Чем больше сила, тем больше давление.
Чем выше тем давление меньше или больше
И если площадь больше,то давление меньше типа лыж,шин,копыт Ответ на вопрос Ответ на вопрос дан AlyaAvetisyan давление больше когда на коньках, потому что площадь поверхности меньше именно по этому когда спасают кого-то, то ложатся на лед, чем больше площадь, тем давление меньше там есть формула силы давления, но так как я проходила это лет 10 назад, я не помню приверно так: давление зависит от массы тела и площади Не тот ответ на вопрос, который вам нужен?
Познание этой взаимосвязи помогает улучшить проектирование различных систем и создание более эффективных механизмов. Что такое давление и как оно измеряется?
Давление можно представить как силу, которая распределена по определенной площади поверхности. Если площадь поверхности уменьшается, то на эту площадь будет действовать большая сила, что приведет к увеличению давления. Наоборот, если площадь поверхности увеличивается, то на эту площадь будет действовать меньшая сила, что приведет к уменьшению давления.
Измерение давления производится с помощью прибора, называемого манометром. В зависимости от конкретной ситуации, используются различные типы манометров, такие как замкнутая колонка, угловая калибровка или электронный манометр. И наоборот, чем меньше сила и чем больше площадь, тем меньшее давление.
Важно отметить, что давление является векторной величиной, имеющей как величину, так и направление. Направление давления указывает на направление силы, с которой действует газ или жидкость на поверхность. Площадь влияет на давление: основные принципы Основной закон, который определяет влияние площади на давление, — это закон Паскаля.
Согласно этому закону, давление, создаваемое на жидкость или газ, передается полностью во всех направлениях. То есть, давление не зависит от формы сосуда или его ориентации, оно распространяется равномерно во всех направлениях. Наиболее простым примером является давление, создаваемое водным столбом.
Если поместить стеклянную трубку вертикально в воду и закрыть ее верхнюю концовку, то давление внутри трубки будет равно давлению воды внутри столба. При этом высота столба будет влиять на давление: чем выше столб, тем больше давление.
Это отличие от давления твердых тел. Их давление зависит от площади: чем больше площадь, тем меньше давление. У жидкостей такой зависимости нет. Это оказывается при выводе формулы давления жидкости. Так как последнее примерно одинаково на всей поверхности Земли, то можно говорить, что давление жидкости зависит только от ее плотности и высоты.
Из формулы можно сделать выводы.
Атмосфера давит на поверхность ртути в чашке. Ртуть находится в равновесии. Значит, давление в трубке на уровне аа1 см. При изменении атмосферного давления меняется и высота столба ртути в трубке. При увеличении давления столбик удлиняется. При уменьшении давления — столб ртути уменьшает свою высоту. Давление в трубке на уровне аа1 создается весом столба ртути в трубке, так как в верхней части трубки над ртутью воздуха нет. Отсюда следует, что атмосферное давление равно давлению столба ртути в трубке, т. Измерив высоту столба ртути, можно рассчитать давление, которое производит ртуть.
Оно и будет равно атмосферному давлению. Если атмосферное давление уменьшится, то столб ртути в трубке Торричелли понизится. Чем больше атмосферное давление, тем выше столб ртути в опыте Торричелли. Поэтому на практике атмосферное давление можно измерить высотой ртутного столба в миллиметрах или сантиметрах. Если, например, атмосферное давление равно 780 мм рт. Следовательно, в этом случае за единицу измерения атмосферного давления принимается 1 миллиметр ртутного столба 1 мм рт. Найдем соотношение между этой единицей и известной нам единицей - паскалем Па. Итак, 1 мм рт. Например, в сводках погоды может быть объявлено, что давление равно 1013 гПа, это то же самое, что 760 мм рт. Наблюдая ежедневно за высотой ртутного столба в трубке, Торричелли обнаружил, что эта высота меняется, т.
Торричелли заметил также, что атмосферное давление связано с изменением погоды. Если к трубке с ртутью, использовавшейся в опыте Торричелли, прикрепить вертикальную шкалу, то получится простейший прибор - ртутный барометр от греч. Он служит для измерения атмосферного давления. Барометр - анероид. Файл:Kak rabotaet barometer aneroid. Так барометр называют потому, что в нем нет ртути. Внешний вид анероида изображен на рисунке. Главная часть его - металлическая коробочка 1 с волнистой гофрированной поверхностью см. Из этой коробочки выкачан воздух, а чтобы атмосферное давление не раздавило коробочку, ее крышка 2 пружиной оттягивается вверх. При увеличении атмосферного давления крышка прогибается вниз и натягивает пружину.
При уменьшении давления пружина выпрямляет крышку.
Пробить «барическое дно». Учёный назвал предел атмосферного давления
Чем больше площадь, тем меньше давление. Давление зависит от площади поверхности, на которую оказывается давление. Таким образом, чем больше площадь поверхности, тем больше сила давления. чем больше площадь опоры,тем меньше давление произвольное одной и той же силой на эту опору.
Давление в природе и технике
ГДЗ учебник по физике 7 класс Перышкин. §36. Упражнение 15 Номер 2 | А мы установили, что чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору. |
Давление в природе и технике | Такая машина оказывает на землю давление приблизительно в пятьдесят килопаскаль, что всего в несколько раз меньше давления худого человека. |
Пробить «барическое дно». Учёный назвал предел атмосферного давления | Их давление зависит от площади: чем больше площадь, тем меньше давление. |
§36. Способы уменьшения и увеличения давления » ГДЗ по физике 7-11 классов | распределяется по всей площади доски, следовательно, давление на лёд будет меньше, чем если бы он выбирался при помощи рук (давление обратно пропорционально площади поверхности воздействия: чем больше площадь, тем меньше давление). |
Распределение атмосферного давления по высоте | Это значит, что первоначальное давление Р₁ в 4 раза больше давления Р₂, то есть давление уменьшится в 4 раза, если мы площадь поверхности увеличим в 2 раза, а вес тела уменьшим в 2 раза. |
Остались вопросы?
Таким образом, чем больше площадь, тем меньше давление, и наоборот. И такого рода информация, связанная с наукой и физикой, может быть использована в нашей повседневной жизни, например, при попытке встать на ноги в песке давление увеличивается с весом тела на небольшой площади, таким образом, человек тонет.
Вследствие действия силы тяжести верхние слои атмосферы, подобно воде океана, сжимают нижние слои. Воздушный слой, прилегающий непосредственно к Земле, сжат больше всего и, согласно закону Паскаля, передает производимое на него давление по всем направлениям. Существованием атмосферного давления могут быть объяснены многие явления, с которыми мы встречаемся в жизни. Рассмотрим некоторые из них. На рисунке изображена стеклянная трубка, внутри которой находится поршень, плотно прилегающий к стенкам трубки. Конец трубки опущен воду. Если поднимать поршень, то за ним будет подниматься и вода. Это явление используется в водяных насосах и некоторых других устройствах.
На рисунке показан цилиндрический сосуд. Он закрыт пробкой, в которую вставлена трубка с краном. Из сосуда насосом откачивается воздух. Затем конец трубки помещается в воду. Если теперь открыть кран, то вода фонтаном брызнет в внутрь сосуда. Вода поступает в сосуд потому, что атмосферное давление больше давления разреженного воздуха в сосуде. Почему существует воздушная оболочка Земли. Как и все тела, молекулы газов, входящих в состав воздушной оболочки Земли, притягиваются к Земле. Но почему же тогда все они не упадут на поверхность Земли?
Каким образом сохраняется воздушная оболочка Земли, ее атмосфера? Чтобы понять это, надо учесть, что молекулы газов находятся в непрерывном и беспорядочном движении. Но тогда возникает другой вопрос: почему эти молекулы не улетают в мировое пространство, то есть в космос. Это так называемая вторая космическая скорость. Скорость большинства молекул воздушной оболочки Земли значительно меньше этой космической скорости. Поэтому большинство их привязано к Земле силой тяжести, лишь ничтожно малое количество молекул улетает за пределы Земли в космос. Беспорядочное движение молекул и действие на них силы тяжести приводят в результате к тому, что молекулы газов "парят" в пространстве около Земли, образуя воздушную оболочку, или известную нам атмосферу. Измерения показывают, что плотность воздуха быстро уменьшается с высотой. Так, на высоте 5,5 км над Землей плотность воздуха в 2 раза меньше его плотность у поверхности Земли, на высоте 11 км - в 4 раза меньше, и т.
Чем выше, тем воздух разреженнее. И наконец, в самых верхних слоях сотни и тысячи километров над Землей атмосфера постепенно переходит в безвоздушное пространство. Четкой границы воздушная оболочка Земли не имеет. Строго говоря, вследствие действия силы тяжести плотность газа в любом закрытом сосуде неодинакова по всему объему сосуда.
Просто так нам удобнее рассуждать и объяснять. У инженеров всё, что летает, делает это по причине совсем небольшой положительной разницы или асимметрии атмосферного давления на крыло. Появление подъёмной силы как раз и обусловлено качественным законом потоков: "Давление атмосферного потока на верхнюю отрицательно наклонную поверхность быстрого крыла тем меньше давления в самой атмосфере, чем больше хаос и разрежение частиц воздуха над ней; а давление потока на нижнюю положительно наклонную поверхность крыла тем больше атмосферного давления, чем больше скорость крыла, его угол наклона или атаки и деформация или уплотнение упругого воздуха под быстрым крылом". Как диагональ делит прямоугольник на два равных треугольника, так и плоское атакующее крыло делит набегающий поток на две самостоятельные и равнозначные причины возникновения подъёмной силы.
Это очень большая сила, которая давит на неподвижное плоское крыло совершенно одинаково и сверху, и снизу. Да, 10 тонн на каждый квадратный метр крыла! Как инженеры это узнали? Они применили принцип пропорциональности Леонардо да Винчи и разделили вес орла или летательного аппарата на площадь его несущих поверхностей. Вот и всё. А у математиков всё, что летает, летать не может по причине крайне не достаточной в 6 раз меньше веса самолёта или божьей твари подъёмной силы, вычисленной ими по самым надёжным математическим законам ньютоновской механики. Можете посмотреть по запросу «Парадокс шмеля», как математики из NASA и британские учёные вычисляли подъёмную силу через лобовое сопротивление и "массовую плотность воздуха". Знание математической физики сделало их ещё глупее, чем они были, когда родились.
И вообще, математик, считающий себя физиком, - это ноль в квадрате. Считать, что подъёмная сила крыла есть результат сопротивления воздушной среды его движению, в наше время может только профессор математики, а не физики. Читайте по запросу "О математическом идеализме в физике" это не только мои статьи. Идеальный или самый эффективный аэродинамический профиль — это «беспрофиль», то есть плоское, как лезвие безопасной бритвы, крыло. И это для передовых инженеров уже аксиома и "новая аэродинамика", а Природа это знала ещё со времён первых летающих насекомых и птеродактилей. Так вот, асимметричное атмосферное давление на совершенно плоское крыло возникает и при его нулевом угле наклона к вектору движения набегающего атмосферного потока, если верхняя поверхность крыла испещрена микроскопическими неровностями, а нижняя — максимально гладкая. В воде "эффект хаоса над крылом" проявляется ещё значительно сильнее. Это утверждение доказано самой эволюцией живой природы и передовой практикой авиастроения.
Смотрим на расправленное крыло любой птицы: сверху оно бархатистое и может играть всеми цветами радуги, что физику говорит о дисперсии света на мельчайших неровностях на поверхности, а снизу — всегда очень плотное, гладкое и со стальным отливом. Смотрим на современный пассажирский «Боинг»: сверху он словно матовый, а снизу — зеркально гладкий. И пусть та положительная разница в атмосферном давлении на крыло, которая возникает только по причине различного качества покрытия его аэродинамических поверхностей, будет и недостаточной для полёта, но именно она и позволит самолёту или птице лететь горизонтально с меньшим углом атаки, то есть с меньшим лобовым сопротивлением, экономя топливо и силы. Инженеры «Боинга» уже экономят на "эффекте хаоса над крылом" и "эффекте плотного взаимодействия под крылом" до 7-ми процентов топлива, а это огромные деньги. Смотрите фотографии «Боингов» и читайте по запросу «Аэродинамика Боинг». А наши дурни из Сколково одной краской покрывают весь Боинг. Смотрите по запросу "Красим Боинг". Кожа акулы тоже только кажется гладкой, а на ощупь она сравнима с наждачной бумагой.
Шершавая кожа способствует образованию хаоса в пограничном слое воды, что ещё больше уменьшает её давление на быструю акулу. И таких примеров "мильён". Эйнштейн очень много сделал для любителей огромных и сверхмалых чисел и всевозможных формул, но он "наследил" ещё и в аэродинамике. В рассуждениях Эйнштейна о подъёмной силе «Элементарная теория полёта и волн на воде» 1916. Берлин есть только верхняя горбатая поверхность крыла и есть закон Бернулли: мол, крыло делит набегающий поток на два потока, из которых верхний, огибающий горб, всегда несколько быстрее прямого нижнего, а раз быстрее, то и меньше давление в нём; дескать, вот вам и положительная или подъёмная разница атмосферного давления на крыло. Однако небольшая подъёмная сила горизонтального горбатого крыла всё же имеет место быть, но не по закону Бернулли, а по причине разрежения и завихрения воздуха за горбом, то есть по качественному закону потоков отрицательно наклонная поверхность. Как авторитетные авиаторы ни пытались хоть что-то объяснить знаменитому теоретику про угол атаки крыла и наклон всего самолёта к вектору движения как о главной причине возникновения положительной разницы атмосферного давления, он лишь снисходительно посмеивался над ними к примеру, переписка Эйнштейна с испытателем самолётов Паулем Георгом Эрхардтом. Дундуковость учёного всегда начинается с непонимания, незнания или с "незамечания" им сущей простоты и с желания выглядеть умным.
Смотрите «Эйнштейн и подъёмная сила, или Зачем змею хвост». Вопросы профессору на засыпку: "Почему в рассуждениях теоретиков горбатого профиля закон Бернулли действует только над крылом? Перевёрнутый самолёт Кульнева летел горизонтально с опущенным хвостом, то есть с положительным наклоном к вектору встречного потока. Про математика Николая Жуковского и про его "присоединённые вихри", как о причине возникновения подъёмной силы, толкающей крыло снизу вверх, даже упоминать не хочется. Самолёты Эйнштейна и Жуковского - "беременная утка" и "шестикрылый монстр доаэродинамического периода" - не полетели по причине большого паразитного лобового сопротивления очень горбатых крыльев. Но именно они, а не Природа являются основоположниками и "отцами" аэродинамики... А ведь ещё Галилей завещал нам искать подсказки для ответов на все вопросы у Природы и в лабораториях, а не в научных текстах и не у себя в голове. Смотрите по запросу "Посмеёмся, мой Кеплер, великой глупости людской".
Повторяем только что доказанный вывод: «Давление потока на параллельную ему поверхность всегда тем меньше давления в самом потоке, чем больше скорость этого потока и чем больше хаос в движении частиц пограничного слоя потока». Вот почему математикам уже делать больше нечего - ни в аэродинамике, ни в объяснениях взаимодействий потоков с поверхностями. Так что, не только "Математика убивает креативность" Андрей Фурсенко , но и креативность убивает математику. Причём математика убивает креативность всегда, а креативность убивает математику ещё недостаточно часто. Однако вторым законом потоков объясняются не только опыты к теме «Закон Бернулли», но ещё один раз доказывается нечто совсем другое, позволяющее увидеть истоки математического идеализма в физике и похоронить математическую физику, как науку о природе. Сейчас мы эту словесную формулу математического идеализма просто-напросто докажем. Вернее, я докажу, а вы... Просто знание Невесомые вещества — это хаосы: "Если нет веса у беспорядочно мечущейся частицы, то нет его и у целого" Левкипп и Демокрит.
Знаете ли, все древние народы считали воздух и другие газы невесомыми веществами. Однако даже не все плазмы — это невесомые хаосы: «неорганизованная» плазма — это всем хаосам хаос; а «самоорганизованная» плазма - совсем не хаос. Последняя мгновенно образуется в замкнутых объёмах или под внешним давлением и состоит из равноудалённых колеблющихся частиц. Напряжением взаимного отталкивания равноудалённых частиц «организованная» плазма способна разорвать любые оболочки или направленным действием пробить любую броню, что и используется инженерами-взрывниками уже довольно давно. Смотрите по запросу «Самоорганизованная плазма». Самый яркий пример «неорганизованной» плазмы — это удалённая от поверхности плазменная атмосфера Солнца или его корона; самый простой пример "организованной" плазмы - пламя свечи, обжатое атмосферным давлением. Но у хаосов нет не только ни веса, ни существенного давления, но они ещё и непрозрачны ни для звука, ни для электромагнитных колебаний. К примеру, "неорганизованная" плазма, окружающая гиперзвуковую ракету, не позволяет управлять ракетой с помощью радиосигналов.
Поэтому все прозрачные жидкости и газы состоят из примерно одинаковых, равноудалённых и условно неподвижных колеблющихся или дрожащих частиц, находящихся в состоянии взаимного отталкивания и относительного или чуткого равновесия и взаимно отталкивающихся в газах на расстояниях много больших, чем в жидкостях. Отсюда: давление в любой точке водоёма или атмосферы равно напряжению взаимного отталкивания равноудалённых частиц в этой точке, и по силе оно равно весу всех частиц над этой точкой. Уберите атмосферное давление, и капля воды тут же исчезнет, разлетевшись на молекулы, а аквариум с водой словно взорвётся. И повинно в том будет как раз-таки «напряжение взаимного отталкивания равноудалённых частиц». Смотрите по запросу "Современный Архимед. Трактат "О плавающих телах" и «К физике антигравитонов». Там есть опыты, позволяющие буквально увидеть неподвижность колеблющихся частиц в жидкостях и в газах. Особенно показателен опыт по мгновенному замерзанию переохлаждённой воды при её встряхивании в пластиковой бутылке.
Многие его знают, но не понимают, какую роль тут играет встряхивание. Способность атомов и молекул к движению взаимного отталкивания пропорциональна температуре. А температура — это «опосредованное мерило» интенсивности атомных и внутриатомных движений и величины гравитационных моментов квантов, импульсов атомов, передающихся от атома к атому путём индукции. Гравитационные моменты у более возбуждённых атомов больше, а у «менее горячих» - меньше. Этими моментами атомы словно дёргают друг друга, понуждая сами себя к взаимному отталкиванию, к синхронности движений и к равновесию. Так осуществляется встречный индукционный или индуктивный теплообмен в природе и в гравитационной физике. О квантовой природе тяготения и отталкивания, электромагнетизма и прочего всего смотрите по запросу «Гравитационная физика. Или вы думаете, что теоретики знают об атоме больше инженеров?..
Это значило бы, что человек научился расщеплять атом" Альберт Эйнштейн. Роберт Оппенгеймер - это инженер-изобретатель, "папа атомной бомбы". Он же на вопрос президента Гарри Трумэна "Когда русские смогут сделать атомную бомбу? Дескать, в учебниках русских нет и намёка на реальную физику атома.
Вывод : Фура с 10 тоннами груза, давит на дорогу не больше легковой. На каждый см2 дороги, 3кг 300 гр и фура и легковой автомобиль. Для сравнения женский каблук давит в 10 раз больше. Если есть математики, пересчитайте , для этого есть формулы.
Закон Паскаля. В чём же заключается основной закон гидростатики?
распределяется по всей площади доски, следовательно, давление на лёд будет меньше, чем если бы он выбирался при помощи рук (давление обратно пропорционально площади поверхности воздействия: чем больше площадь, тем меньше давление). Тегипочему с увеличением массы молекул увеличивается давление, чем больше площадь тем меньше давление, какие факторы позволяют говорить о давлении жизни биология 11, физика в живой и неживой природе, закон физики о давлении. Ответ: чем больше площадь там меньше давление. Если площадь опоры будет больше, то тем меньше будет давление, производимое данной силой, и наоборот, с уменьшением площади опоры (при неизменной силе) давление возрастает.
Чем больше площадь тем меньше давление?
В результате, при той же силе, чем меньше площадь, тем больше давление на поверхность. 1. Чем больше площадь опоры, тем меньше давление производимое одной и той же силой на эту поверхность. Слайд 14Способы уменьшения и увеличения давления: Чем больше площадь опоры, тем меньше.
Давление. Способы изменения давления
Чем больше площадь поверхности тем меньше давление | Давление зависит от площади поверхности, на которую оказывается больше площадь, тем меньше давлениеЧем меньше площадь, тем большая сила действует на единицу площадиДавление зависит от значения силы, которая действует на поверхность. |
Давление в природе и технике | Физика | 2 Чем больше площадь, тем меньше давление." в (PowerPoint). |
Чем больше площадь, тем меньше давление: физический закон и его влияние на нашу жизнь | И отсюда уже видим, что давление обратно пропорционально поверхности, то есть чем больше поверхность, тем меньше давление, оказываемое на нее. |
Чем больше площадь, тем меньше давление
- Вставьте в текст подходящие по смыслу слова. «Чем … площадь опоры, тем … давление, производи…
- Идеальный газ — определение, свойства, условия
- Чем больше площадь поверхности тем меньше давление
- Давление. Способы изменения давления
На 30 мм ниже нормы
- ГДЗ Физика 7 класс Перышкин
- Давление в динамике.
- Что такое атмосферное давление и как оно влияет на погоду?
- Физика (7 класс)/Давление
Что такое давление и как оно измеряется?
- Взаимосвязь между площадью и давлением
- От чего оно зависит?
- Другие вопросы:
- Связанных вопросов не найдено
- Открытие и измерение
Давление твёрдых тел
Как зависит давление от силы и площади поверхности? | Поэтому если давление хотят уменьшить, то площадь опоры делают как можно больше, а если давление хотят увеличить, то делают её как можно меньше. |
Случаи, когда давление стараются уменьшить или увеличить | Textbook вики | Fandom | Тегипочему с увеличением массы молекул увеличивается давление, чем больше площадь тем меньше давление, какие факторы позволяют говорить о давлении жизни биология 11, физика в живой и неживой природе, закон физики о давлении. |
§36. Способы уменьшения и увеличения давления » ГДЗ по физике 7-11 классов | Чем больше площадь поверхности тем меньше давление. то есть чем больше поверхность, тем меньше давление, оказываемое на нее. |
Чем больше площадь тем меньше давление? | Чем больше площадь соприкосновения, колеса с дорогой, тем меньше давление на дорогу(закон физики). |
Давление в природе и технике | Однако, когда площадь конца штыря меньше, давление на землю становится больше и штырь труднее проникает в землю. |
: "Давление – физическая величина, равная отношен
Этот закон был установлен экспериментально. Предположим, что в некоторой жидкости существует прямоугольная призма, один из катетов которой расположен вертикально, а второй — горизонтально. Давление на вертикальную стенку будет равно Р2, давление на горизонтальную стенку будет Р3, давление на произвольную стенку будет Р1. Три стороны образуют прямоугольный треугольник, силы давления, действующие на эти стороны, направлены по нормали к этим поверхностям. Поскольку выделенный объем находится в состоянии равновесия, покоя, никуда не движется, следовательно, сумма сил, на него действующих, равна нулю. Сила, действующая по нормали к гипотенузе, пропорциональна площади поверхности, то есть равна давлению, умноженному на площадь поверхности.
Миллиметры ртутного столба и гектопаскали В некоторых задачах давление выражается не в миллиметрах ртутного столба, а в паскалях или гектопаскалях. Запишем вышеприведенное соотношение для случая, когда давление выражено в гектопаскалях. Теперь выразим соотношение высоты и атмосферного давления не через миллиметры ртутного столба, а через гектопаскали. Выходит, что когда мы поднимаемся на 9 метров, то давление уменьшается на один гектопаскаль. Нормальное давление — это 1013 гПа.
Округлим 1013 до 1000 и примем, что на поверхности Земли именно такое АД. Если мы поднимаемся на 90 м, как с высотой изменяется атмосферное давление? Оно уменьшается на 10 гПа, на 90 м — на 100 гПа, на 900 м — на 1000 гПа. Если на земле давление в 1000 гПа, а мы поднялись на 900 м вверх, то атмосферное давление стало нулевым. Так что, получается что атмосфера заканчивается на девятикилометровой высоте? На такой высоте есть воздух, там летают самолеты. Так в чем же дело?
Давление тем больше, чем меньше площадь поверхности при одинаковой силе давления. Если давление и площадь известны, то силу давления можно найти по формуле: Единица измерения давлени в СИ — паскаль Па в честь французского ученого Блеза Паскаля. Одна и та же сила давления, приложенная к разным площадям, приводит к разным результатам.
И такого рода информация, связанная с наукой и физикой, может быть использована в нашей повседневной жизни, например, при попытке встать на ноги в песке давление увеличивается с весом тела на небольшой площади, таким образом, человек тонет.