во время исследований, но многие секреты пришли к нему в снах. Он увидел божественных существ, которые дали ему инструкции. Он неохотно рассказывает подробности, потому что, по его словам, люди всё равно не поверят ему. Перед шлифовкой он час сидит в медитации.
Ученые провели эксперименты с запутанными фотонами и открыли путь для новых технологий на основе квантовой механики. В частности, продемонстрировали квантовую телепортацию — когда квантовое состояние одной частицы передается другой на расстоянии. Первым Нобелевским лауреатом по физике был Вильям Рентген. В 1901 году немецкий ученый получил премию за открытие излучения, которое носит его имя. Имена номинантов по физике, их исследования и мнения, связанные с присуждением им премии, по правилам Фонда Нобеля не раскрываются в течение 50 лет. Химия Нобелевская премия по химии присуждена американцам Каролин Бертоцци, Барри Шарплессу и датчанину Мортену Мелдалу за развитие клик-химии и биоортогональной химии. Нобелевский комитет по химии отметил вклад исследователей в функциональный инновационный способ построения молекул. Результаты их работы используют при разработке препаратов для лечения онкологических заболеваний.
Мария Кюри была удостоена Нобелевской премии за исследования по физике и по химии, а Лайнус Полинг был Нобелевским лауреатом по химии и обладателем премии мира. Физиология и медицина В 2022 году Нобелевский комитет присудил награду шведскому биологу Сванте Паабо.
Но они начали заниматься квантовой теорией еще до этих поездок.
И именно на основе тех первых работ, которые они опубликовали еще находясь в Советском Союзе, они и были отобраны. И когда наши физики поехали в ее главные центры, они и себя показали, и мир посмотрели, и сразу оказались включенными в международное сообщество. Для успешной социализации в науке помимо таланта очень важно еще оказаться в правильном месте и в нужное время.
В СССР, после возвращения, они стали лидерами в теоретической физике на многие годы. Первую можно по-простому сформулировать: «Почему Копенгаген? Дания — страна очень маленькая.
Лишних средств нет. Университет тогда был один, профессоров физики — два или три на всю страну. Аспирантов своих они редко готовили, поскольку незачем.
Если нет профессорских мест, к чему защищать докторскую диссертацию? Попробуйте теперь представить себе, каким образом, даже будучи самым гениальным из всех профессоров, но в крошечной стране, без каких-либо существенных финансовых или людских ресурсов, вы могли бы создать международный научный центр, не просто конкурирующий с главными центрами великих держав, а доминирующий в мировом масштабе в какой-нибудь важной дисциплине, например в теоретической физике? А Бор ее ставил сознательно?
Благодаря своему нейтральному статусу скандинавские страны получили возможность и обязанность стать важной площадкой послевоенного восстановления международного сотрудничества и тем самым получить больший вес в мировой науке. Похожая стратегия помогла и другой скандинавской стране — Швеции — повысить престиж Нобелевских премий до максимума. Они могли в один год присудить премию французу, в другой — немцу, а потом англичанину или американцу.
И тем самым заставить и тех и других признать объективный авторитет своей премии, которого в то время не могло быть у научных премий, присуждавшихся в Германии или Великобритании. Попробуйте теперь представить себе, каким образом, даже будучи самым гениальным из всех профессоров, но в крошечной стране, без каких-либо существенных финансовых или людских ресурсов, вы могли бы создать международный научный центр доминирующий в мировой масштабе С аналогичной целью в 1919 году в Дании создали специальный фонд Раск-Эрстед для финансирования международной активности датской науки. Бор пользовался им — еще до рокфеллеровских грантов — как источником средств, чтобы пригласить нескольких молодых ученых и ассистентов.
В первые годы эти ученые приезжали к нему в Копенгаген в основном из других скандинавских и нейтральных стран или из небольших стран Восточной Европы. Потому что не так-то просто было склонить даже молодого и не имеющего постоянной работы ученого, скажем, из Великобритании к идее, что ему стоит поехать в Копенгаген на год или два. В любом случае ему потом пришлось бы продолжать искать работу у себя на родине, в большой стране, в которой Данию если и замечали, то относились свысока, как к не очень важной в науке, провинциальной и не добавляющей престижа академической карьере.
Но зато — и этим Бор смог воспользоваться позже — в 1920-х годах Дания стала одним из тех редких нейтральных мест в Европе, где ученые из Англии и Германии могли спокойно встречаться друг с другом, обсуждать научные проблемы на конференциях наравне, как коллеги, и даже сотрудничать, не слишком отвлекаясь на политические трения. Другим важным фактором, помимо скандинавской нейтральности, стала инфляция и экономические трудности в Центральной Европе. Германия вкладывала большие ресурсы в науку и по качеству подготовки докторов считала себя не имеющей равных в мире.
Существовал типичный сценарий научной карьеры, который предусматривал перемещения если и за границу, то в пределах академического пространства немецкоязычных университетов. Профессора контролировали бюджет и продвижение своих учеников, а последним важно было, чтобы их знали и ценили прежде всего в самой Германии. Но в условиях гиперинфляции в сложившейся немецкой научной системе возник провал, прежде всего на промежуточном этапе карьеры, который назывался «приват-доцент», между защитой диссертации и получением первой профессорской ставки.
В условиях экономического кризиса, когда немецкие профессора потеряли возможность поддерживать на прежнем уровне работу своих молодых учеников, перспектива получения рокфеллеровской стипендии стала для последних необычайно привлекательной. Так что третьим фактором стали филантропические, прежде всего американские, деньги и постдокторантские стипендии. Лев Ландау и Георгий Гамов во дворе дома третьего великого физика Нильса Бора в Копенгагене, где они проходят стажировку.
Посередине сын Нильса Бора. Копенгаген, Дания, 1929 год Wikipedia — Насколько велика была стипендия? Насколько безбедно человек в Дании мог на нее жить?
Тогда это были очень приличные деньги, примерно соответствовавшие зарплате экстраординарного профессора в Германии, но только временные, потому что стипендию можно было получить на год и иногда продлить на второй, но не дольше. При этом из-за бойкота немецких или австрийских ученых совсем не ждали во Франции или Великобритании. Возможных мест, где их могли принять, было сравнительно немного.
Копенгаген для некоторых них — или для их профессоров — представлялся удобным вариантом того, что сейчас бы назвали научным «офшором». Нейтральная страна хоть и имевшая прежде конфликт с Германией, но не воевавшая в последней войне , культурно и географически близкая, где тебя вполне гостеприимно встретят, куда можно поехать, не теряя связи с академической жизнью на родине, и при этом получить щедрую американскую стипендию. Первой задачей книги, тем самым, было выяснить, благодаря какому сочетанию разного рода факторов — политических, дипломатических, научных, финансовых и экономических — у Бора появился уникальный шанс создать мировой исследовательский центр в крошечной стране, несмотря на недостаток местных ресурсов, и как он сумел превратить этот мизерный шанс в реальность.
Это была действительно уникальная комбинация разного рода обстоятельств, которые сложились после окончания Первой мировой войны и продолжались примерно до конца 1920-х годов. В другое время и в несколько другой ситуации это было бы вообще практически нереально. Например, Бор пытался повторить что-то похожее и после Второй мировой войны, но прежние методы уже не сработали.
Она о том, каким образом динамика производства научного знания изменилась благодаря кочующей между разными странами и университетами толпе постдокторантов. Девятнадцатый век был веком создания большинства научных дисциплин, многие из которых возникли в немецких университетах, с помощью подготовки докторских диссертаций. Для физической химии, например, главным центром был институт, организованный Вильгельмом Оствальдом в Лейпцигском университете.
В нем было помещение и необходимые приборы для большого числа учеников, местных и иностранцев, которым профессор давал темы докторских исследований в рамках определенной им программы и которые, защитив диссертации, разъезжались по миру, основывая новые кафедры и распространяя эту новую область науки. Дания стала одним из тех редких нейтральных мест в Европе, где ученые из Англии и Германии могли спокойно встречаться друг с другом, обсуждать научные проблемы на конференциях наравне, как коллеги, и даже сотрудничать, не слишком отвлекаясь на политические трения В квантовой теории несколько влиятельных профессоров, в том числе Бор, тоже пытались направлять исследовательский процесс и контролировать развитие этой научной дисциплины, каждый как директор в своем собственном институте, в частности давая задания ученикам и решая, какие статьи можно было послать в печать. Но к середине 1920-х резко увеличившееся количество постдоков, их временный, кочевой образ жизни и работы, внешние источники финансирования и частые переезды из одного центра в другой, с отличающейся исследовательской программой, превысили возможности эффективного контроля со стороны профессоров и директоров.
Они председательствовали в процессе, писали рекомендации для получения стипендий и принимали временных исследователей у себя в лабораториях, но уже не могли так же уверенно, как раньше, давать исследовательские задания, определять методы решения и направление работы всего института. Инициатива выдвижения новых стратегических идей все чаще переходила к коллективному постдоку, молодежному, недисциплинированному и транснациональному. И идеи эти часто сочинялись на ходу, в результате обмена, случайных встреч или в процессе переезда из одного места в другое.
Поколение Гейзенберга и Паули впоследствии стало настолько знаменитым, что их трудно без специального мысленного усилия представить блестящими молодыми дарованиями без копейки денег, постоянной работы и гарантированного профессионального будущего. Но сам Паули в письме 1923 года сравнивал неопределенность траектории своей собственной будущей карьеры с непредсказуемой судьбой квантовой частицы: «Точно известно только то, что наступающий семестр я проведу в Гамбурге... Идеи новой квантовой механики появились в головах у молодых ученых, не имевших еще постоянной работы, для которых прежние, более предсказуемые пути научной карьеры оказались нарушенными из-за экономических и политических неурядиц послевоенного времени.
Но им представилась возможность воспользоваться новыми, хоть и более неопределенными, переходами из одного метастабильного постдокторантского состояния в другое, которые при этом уводили их из области влияния одного учителя и профессора к другому. В процессе этих переходов у учеников возникала новая, прежде недоступная, степень интеллектуальной свободы, которой они в определенной мере смогли воспользоваться.
Пока она готовится, отправляет тому два меморандума. Ни меморандумы правительству, ни состоявшаяся всё же встреча с президентом США, ни меморандумы ООН ни к каким результатам не привели. Однако физики смогли сделать то, что смогли.
Заговор в их рядах всё же существовал. Программа физиков-оппозиционеров была достаточно простой. Или США отказываются от использования атома в военных целях, или там делают все результаты исследований открытыми, по крайней мере для союзников. Впоследствии Эйнштейн дал интересную оценку своей роли в историческом процессе. Он считал, что ему и его коллегам удалось остановить третью мировую войну.
Вклад Нильса Бора в мировую науку После войны Бор продолжал заниматься теоретической физикой. В основном исследовалось взаимодействие частиц со средой. К физике добавилась ещё и активная социальная, общественная деятельность и занятия философией. Он читал лекции, писал небольшие философские сочинения и пытался расширить область применения принципа дополнительности на другие науки. Итак, мы не знаем, чем в действительности является атом.
Может быть эта точка, через которую пространство выворачивается через себя, может быть, переход в другое измерение, а может быть — область сознания материи. Никто не исключит того, что через несколько лет в науке появятся какие-то новые теории. Каждое понятие в области исследования микромира условно. Мы ведём себя так, как будто у частиц есть какие-то динамические координаты, которые мы можем измерить. На базе теории дополнения создаём методологическую картину описания реальности, которая описанию не поддаётся.
Институт Нильса Бора опубликовал снимок с черной дырой, пожирающей звезду
Бор сформулировал важное для развития ядерной физики представление — капельную модель ядра. В 1939 г. Бору принадлежат также исследования по взаимодействию элементарных частиц с веществом. Бор создал большую школу физиков и многое сделал для развития сотрудничества между физиками всего мира. Его институт стал одним из ведущих научных центров; физики, стажировавшиеся в нём, работают почти во всех странах мира. Там работали и многие отечественные учёные в том числе Л.
Бор неоднократно приезжал в СССР. Член более 20 академий и научных обществ мира. Нобелевская премия по физике «За заслуги в исследовании структуры атомов и исходящего от них излучения» 1922.
Дискуссии не прекращались до самой смерти Эйнштейна [52] , порой принимая ожесточённый характер. Впрочем, участники никогда не переставали относиться друг к другу с огромным уважением, что нашло отражение в словах Эйнштейна, написанных в 1949 году : Я вижу, что я был … довольно резок, но ведь … ссорятся по-настоящему только братья или близкие друзья [53]. Хотя Бор так и не сумел убедить Эйнштейна в своей правоте, эти обсуждения и решения многочисленных парадоксов позволили Бору чрезвычайно улучшить ясность своих мыслей и формулировок, углубить понимание квантовой механики : Урок, который мы из этого извлекли, решительно продвинул нас по пути никогда не кончающейся борьбы за гармонию между содержанием и формой; урок этот показал нам ещё раз, что никакое содержание нельзя уловить без привлечения соответствующей формы, и что всякая форма, как бы ни была она полезна в прошлом, может оказаться слишком узкой для того, чтобы охватить новые результаты [54]. Ядерная физика 1930-е годы [ править править код ] Нильс Бор в личном кабинете 1935 В 1932 году Бор с семьёй переехал в так называемый «Дом чести», резиденцию самого уважаемого гражданина Дании, выстроенную основателем пивоваренной компании « Карлсберг ». Здесь его посещали знаменитости не только научного например, Резерфорд , но и политического мира королевская чета Дании, английская королева Елизавета , президенты и премьер-министры различных стран [55]. В 1930-е годы Бор увлёкся ядерной тематикой , переориентировав на неё свой институт: благодаря своей известности и влиянию он сумел добиться выделения финансирования на строительство у себя в Институте новых установок — циклотрона , ускорителя по модели Кокрофта — Уолтона , ускорителя ван де Граафа [56]. Сам он внёс в это время существенный вклад в теорию строения ядра и ядерных реакций. В 1936 году Бор, исходя из существования недавно наблюдавшихся нейтронных резонансов, сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций : он предположил существование так называемого составного ядра «компаунд-ядра» , то есть возбуждённого состояния ядра с временем жизни порядка времени движения нейтрона через него. Тогда механизм реакций, не ограничивающийся лишь нейтронными реакциями, включает два этапа: 1 образование составного ядра, 2 его распад. При этом две эти стадии протекают независимо друг от друга, что обусловлено равновесным перераспределением энергии между степенями свободы компаунд-ядра. Это позволило применить статистический подход к описанию поведения ядер, что позволило вычислить сечения ряда реакций , а также интерпретировать распад составного ядра в терминах испарения частиц [57] , создав по предложению Якова Френкеля капельную модель ядра. Однако такая простая картина имеет место лишь при больших расстояниях между резонансами уровнями ядра , то есть при малых энергиях возбуждения. Как было показано в 1939 году в совместной работе Бора с Рудольфом Пайерлсом и Георгом Плачеком , при перекрытии резонансов компаунд-ядра равновесие в системе не успевает установиться и две стадии реакции перестают быть независимыми, то есть характер распада промежуточного ядра определяется процессом его формирования. Развитие теории в этом направлении привело к созданию в 1953 году Виктором Вайскопфом , Германом Фешбахом и К. Портером так называемой «оптической модели ядра», описывающей ядерные реакции в широком диапазоне энергий [58]. Одновременно с представлением о составном ядре Бор совместно с Ф. Калькаром предложил рассматривать коллективные движения частиц в ядрах, противопоставив их картине независимых нуклонов. Такие колебательные моды жидкокапельного типа находят отражение в спектроскопических данных в частности, в мультипольной структуре ядерного излучения. Идеи о поляризуемости и деформациях ядер были положены в основу обобщённой коллективной модели ядра, развитой в начале 1950-х годов Оге Бором , Беном Моттельсоном и Джеймсом Рейнуотером [59]. Велик вклад Бора в объяснение механизма деления ядер , при котором происходит освобождение огромных количеств энергии. Деление было экспериментально обнаружено в конце 1938 года Отто Ганом и Фрицем Штрассманом и верно истолковано Лизой Мейтнер и Отто Фришем во время рождественских каникул. Бор узнал об их идеях от Фриша, работавшего тогда в Копенгагене , перед самым отъездом в США в январе 1939 года [60]. В Принстоне совместно с Джоном Уилером он развил количественную теорию деления ядер, основываясь на модели составного ядра и представлениях о критической деформации ядра, ведущей к его неустойчивости и распаду. Для некоторых ядер эта критическая величина может быть равна нулю, что выражается в распаде ядра при сколь угодно малых деформациях [61]. Теория позволила получить зависимость сечения деления от энергии, совпадающую с экспериментальной. Кроме того, Бору удалось показать, что деление ядер урана-235 вызывается «медленными» низкоэнергетичными нейтронами , а урана-238 — быстрыми [62]. Противостояние нацизму. Борьба против атомной угрозы 1940—1950 [ править править код ] После прихода к власти в Германии нацистов Бор принял активное участие в устройстве судьбы многих учёных-эмигрантов, которые переехали в Копенгаген. В 1933 году усилиями Нильса Бора, его брата Харальда , директора Института вакцин Торвальда Мадсена и адвоката Альберта Йоргенсена был учреждён специальный Комитет помощи учёным-беженцам [63]. После оккупации Дании в апреле 1940 года возникла реальная опасность ареста Бора в связи с его полуеврейским происхождением. Тем не менее он решил оставаться в Копенгагене, пока это будет возможно, чтобы гарантировать защиту института и своих сотрудников от посягательств оккупационных властей. В октябре 1941 года Бора посетил Гейзенберг , в то время руководитель нацистского атомного проекта. Между ними состоялся разговор о возможности реализации ядерного оружия, о котором немецкий учёный писал следующим образом: Копенгаген я посетил осенью 1941 г. К этому времени мы в «Урановом обществе» в результате экспериментов с ураном и тяжёлой водой пришли к выводу, что возможно построить реактор с использованием урана и тяжёлой воды для получения энергии. Такой разговор состоялся во время вечерней прогулки в районе Ни-Карлсберга. Зная, что Бор находится под надзором германских политических властей и что его отзывы обо мне будут, вероятно, переданы в Германию, я пытался провести этот разговор так, чтобы не подвергать свою жизнь опасности. Беседа, насколько я помню, началась с моего вопроса, должны ли физики в военное время заниматься урановой проблемой, поскольку прогресс в этой области сможет привести к серьёзным последствиям в технике ведения войны. Бор сразу же понял значение этого вопроса, поскольку мне удалось уловить его реакцию лёгкого испуга. Он ответил контрвопросом: «Вы действительно думаете, что деление урана можно использовать для создания оружия? Бор был потрясён моим ответом, предполагая, очевидно, что я намереваюсь сообщить ему о том, что Германия сделала огромный прогресс в производстве атомного оружия. Хотя я и пытался после исправить это ошибочное впечатление, мне все же не удалось завоевать доверие Бора… [64] Таким образом, Гейзенберг намекает, что Бор не понял, что он имел в виду. Однако сам Бор был не согласен с такой трактовкой своей беседы с Гейзенбергом.
Привязав к барометру шнурок — рассказывал он, — нужно раскачать его у основания здания и на его крыше, замерев величину гравитации. Из разницы между полученными данными, при желании можно узнать высоту. Кроме того, раскачивая маятник на шнурке с крыши здания, можно определить высоту по периоду прецессии. Наконец, студент предложил найти управляющего здания и взамен на замечательный барометр выведать у него высоту. Резерфорд спросил, неужели студент и впрямь не знает общепринятого решения задачи. Он не стал скрывать, что знает, но признался, что сыт по горло навязыванием учителями своего образа мышления подопечным, в школе и колледже, и отверганием ими нестандартных решений. Как вы наверняка догадались, этим студентом был Нильс Бор. Переезд в Англию Проработав в университете три года, Бор переехал в Англию. Лаборатория Резерфорда на тот момент считалась наиболее выдающейся. Последнее время в ней проходили эксперименты, породившие открытие планетарной модели атома. Точнее, модель тогда пребывала еще на стадии становления. Опыты по прохождению альфа-частиц через фольгу позволили Резерфорду осознать, что в центре атома располагается небольшое заряженное ядро, на которое приходится едва ли вся масса атома, а вокруг него располагаются легкие электроны. Так как атом электронейтрален, сумма зарядов электронов должна равняться модулю заряда ядра. Заключение о том, что заряд ядра кратен заряду электрона было центральным в этом исследовании, но пока что оставалось неясным. Зато были выявлены изотопы — вещества, имеющие одинаковые химические свойства, но различную атомную массу. Атомный номер элементов. Закон смещения Работая в лаборатории Резерфорда, Бор понял, что химические свойства зависят от числа электронов в атоме, то есть от его заряда, а не массы, что и объясняет существования изотопов. Это стало первым важным достижением Бора в этой лаборатории. Так был сформирован «закон радиоактивных смещений». Далее датский физик сделал ряд более важных открытий, которые касались самой модели атома. Модель Резерфорда-Бора Эту модель также называют планетарной, ведь в ней электроны вращаются вокруг ядра подобно тому, как планеты вокруг Солнца. Такая модель имела ряд проблем. Дело в том, что атом в ней был катастрофически неустойчив, и терял энергию за стомиллионную долю секунды. В действительности же такого не происходило. Возникшая проблема казалась неразрешимой и требовала радикально нового подхода. Здесь и проявил себя датский физик Бор Нильс. Бор предположил, что, вопреки законам электродинамики и механики, в атомах есть орбиты, перемещаясь по которым электроны не излучают. Орбита стабильна, если момент количества движений электрона находящегося на ней равен половине постоянной Планка. Излучение происходит, но только в момент перехода электрона с одной орбиты на другую. Вся энергия, которая при этом высвобождается, уносится квантом излучения. Такой квант имеет энергию, равную произведению частоты вращения на постоянную Планка, или разности между начальной и конечной энергией электрона.
Эта модель основывалась на представлениях, находивших опытное подтверждение в физике твердого тела, но приводила к одному трудноразрешимому парадоксу. Согласно классической электродинамике, вращающийся по орбите электрон должен постоянно терять энергию, отдавая ее в виде света или другой формы электромагнитного излучения. По мере того как его энергия теряется, электрон должен приближаться по спирали к ядру и в конце концов упасть на него, что привело бы к разрушению атома. На самом же деле атомы весьма стабильны, и, следовательно, здесь образуется брешь в классической теории. Бор испытывал особый интерес к этому очевидному парадоксу классической физики, поскольку все слишком напоминало те трудности, с которыми он столкнулся при работе над диссертацией. Возможное решение этого парадокса, как полагал он, могло лежать в квантовой теории. В 1900 г. Макс Планк выдвинул предположение, что электромагнитное излучение, испускаемое горячим веществом, идет не сплошным потоком, а вполне определенными дискретными порциями энергии. Назвав в 1905 г. Применяя новую квантовую теорию к проблеме строения атома , Бор предположил, что электроны обладают некоторыми разрешенными устойчивыми орбитами, на которых они не излучают энергию. Только в случае, когда электрон переходит с одной орбиты на другую, он приобретает или теряет энергию, причем величина, на которую изменяется энергия, точно равна энергетической разности между двумя орбитами. Идея, что частицы могут обладать лишь определенными орбитами, была революционной, поскольку, согласно классической теории, их орбиты могли располагаться на любом расстоянии от ядра, подобно тому как планеты могли бы в принципе вращаться по любым орбитам вокруг Солнца. Хотя модель Бора казалась странной и немного мистической, она позволяла решить проблемы, давно озадачивавшие физиков. В частности, она давала ключ к разделению спектров элементов. Когда свет от светящегося элемента например, нагретого газа, состоящего из атомов водорода проходит через призму, он дает не непрерывный включающий все цвета спектр, а последовательность дискретных ярких линий, разделенных более широкими темными областями. Согласно теории Бора, каждая яркая цветная линия то есть каждая отдельная длина волны соответствует свету, излучаемому электронами, когда они переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Бор вывел формулу для частот линий в спектре водорода, в которой содержалась постоянная Планка. Частота, умноженная на постоянную Планка, равна разности энергий между начальной и конечной орбитами, между которыми совершают переход электроны. Теория Бора, опубликованная в 1913 г. Немедленно оценив важность работы Бора, Резерфорд предложил ему ставку лектора в Манчестерском университете — пост, который Бор занимал с 1914 по 1916 г. В 1916 г. В 1920 г. Под его руководством институт сыграл ведущую роль в развитии квантовой механики математическое описание волновых и корпускулярных аспектов материи и энергии. В течение 20-х гг. Тем не менее атом Бора сыграл существенную роль моста между миром атомной структуры и миром квантовой теории.