Новости коэффициент джини показывает

В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов. 10%, 30% населения, коэффициент Джини для распределения богатства) Россия опережает любую другую крупную страну.

РБК: Росстат зафиксировал рост концентрации доходов в 2023 году

Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. Самым распространенным показателем измерения уровня экономического неравенства коэффициент является коэффициент Джини. Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной.

Коэффициент Джини (распределение дохода)

Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов – кривой Лоуренса. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. Рассмотрим, что из себя представляет кривая Лоренца и причем тут индекс Джини Телеграм-канал Группа Вконтакте: TikTok: #индексджини #доходы #неравенство Привет, в 2015 году я получил высшее экон.

Какие страны и почему отличаются высоким показателем джини география реферат

Во втором — посмотреть динамику потребления и сделать экономические прогнозы. Величина прожиточного минимума зависит от региона и даже социальной принадлежности получателя. Всего есть три социально-демографические группы, для которых определяется прожиточный минимум: трудоспособное население, пенсионеры и дети. Отдельно он рассчитывается «в расчёте на душу населения». Последнее название напоминает нам, что прожиточный минимум — это статистическая величина, выполняющая конкретную роль при составлении бюджета.

В России государство использует абсолютный подход к бедности. На 2 квартал 2017 года прожиточный минимум составляет На 2 квартал 2017 года прожиточный минимум составляет 11163 руб.

Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики.

Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей.

Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге.

И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита.

Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков.

Потребление в целом продолжает поддерживаться опережающей динамикой 01 апр 2024 Ульяновская область подготовила первый выпуск народных облигаций 29 марта 2024 года начнется размещение первого выпуска народных облигаций для физических лиц Ульяновской области. Чтобы получить бонус, нужно:Зарегистрироваться на Финуслугах;Выбрать вклад;Ввести промокод 22 марта 2024 Как мы работаем 8 марта В праздничный день, 8 марта, Финуслуги работают в обычном режиме — вы можете выбирать любые продукты, отправлять заявки в банки и страховые компании. А теперь информация отдельно по продуктам:Вклады.

Если же площади будут максимально отличаться, то коэффициент неравенства составит 1. Это свидетельство полного дисбаланса между бедными и богатыми в обществе. Для детального расчета используют специальную формулу Брауна по которой можно рассчитать коэффициент Джини и составить рейтинг внутри страны, который распределен как по годам, так и по регионам на карте. После получения этих цифр можно сопоставить рейтинг разных стран. Актуальные показатели Коэффициент Джини рассчитывается и в России. Эти цифры можно найти на страницах официального сайта Росстата.

Здесь представлены следующие показатели, вплоть до 2018 года. По годам Распределенный за весь период существования России, как самостоятельного государства, коэффициент Джини выглядит следующим образом: В 1992 год он составил 0,289.

Ваш пароль

После выполнения прогноза мы классифицировали уровень риска каждой политики. Каждая точка на оси X символизирует уровень риска полиса, а каждая точка на оси Y — сумму денег, заявленную группой в реальных деньгах. Группа 10 — это группа, которая спрогнозировала наиболее рискованные полисы с точки зрения фактических требований. Расчет индекса Джини Пойдем шаг за шагом. Первым шагом является получение результата двух моделей в предикации. Построенные нами модели показывают группу риска и сумму требования всех полисов в них в предикации. В итоге мы создали три столбца: первый — рейтинг риска от 1 до 10, второй — сумма денег, которую претендовала группа полисов в одной модели, и второй столбец — то же самое, но результат второго модель.

Саму же площадь под кривой будем считать по группам. Можно видеть, что над каждой группой образуется треугольник или четырехугольник — они выделены разными цветами. Рассмотрим, например, вторую группу зеленый четырехугольник. Тогда сумма всех фигур под кривой Лоренца будет равна Эту сумму, как вы помните, нужно вычесть из 0,5, чтобы получить площадь фигуры над кривой И наконец, разделив все это на площадь диагонального треугольника то есть опять же на 0,5 , получим формулу коэффициента Джини: Есть и другие формулы, расчет по одной из них приведен, например, вот тут.

Мне кажется, что в ней проще запутаться, а получается ровно то же самое. Чтобы проверить себя, решите задачу.

Низкий показатель коэффициента Джини не означает богатства или бедности выборки в целом, а лишь низкую разницу между самыми богатыми и самыми бедными. То же самое, но с противоположной стороны, относится и к высокому показателю.

По последним данным , Россия занимает примерно среднее значение по этому показателю среди стран мира.

Mean 66: Aggregates are calculated as the average of available data for each time period. Values are not shown if more than one third of the observations in the series are missing. Median: Aggregates are calculated as the median of available data for each time period. Median 66: Aggregates are calculated as the median of available data for each time period. Values are not computed if more than a third of the observations in the series are missing. Min: Aggregates are set to the lowest available value for each time period. Sum: Aggregates are calculated as the sum of available data for each time period. Sum 66: Aggregates are calculated as the sum of available data for each time period.

Sums are not shown if more than one third of the observations in the series are missing. Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period.

Кривая Лоренца

Благосостояние — обеспеченность населения государства, социальной группы или класса, семьи, отдельной личности необходимыми для жизни материальными, социальными и духовными благами. Кривая спроса — это график, иллюстрирующий связь между ценой определенного товара или услуги и количеством товара, которое может и хочет купить потребитель по данной цене. Является графическим представлением спроса. Счёт текущих операций — раздел платёжного баланса страны, в котором фиксируются экспорт и импорт товаров и услуг, чистый доход от инвестиций и чистый объём трансфертных платежей. Коэффициент демографической нагрузки — обобщённая количественная характеристика возрастной структуры населения, показывающая нагрузку на общество непроизводительным населением. Определяется различными соотношениями численности укрупненных возрастных групп: детей 0-14 лет , пожилых и старых 60 лет и старше , трудоспособных условно 15-59 лет. Различают следующие показатели демографической нагрузки: отношение числа детей или числа пожилых людей или общего числа детей и пожилых людей к числу людей... Экономическое неравенство - это различие по показателям экономического благосостояния между отдельными лицами в группе, между группами населения или между странами. Проблема экономического неравенства имеет отношение к понятиям справедливости, равенства результатов и равенства возможностей. Занятость — не противоречащая законодательству деятельность граждан, связанная с удовлетворением их личных и общественных потребностей и приносящая им заработок, трудовой доход.

Существуют следующие виды занятости... Предельные издержки также маржинальные издержки англ. Модель Харрода — Домара англ. Harrod—Domar model — неокейнсианская модель экономического роста, объясняющая рост экономики при условии постоянства коэффициентов капиталоёмкости и склонности к сбережению в долгосрочном периоде. В модели были впервые интегрированы процессы мультипликации и акселерации. Модель объединила работы Роя Ф. Харрода, впервые предложившего свою модель гарантированного роста в 1939 году, и Евсея Домара, который в 1946 году расширил условия краткосрочного кейнсианского равновесия... Конвергенция в экономике эффект наверстывания — гипотеза, что более бедные страны с низкими доходами на душу населения будут иметь более высокие темпы экономического роста, чем богатые страны. В результате доход на душу населения всех экономик должен в конечном итоге сойтись.

Развивающиеся страны имеют потенциал к росту более высокими темпами, чем развитые страны, поскольку убывание доходности факторов производства в частности, капитала меньше, чем в богатых странах. Кроме того, более бедные... ВВП в расчёте на душу населения определяет уровень экономического развития государства. Все показатели для сопоставимости выражаются в единой валюте — доллар США. Пересчёты из национальных валют в доллары выполняются по рыночным обменным курсам валют. ROI от англ. ROI обычно выражается в процентах, реже — в виде дроби. Этот показатель может также иметь следующие названия: прибыль на инвестированный капитал, прибыль на инвестиции, возврат, доходность инвестированного капитала, норма доходности. Подробнее: Окупаемость инвестиций Паритет покупательной способности англ.

Если доходы равны, графики совпадут, а коэффициент будет равен нулю. Если доходы сосредоточит только одна доля населения, то коэффициент станет равен единице. Вот в этих пределах неравенство и считают. Есть и численные формулы для подсчёта, но, думаю, интересующиеся их найдут и сами. Возьму свой давешний пример с буханками хлеба на пятерых. При равном распределении десяти буханок на пятерых, коэффициент неравенства будет равен нулю.

Теперь в DataFrame добавлены столбцы. Выводы: С точки зрения примера, индекс Джини показывает, что модель A лучше с точки зрения результатов, чем модель B. Вы также можете видеть на кривой Лоренца, что модель A предсказывает более высокую группу риска, больше денег, чем модель B. И, конечно же, коэффициент площади модели А больше коэффициента модели В, а значит, дисперсия фактический рейтинг модели при прогнозировании рискованной политики лучше. Индекс Джини с кривой Лоренца также может быть эффективен при сравнении результатов двух моделей. Если предположить, что вы хотите предсказать риск утверждение полиса , и в приведенном выше примере мы показываем сравнение между результатами прогнозирования политик, кривая Лоренца очень хорошо наглядно показывает преимущество результатов одной модели по сравнению с другими. Хорошая возможность сравнения результатов модели дает возможность автоматически публиковать новую модель.

При этом нет зависимости от масштаба экономики сравниваемых стран. Может быть использован для сравнения распределения признака дохода по разным группам населения например, коэффициент Джини для сельского населения и коэффициент Джини для городского населения. Позволяет отслеживать динамику неравномерности распределения признака дохода в совокупности на разных этапах. Анонимность — одно из главных преимуществ коэффициента Джини. Нет необходимости знать, кто имеет какие доходы персонально. Так, чем на большее количество групп поделена одна и та же совокупность больше квантилей , тем выше для неё значение коэффициента Джини.

Коэффициент Джини, значение по странам мира и в России

Саму же площадь под кривой будем считать по группам. Можно видеть, что над каждой группой образуется треугольник или четырехугольник — они выделены разными цветами. Рассмотрим, например, вторую группу зеленый четырехугольник. Тогда сумма всех фигур под кривой Лоренца будет равна Эту сумму, как вы помните, нужно вычесть из 0,5, чтобы получить площадь фигуры над кривой И наконец, разделив все это на площадь диагонального треугольника то есть опять же на 0,5 , получим формулу коэффициента Джини: Есть и другие формулы, расчет по одной из них приведен, например, вот тут. Мне кажется, что в ней проще запутаться, а получается ровно то же самое. Чтобы проверить себя, решите задачу.

А у бедных — в 5 раз меньше, чем у средних. Естественно, из расчета на одного человека. Далее, если рассматривать эти общие расходы по-отдельности, то получится следующее. Богатые, по сравнению с бедными, тратят больше в 5 раз на питание, в 12 раз — на одежду, 20 раз — на медицину. Возможно ли из бедного превратится в богатого Если исходить из статистики, то можно заметить некоторые неутешительные тенденции.

Бедные становятся еще беднее, им труднее зарабатывать и приумножать свой капитал, чем богатым. Между тем количество миллиардеров растет и это тоже факт. У богатых денег больше, соответственно, и возможностей больше. Они увеличивают свое состояние быстрее. Поэтому даже при равных условиях в более выгодном положении остается тот, у кого средств оказалось больше.

Но, как говорится, нет ничего не возможного. Если абстрагироваться от размера капитала, и исходить из реальности, то оптимальной позицией будет следующая. Самостоятельность в действиях, анализ доходов и трат, четкий план действий, а также грамотное распределение денег, накопление, откладывание, инвестиции — необходимый минимум на пути к благосостоянию. Подытоживая, следует заметить, что, безусловно, есть много людей, которые считают, что со временем ситуация ухудшится и число бедных будет только расти. Но если все время придерживаться этой позиции и ничего совсем не делать, то лучше от этого точно не станет.

Все в руках человека.

Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать.

Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности.

Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными.

Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов. В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5. В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты.

Какой же доверительный интервал может быть у единственного числа? И тем не менее, доверительный интервал коэффициент Джини существует. В этом посте хочу познакомить экспертов, занимающихся оценкой качества моделей, с таким малоизвестным инструментом как «доверительный интервал коэффициента Джини» Вопрос происхождения и расчета указанного показателя очень мало освещен в интернете: поисковики выдадут одну внятную англоязычную ссылку с попыткой интерпретации соответствующей формулы, которая без дополнительной информации будет недостаточно понятна.

Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле: Указанная формула приведена в статье «The Meaning and Use of the Area under a Receiver Operating Characteristic ROC Curve». Кратко поясню смысл приведенной формулы.

В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи

Коэффициент Джини может принимать значения от 0 до 1. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца.

Экономика. 10 класс

Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.

Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление.

Коэффициент концентрации Джини G используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]: где — накопленная частость доля численности единиц совокупности; — накопленная доля значений признака i-ой группы, приходящихся на все единицы совокупности.

Иным способом расчета коэффициента является геометрический метод. А именно, через кривую Лоренца. Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2]. И на её основании можно вывести коэффициент Джинни.

Для простоты понимания рассмотрим рисунок 1.

Государственная статистика Единая межведомственная информационно-статистическая система ЕМИСС разрабатывалась в рамках реализации федеральной целевой программы «Развитие государственной статистики России в 2007-2011 годах». Целью создания Системы является обеспечение доступа с использованием сети Интернет государственных органов, органов местного самоуправления, юридических и физических лиц к официальной статистической информации, включая метаданные, формируемой в соответствии с федеральным планом статистических работ.

Теперь в DataFrame добавлены столбцы. Выводы: С точки зрения примера, индекс Джини показывает, что модель A лучше с точки зрения результатов, чем модель B. Вы также можете видеть на кривой Лоренца, что модель A предсказывает более высокую группу риска, больше денег, чем модель B. И, конечно же, коэффициент площади модели А больше коэффициента модели В, а значит, дисперсия фактический рейтинг модели при прогнозировании рискованной политики лучше. Индекс Джини с кривой Лоренца также может быть эффективен при сравнении результатов двух моделей. Если предположить, что вы хотите предсказать риск утверждение полиса , и в приведенном выше примере мы показываем сравнение между результатами прогнозирования политик, кривая Лоренца очень хорошо наглядно показывает преимущество результатов одной модели по сравнению с другими. Хорошая возможность сравнения результатов модели дает возможность автоматически публиковать новую модель.

Вы точно человек?

Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. Коэффициент Джини (индекс концентрации доходов) — статистический показатель для оценки экономического равенства.

Ваш пароль

Коэффициент Джини, значение по странам мира и в России Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500.
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%.
Реальные зарплаты в первом полугодии выросли на 6,9% - Ведомости "РГ"), подготовленный Росстатом, также демонстрирует снижение неравенства.
Коэффициент Джини - что это такое простыми словами Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы.

Похожие новости:

Оцените статью
Добавить комментарий