Сегодня Всемирная метеорологическая организация считает наукастингом прогноз на два часа вперёд. Нейросетевые методы наукастинга осадков: обзор и апробация существующих решений. За сегодняшний день в Москве выпадет около 30% месячной нормы осадков. Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля.
Что сейчас на улице
Графики строятся по параметрам: температура, давление, относительная влажность, скорость и направление ветра, порывы ветра, количество осадков с указанием фазы осадков , накопленное количество осадков, облачность, высота снега. Карты отображают следующие характеристики: количество осадков за период, количество осадков накопленное, температура воздуха и другие основные метеопараметры у поверхности земли и на основных изобарических поверхностях. Рекомендуемое применение Резервирование уборочной техники и работников для оперативного устранения последствий ожидаемых негативных погодных явлений ливни, снегопады, гололед, сильные порывы ветра, грозы Заблаговременная подготовка коллектива и рабочей инфраструктуры, зависимой от погоды, к эксплуатации при возникновении негативных погодных условий. Своевременное проведение профилактических работ, направленных на минимизацию рисков при негативных явлениях погоды.
По словам Романа Вильфанда, для окончательной настройки компьютера потребуется еще от 6 до 8 месяцев.
Но прогнозы высокого разрешения для Московского региона с шагом в километр появятся еще позже — к концу 2019 года. Методы прогнозирования погоды Считается, что предсказание погоды является конечной целью исследования атмосферы. Прогнозирование отмечается как наиболее развитая область в метеорологии. Природа современного прогнозирования погоды достаточно сложна.
Принято выделять три метода научного прогнозирования погоды: синоптическое прогнозирование погоды, численный он же гидродинамический метод и статистический. Синоптическое прогнозирование — это традиционный подход к прогнозированию погоды. До конца 1950-х годов этот метод использовался как основной. Он основывается на построении и анализе синоптических карт, изображающих атмосферные условия в конкретный момент времени.
На них выделяются отдельные объекты циклоны, антициклоны, атмосферные фронты и т. Современный метеорологический центр ежедневно готовит серию синоптических карт. Такие карты составляют основу прогнозов погоды. Задача подготовки синоптических карт на постоянной основе включает в себя сбор и анализ огромного количества данных наблюдений, полученных с множества метеорологических станций.
Первую карту погоды составил французский математик, директор Парижской обсерватории Урбен Леверье 19 февраля 1855 года. Этот процесс отнял немало времени. Ее составили на основе данных, полученных по телеграфу из нескольких городов Европы. Разносторонний Леверье также известен тем, что на основании его расчетов была открыта планета Нептун.
На основе тщательного изучения метеорологических карт на протяжении многих лет были сформулированы определенные эмпирические правила. Эти правила помогают метеорологам оценить скорость и направление движения погодных систем. Например, когда известен тип погоды, создаваемой вдоль фронта, а также скорость и направление движущейся бури, можно сделать довольно точный прогноз погоды для выбранной местности. Но из-за внезапных изменений в циклонической системе эти прогнозы действительны на протяжении лишь короткого периода времени, скажем, в течение нескольких часов или дня.
Прогнозирование на более длительный период уже затруднительно. Численный метод включает в себя много математики. Он также называется «гидродинамическим» и основан на построении математических моделей атмосферы и моделей взаимодействия атмосферы и океана. В нем решаются уравнения гидро- и термодинамики и используются основные физические законы.
Газы атмосферы подчиняются ряду физических принципов, и если известны текущие условия атмосферы, то известные физические законы могут использоваться для прогнозирования будущей погоды. С конца 1940-х годов наблюдается устойчивый рост использования математических моделей в прогнозировании погоды. Эти процедуры стали возможны благодаря продвижению в формулировании математических моделей. Математические уравнения применяются для разработки теоретических моделей общей циркуляции атмосферы.
Они также используются для прогнозирования изменений в атмосфере с течением времени. В них учитываются параметры определенных элементов погоды, таких как воздушные течения, температура, влажность, испарение, облачность, дождь, снег и взаимодействие воздушных потоков с поверхностью суши и океанов. В разработке численного метода прогнозирования погоды решающие шаги были сделаны советским ученым, академиком А. Обуховым и американским ученым Дж.
Именно они довели этот метод до практической реализации, ставшей возможной с появлением ЭВМ. Когда мы рассматриваем постоянно меняющуюся атмосферу, необходимо учитывать большое количество переменных.
Таким образом, каждый пиксель изображения соответствует квадрату 2х2 км с данными различных измерений атмосферы по высоте. Есть два спец.
Рассчитывается по формуле Маршала-Палмера [1] из отражаемости, которая описана в следующем разделе. Показывает сколько выпало бы осадков в мм, если бы осадки шли с такой интенсивностью целый час. Отражаемость Отражаемость — величина, измеряемая радаром. Значение скоррелировано с количеством влаги в атмосфере в некоторой точке.
Измерения происходят на 10 уровнях высоты от 1км до 10 км с шагом 1 км и аппроксимируются на полный круг измерения радара.
Бассейн Оки На всем протяжении р. Ока кроме г. Муром наблюдается снижение уровня воды на 5-31 см.
Муром уровень воды остановился на пике половодья. На притоках Верхней Оки уровень воды снижается на 4-25 см за сутки. Продолжается снижение уровня воды в нижнем течении р. Мокша — на 4-9 см.
Продолжается устойчивое снижение уровня воды на 17 — 32 см за сутки на Клязьме от Орехово-Зуево до Коврова и на всех ее притоках на 2-10 см. В низовьях Клязьмы уровень воды у пгт Галицы остановился на пике весеннего половодья. До выхода воды на пойму р. Клязьма у пгт Галицы остается 48 см, р.
Лух — 15 см, р. Серая — 35 см, р. Жиздра у с. Дубровка — 33 см.
Ока у г. Касимов — глубина затопления от 245 см —5 см за сутки ; р. Ока у пгт. Елатьма — глубина затопления от 107 см -12 см за сутки ; р.
Муром — глубина затопления от 28 см 0 см за сутки ; р. Северка у с. Покровское — глубина затопления от 8 см —5 см за сутки ; р. Клязьма у г.
Вязники — глубина затопления от 147 см -4 см за сутки ; р. Пра у с. Борисово — глубина затопления от 133 см -3 см за сутки ; р. Пра у д.
Деулино — глубина затопления от 78 см -1 см за сутки ; р. Мокша у пгт Кадом — глубина затопления от 234 см —9 см за сутки ; р.
Композитная карта
У динамических факторных моде-лей есть две главные характеристики, позволившие им занять доминантное положение в практике статистического наукастинга [12]: их способность опи-сать эмпирические макроэкономические данные. Сопоставление прогностических и истинных значений продолжительности осадков Заключение Предложено уравнение множественной регрессии для текущего прогноза продолжительности осадков на срок до двух часов. По прогнозу ведущего научного сотрудника центра погоды «Фобос» Михаила Леуса, в российской столице в четверг, 17 августа, ожидается переменная облачность, без осадков, воздух прогреется до + 29 °C, передаёт РИА Новости. Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. Новости от 08.04.2024 10:31.
А можно поточнее? Как делается прогноз погоды и можно ли его улучшить?
Видеоурок по географии 6 класс 7 лет назад. Просмотры: 53241 Youtube - InternetUrok. География в действии! Распределение атмосферного давления и осадков на Земле 6 лет назад. Просмотры: 36658 Youtube - Образование. Обучение - Znaika TV.
Например, вчера такие осадки выпали в Белгороде и Крыму, автомобили покрылись желтой пылью. Начальник Челябинского центра по гидрометеорологии и мониторингу окружающей среды Валерий Кочегоров пояснил, что преодолев большое расстояние африканская пыль немного рассеялась и на Южном Урале в осадках будет небольшое содержание песка. Будет облачно, осадков не прогнозируется.
Этот район оказался наиболее подвержен влиянию холодного атмосферного фронта», — сообщила синоптик.
Предлагаем вашему вниманию рейтинг из 10 самых дождливых городов в России: места с повышенной влажностью, к климату которых нужно привыкать. В 1966 году 19 февраля высота снежного покрова в городе достигла рекордных 122 см. Однако обычно максимальная высота снежного покрова наблюдается в конце февраля — начале марта. Если весна будет теплой и дружной, то будет большой потоп. В 2023 году Петербург обогнал Москву по количеству солнечных дней. Такие данные приводят интернет источники. Отмечается, что в Северной столице было 94 солнечных дня, а в Москве — 84. При этом в столице выпало на 20 мм осадков больше осадков, чем в городе на Неве. В Петербурге началась настоящая снежная зима.
Только за минувшие сутки в городе выпало 5 мм осадков. Высота снежного покрова составила около 20 см. По прогнозу синоптиков, снег в Северной столице продолжит идти весь декабрь. Бушующая «Ольга». Что принесет россиянам новый циклон? Присоединяйтесь к нам в Вконтакте , Одноклассниках и в Яндекс. Вы также можете настроить RSS-фид и подписаться на регулярное получение новостей и погоды в Telegram. Новости по теме. Татьяна Воробьева В ожидании второго осеннего месяца эксперты проанализировали количество выпадающих осадков в российских миллионниках.
Первое место в рейтинге самых дождливых октябрьских мегаполисов досталось Перми: тут, по данным Яндекс. Погоды, льет примерно 13 дней в месяц и выпадает 68 миллиметров осадков. Он также перечислил задачи для МБУ «Горсвет». Специалисты восстановили освещение на Императорском мосту. Александр Болдакин распорядился, чтобы учреждение активизировало закупку самонесущего изолированного провода для налаживания освещения на ряде участков в Заволжском районе, где опоры остались без светильников, и снижения числа отключений электричества из-за перехлестнувшихся проводов. Далее последуют различные факты о том, где в мире находятся места с наибольшим количеством осадков. Например, упоминается деревушка Мосинрам в Индии, которая является рекордсменом в Книге рекордов Гиннесса по количеству выпадающих осадков. Также упоминается Черапунджи, которое считается одним из самых дождливых и влажных мест на Земле, где были зарегистрированы метеорологические рекорды. Нашу область не затронет этот «Ольга» захватит практически всю Центральную Россию.
Рекордное количество снега выпадет в Тульской, Тверской, Калужской и Рязанской областях.
Она составлена из 12 примерно одинаковых блоков. Каждый блок последовательно строит прогноз по своему горизонту, получая на вход некоторый тензор состояния и последний радарный снимок, последнее предсказание с предыдущего горизонта. Тензор состояния имеет довольно маленькую размерность, всего 32 x 32 на 30 каналов, но сверткой к инволюции мы получаем из него векторное поле, опорные вектора для преобразования thin plate spline. И, наоборот, сверткой к деконволюции мы получаем места, где выпадают осадки. Такая архитектура нейросети учитывает, что в каких-то местах осадки выпадают традиционно.
Например, туча, налетевшая на город, прольется с большей вероятностью, чем над лесом, потому что над городом другая атмосфера, микроклимат. Там, например, попросту теплее. От горизонта к горизонту, от блока к блоку мы передаем состояние, о котором идет речь, и попутно немного меняем его с помощью residual network. Residual — это когда мы сам тензор меняем совсем немного, прибавляя к нему измерения. Обученная часть — дельта от обучаемой части, изменение тензора. Мы берем запомненное состояние, с помощью деконволюции делаем из него какую-то карту выпадения осадков, складываем их с облаками и двигаем их.
Такова нынешняя архитектура сети. Она работает, предсказывает, и результаты получаются довольно хорошими — вы их можете увидеть на сайте. Но они довольно хорошие с точки зрения метрик data science, ROC AUC и F1-меры, а бизнесу интересны не абстрактные циферки и кривые, которые мы рисуем. Бизнесу интересна точность этих предсказаний, точность текста о том, что дождь закончится через 10 минут 20 секунд. Перед нами сейчас стоит другая задача. Сейчас нейросеть обучается с какой-то функцией потерь.
Она максимизирует вероятность правильной классификации с помощью бинарной энтропии. А на самом деле надо улучшать другие, бизнесовые метрики — не правильность классификации, а правильность определения времени начала и прекращения осадков. Исследования о том, как из бизнесовых метрик получить loss-функции для обучения нейросетей, — очень важны и интересны. Мы продолжаем развиваться в нужном направлении. Помимо бизнесовых требований, у нас еще есть довольно много планов по развитию текущего решения. Например, в данный момент мы используем только снимки, но у нас есть огромное количество информации.
Самое интересное — радиальная скорость. Радар по доплеровскому эффекту определяет не только наличие частиц в воздухе, но и их скорость. По длине отраженной волны он понимает, с какой скоростью движутся, к радару или от него. Результаты тоже можно использовать для прогнозирования векторного поля. Но к несчастью, у нас есть только радиальная скорость и только в местах, где реально находятся какие-то частицы, осадки. Можно подмешивать векторные поля из метеомоделирования.
Там есть ветра, а можно добавлять и еще что-то — например, температуру. В городах осадки ведут себя по-другому, чем над огромным Балтийским морем. Они над ним пролетают и выпадают уже в Питере. Сейчас нейросеть строит прогноз только по одной зоне, вокруг одного радара. Облако, которое подойдет к границе видимости радара, на следующий радар никогда не перетечет, потому что соседний радар не узнает, что где-то там было облако.
Прогноз осадков на 2 часа (наукастинг)
Это помогло улучшить в том числе и то, что видят в прогнозе наши пользователи, и как они получают информацию из него. Ниже приведена таблица с изменениями по сравнению с решением на базе optical flow: Если F1 и IoU — широко известные метрики, то на двух последних стоит задержаться, так как именно они характеризуют пользовательское восприятие прогноза. Доля точно предсказанных случаев начала дождя — это отношение количества правильно предсказанных случаев начала первого дождя на рассматриваемом окне в два часа ко всем случаям начала первого дождя на двухчасовых окнах. А доля идеальных прогнозов показывает, какая часть двухчасовых последовательностей предсказана без ошибки на каком-либо шаге. Таким образом, эти метрики позволяют нам оценить пользовательский опыт использования наукастинга. Также посмотрим на зависимость метрик от дальности прогноза: Рисунок 4.
График среднего IoU от дальности предсказанного кадра по времени Для расчёта optical flow мы использовали Dense Inverse Search с константным вектором переноса на графике показан лучший из полученных вариантов , который лучше всего себя показал среди других optical flow алгоритмов для задачи наукастинга и в наших экспериментах, и в экспериментах коллег. Из графика видно, что optical flow лучше нейросеток только на первой десятиминутке. Потом его предсказания начинают сильно деградировать, и на втором часе он проигрывает всем вариантам. Помимо этого, возвращение нейросетевой архитектуры даёт возможность и дальше улучшать качество прогноза осадков, так как позволяет дополнительно учитывать фичи, которые потенциально помогают прогнозировать внезапное возникновение или исчезновение зон с осадками, тогда как подход, основанный на optical flow, позволяет только передвигать их по вектору переноса. Склейка радарных и спутниковых снимков В прошлый раз мы рассказали, как расширили зону наукастинга за пределы мест установки метеорологических радаров за счёт использования спутниковых снимков.
Напомним, что мы использовали нейронные сети для восстановления радарных полей по спутниковым снимкам. В этом случае наша модель по качеству была близка к самим радарам, но так как спутники и радары по факту различаются по способу измерения осадков, то возможно неполное совпадение областей дождя между ними. Поэтому нередко нам справедливо указывали на резкие границы между зоной радарного и спутникового наукаста. Мы использовали нейросети для решения и этой задачи — аккуратного перехода из одной зоны в другую, чтобы карта осадков выглядела более реалистично, а границы были менее заметны для пользователей. Перед тем как показывать прогнозы на единой карте, необходимо согласовать изображения с метеорологических радаров и геостационарных спутников.
Цветные осадки: дождь с песком придет на Южный Урал 26 апреля 2024, 13:53 Осадки с небольшим содержанием песка придут в Челябинскую область 27 апреля в Челябинской области ожидаются дожди подверженные влиянию пыли из пустыни Сахара. В нескольких регионах, в том числе на Южном Урале, 27 апреля прогнозируют дожди, подверженные влиянию пыли из пустыни Сахара. В некоторых регионах России уже прошли оранжевые дожди.
При развитии таких процессов наблюдаются явления, которые представляют опасность для жизни человека, для функционирования отраслей экономики и т. В Москве создадут систему прогноза опасных метеоявлений Атмосфера — хаотическая среда. Можно указать регионы, где создаются условия для возникновения смерча, например, но точно спрогнозировать его локализацию невозможно. Система наукастинга позволяет зафиксировать момент зарождения опасного явления и тогда спрогнозировать на два часа траекторию его перемещения, усиления или, наоборот, рассеивания энергии.
Чтобы прогнозировать такие события, нужно развивать научные исследования, чтобы физические процессы в атмосфере были адекватно описаны уравнениями гидродинамики, чтобы по ним можно было воспроизвести всю трансформацию воздушной массы, энергии, ветра, температуры и т. Кроме того, нужны очень хорошие начальные данные. Если мы хотим прогнозировать погоду на несколько ближайших часов, мы должны иметь очень густую сеть наблюдений. До сих пор этого не удавалось добиться. Теперь в рамках обсуждения Московской мэрии и Росгидромета удалось прийти к пониманию. Эти локаторы будут расположены примерно в радиусе 200 км от центра Москвы. Дальность видимости этих локаторов около 150 км.
Поэтому можно ожидать, что если на удалении около 350 км зарождается опасное явление смерч, шквал или очень сильный дождь , то его с помощью этих радаров можно будет диагностировать. Это очень важно, что уже на дальних подступах к Москве можно будет увидеть это явление. Дальше предполагается создать еще одну эшелонированную наблюдательную систему с радиусом примерно 90 км от центра Москвы: сеть автоматических станций, расположенных на вышках операторов мобильной связи с шагом примерно 10—15 км друг от друга. На этих вышках будет так называемая система градиентных наблюдений. По высоте: один датчик примерно на высоте 5—10 м этой вышки, другой на высоте 20—30 м, третий — на 50—60 м. Они будут фиксировать изменения, которые происходят в приземном слое воздуха. Локатор так устроен, что не может "видеть" процессы, которые находятся ниже 200 м от поверхности земли.
Если на удалении около 350 км зарождается опасное явление смерч, шквал или очень сильный дождь , то его с помощью этих радаров можно будет диагностировать Еще один аналогичный "редут" — в 40—50 км от центра Москвы. Затем на МКАДе. Примерно четыре десятка станций будут расположены в тех местах, где наблюдений мало. Сейчас наблюдательная сеть небольшая совсем, есть пробелы. Они будут заполнены. Таким образом, предполагается, что количество станций увеличится примерно на полторы сотни. Это очень много.
А это очень важно. Когда на удалении сначала прогнозируешь, а затем при перемещении видишь, совпадают или не совпадают расчеты с фактом, можно изменить модель, увидеть, в чем ее несоответствие. Кроме того, эту систему будут разрабатывать не "вообще", а конкретно для Москвы. Получив хороший результат мы очень надеемся на это , можно будет транслировать этот опыт на другие города-миллионники. Конфигурация зданий, улиц, отражение солнечных лучей от крыш домов — все это влияет на атмосферные процессы в городе. В той или иной ситуации, скажем, когда воздушные массы перемещаются с севера или с юга, совершенно по-разному могут развиваться события: либо будет интенсификация опасных явлений, либо, наоборот, структура города будет препятствовать воздушному потоку, энергия будет рассеиваться. Есть кустарники, деревья, в которых происходят свои процессы.
Все эти многочисленные факторы нужно описать в модели. Я встречался много раз с тем, что люди считают, что воздух нагревается от солнца. Это глубокое заблуждение. Солнечные лучи падают на подстилающую поверхность, нагревают землю, почву, и за счет турбулентности, за счет конвекции это тепло передается в атмосферу.
Графики строятся по параметрам: температура, давление, относительная влажность, скорость и направление ветра, порывы ветра, количество осадков с указанием фазы осадков , накопленное количество осадков, облачность, высота снега. Карты отображают следующие характеристики: количество осадков за период, количество осадков накопленное, температура воздуха и другие основные метеопараметры у поверхности земли и на основных изобарических поверхностях. Рекомендуемое применение Резервирование уборочной техники и работников для оперативного устранения последствий ожидаемых негативных погодных явлений ливни, снегопады, гололед, сильные порывы ветра, грозы Заблаговременная подготовка коллектива и рабочей инфраструктуры, зависимой от погоды, к эксплуатации при возникновении негативных погодных условий. Своевременное проведение профилактических работ, направленных на минимизацию рисков при негативных явлениях погоды.
meteoinfo ru [delete] [delete]
Сопоставление прогностических и истинных значений продолжительности осадков Заключение Предложено уравнение множественной регрессии для текущего прогноза продолжительности осадков на срок до двух часов. Доля точно предсказанных случаев начала дождя — это отношение количества правильно предсказанных случаев начала первого дождя на рассматриваемом окне в два часа ко всем случаям начала первого дождя на двухчасовых окнах. Фото: Владимир Астапкович / РИА Новости. Наукастинг точен на 100%. Завтра, 28 декабря, погоду в Приморье определяет гребень антициклона, преимущественно без осадков. Наукастинг осадков по данным ДМРЛ на 2 часа.
Глава Гидрометцентра: Никогда прогноз погоды не будет точным на 100%
Смотрите карты погоды высокого разрешения с центром в Спутнике с почасовыми прогнозами погоды осадков, облачности, анимации ветра, температуры, атмосферного давления и индекса качества воздуха. Система наукастинга позволяет зафиксировать момент зарождения опасного явления и тогда спрогнозировать на два часа траекторию его перемещения, усиления или, наоборот, рассеивания энергии. Прогноз осадков на 2 часа (наукастинг). По моим данным, он циклон балканского происхождения по имени «Бенедикт». Прогноз осадков на ближайшие 2-6 часов / скриншот с сайта Гидрометцентра России. Опасные явления BUFR Отражаемость 1км BUFR Прогноз ICON-EU 1ч сумма осадков Высота ВГО BUFR Дифференциальная отражаемость 1км BUFR Дифференциальная отражаемость 2км BUFR Доплер скорость 1км BUFR Доплер скорость 2км BUFR Доплер скорость 3км BUFR.
Онлайн-словарь отраслевых терминов
Такой прогноз называется наукастинг, обычно он делается на ближайшие часы до 2-6 часов вперед. Про спутниковые данные уже рассказывал, что же такое метеорологические радары? Это доплеровские радиолокационные станции, которые позволяют определять координаты выпадения осадков, направления их движения и их тип. Расположение радаров на территории Росси приведено ниже взято отсюда Как видно, в основном они располагаются в Европейской части России. Все что дальше Урала - естественно, будет работать плохо.
Поэтому для этих территорий применяют модели численного прогноза погоды вместо радаров. Посмотреть данные радаров по осадкам в реальном времени можно на accuweather. Эта модель может быть глобальной, покрывающей всю Землю, или локальной, покрывающей отдельный участок планеты.
Подробнее 05. О погоде на 6-8 января Об особенностях погоды в регионах России в ближайшие дни рассказал Андрей Ушаков Подробнее 04. С приближением циклона с запада в пятницу пройдет небольшой снег, в субботу умеренный снег.
Здесь , а Мы предсказываем на два часа вперёд с шагом 10 минут. Это 12 кадров плюс ещё несколько про запас на случай перебоя в поставке данных с радара. Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1, 2, 3 , либо к нейросетевым методам 1, 2, 3, 4, 5, 6.
Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда. Рисунок 3. Только для изображений из будущего, которые мы пока не знаем.
И снова про наукастинг Когда мы говорим о прогнозе погоды, то чаще всего подразумеваем температуру и осадки, например, на завтра или ближайшие выходные. В этом случае хватает традиционных погодных трендов. Но если вы идёте обедать на улицу или на прогулку с ребёнком и при этом не хотите попасть под дождь, то важно знать точный момент начала дождя в течение ближайшего получаса. В таких ситуациях приходит на помощь наша карта осадков aka nowcasting. Рисунок 1. Карта осадков Яндекс. Погоды Nowcasting — это сверхкраткосрочный прогноз погоды до 2—6 часов с шагом в 5—15 минут, предсказывающий поведение погодных явлений с коротким жизненным циклом. Такой прогноз в той или иной степени сводится к задаче экстраполяции наблюдаемых метеорологических явлений, так как настоящие тяжёлые физические модели для него менее приспособлены и не могут оперативно учитывать быстро меняющие условия. Раз мы говорим о карте осадков, нам интересен источник данных об областях скопления влаги в воздухе, обладающий относительно высокой частотой обновления.
Search code, repositories, users, issues, pull requests...
Синоптики: на Москву за сутки выпадет 30% месячной нормы осадков - Погода | Во-первых, наукастинг осадков оказался полезным на интервале одного-полутора часов как в точках выделенной сетки, так и по областям сильных осадков. |
Наукастинг осадков на 2 часа | Раньше карта осадков давала прогноз на два часа вперед с десятиминутным интервалом. |
Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым | Система наукастинга позволяет зафиксировать момент зарождения опасного явления и тогда спрогнозировать на два часа траекторию его перемещения, усиления или, наоборот, рассеивания энергии. |
Синоптик Вильфанд: около 30% месячной нормы осадков выпало в Москве за час
Краткосрочный и среднесрочный прогнозы погоды и их особенности | n Наукастинг заполняет пробел ЧПП, когда модели имеют недостаточную точность в течение первых часов выполнения расчетов (0 – 6 ч). |
Ventusky - Wind, Rain and Temperature Maps | На карте метеорологического радара показывается место выпадения осадков, тип осадков (дождь, снег и изморозь), а также последние перемещения фронта, чтобы вы могли спланировать свой день. |
Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым
Предоставляем метео данные | По прогнозу ведущего научного сотрудника центра погоды «Фобос» Михаила Леуса, в российской столице в четверг, 17 августа, ожидается переменная облачность, без осадков, воздух прогреется до + 29 °C, передаёт РИА Новости. |
Композитная карта | Прогноз осадков на 2 часа (наукастинг). Согласно прогнозу, который озвучил ведущий специалист центра погоды «Фобос» Евгений Тишковец, первый весенний месяц будет холодным – усилятся морозы, будет идти снег. |
Лето 2024: погода, природные катаклизмы, мнение климатолога: Общество: Россия: | В итоге получается своеобразный ультракраткосрочный прогноз или наукастинг — на ближайшие два часа с шагом в десять минут. |
Синоптики: на Москву за сутки выпадет 30% месячной нормы осадков
Nowcasting Описание задачи В альтернативном Древнем Риме только у императора и его приближённых есть доступ к современным технологиям. Благодаря этому люди считают Сикстиниана Апреля посланником богов, который управляет погодой или как минимум видит будущее. Ежегодно в городе проводится масштабный пленэр в честь Непобедимого Солнца — сотни горожан собираются на стенах Колизея, чтобы запечатлеть закат с помощью холста и красок. Каждое утро в день события Сикстиниан предсказывает, будет ли дождь на закате или нет. В этот раз успех предсказания под угрозой. Новенький iCeasar, на котором установлена модель, прогнозирующая осадки, завис. На внешнем SSD остался только датасет одного метеорологического радиолокатора, который регистрирует наличие влаги в атмосфере на большой площади.
По данным столичного Департамента транспорта, до конца дня в городе будет дождь с грозой и сильный ветер. В вечерний разъезд локальные затруднения ожидаются по направлению в область на шоссе Энтузиастов и на Ленинградском шоссе. Автомобилистам рекомендовали избегать резких маневров, соблюдать дистанцию и скоростной режим. Эта погода на 3-4 градуса превышает климатическую норму для Москвы, по словам специалиста.
Представленная выше подборка ресурсов включает в себя как наиболее популярные сайты, которыми пользуются практически все метеолюбители, так и ряд более специализированных ресурсов, находящихся в почёте у профессионалов.
Спутниковые снимки Спутниковые снимки облачности позволяют оценить состояние облачного покрова на обширной территории в целом, выявить некоторые его структурные особенности, а также направление движения облачности разных ярусов. Особенно важны наблюдения за кучево-дождевой облачностью, поскольку с нею связаны такие явления, как грозы, шквалы, ливни, град, торнадо, и в ряде случаев они носят локальный характер. Кроме того, кучево-дождевая облачность может развиваться весьма стремительно , что делает наблюдения по спутниковым снимкам особенно ценными.
Затем специалист определяет, какие из них пройдут через его зону ответственности, и описывает примерный ход погоды на основании уже известных связей между ними и метеорологическими величинами и явлениями. Например, каждому известно, что циклон, как правило, приносит ненастную, ветреную погоду и обильные осадки, а в антициклоне обычно малооблачно и спокойно.
Конечно, в работе синоптика всё намного сложнее, но общий вид таких правил остаётся примерно тем же. Любому прогнозисту известно, что проведение атмосферных фронтов на картах погоды в значительной мере субъективно. Есть даже поговорка: «Сколько синоптиков, столько и фронтов». Чтобы уменьшить зависимость фронтологического анализа от «человеческого фактора» — личности прогнозиста, разработаны методы объективного анализа атмосферных фронтов, основанные на данных численных моделей и метеорологических спутников. Широкое внедрение этих методов в прогностическую практику стало возможным после появления автоматизированных рабочих мест АРМ прогнозиста, позволяющих быстро выполнять сложные расчёты различных параметров атмосферы.
Синоптику остаётся лишь слегка подкорректировать положение фронтов, сверившись с приземной картой погоды. После выявления циклонов, антициклонов, атмосферных фронтов, которые будут определять характер погоды в пункте прогноза, синоптик устанавливает, правильно ли в численных моделях учтена сложившаяся синоптическая ситуация. В большинстве случаев в гидродинамический прогноз нужно вносить лишь незначительные корректировки или не вносить их вовсе. Однако иногда значительные ошибки содержатся уже в исходных данных, не говоря о будущем состоянии атмосферы. Тогда прогнозист прибегает к использованию метода траекторий.
Он самостоятельно определяет по приземным и высотным картам погоды, откуда в его зону ответственности придёт воздушная масса и какие изменения претерпит она на своём пути. Здесь синоптику помогает личный опыт и опыт его коллег, обобщённый в виде региональных методик прогнозирования. Метеоролог может применять климатические данные, чтобы оценить вероятность получившегося сценария развития погодных процессов. Практика показывает, что такие уточнения численного прогноза могут быть очень полезными. Также опыт специалиста помогает ему определить, какие из множества прогностических моделей лучше всего «работают» по его региону прогнозирования.
Роман Вильфанд: вопрос использования "больших данных" обсуждается во всем метеорологическом мире
В ближайшие 2 часа осадков не ожидается. Такой прогноз называется наукастинг, обычно он делается на ближайшие часы (до 2-6 часов вперед). Нейросетевые методы наукастинга осадков: обзор и апробация существующих решений. Чаще всего говорят о наукастинге развития конвективных (кучево-дождевых) облаков и связанных с ними опасных метеорологических явлений (ОЯ) — ливневых осадков, гроз, града, шквалов, смерчей. Это стало возможным благодаря технологии наукастинга — краткосрочного гиперлокального прогноза осадков.