Новости с точки зрения эволюционного учения бактерии являются

Конспект: Как сохранить земноводных в природе? Сходство строения семян однодольных и двудольных растений состоит в том что продолжите Вред бактерий в природе.

Лекция 14. Бактерии

Эволюция микроорганизмов Главная проблема – Эволюция 3 доменов жизни: Бактерий, Археев и Эукариот и создание универсального дерева жизни. Форма клеток бактерий может быть. С этой точки зрения, они взяли одну из широко распространенных моделей, так что никаких претензий. Онтонио Веселко. какими организмами являются бактерии с точки зрения эволюции. Этапы эволюции микроорганизмов кратко | Образовательные документы для учителей, воспитателей, учеников и родителей. С позиций эволюционного учения Ч. Дарвина любое приспособление организмов является результатом.

Роль бактерий в эволюции жизни на Земле

Каждый день 0,1 мл содержимого каждой пробирки переносилось в пробирку с 10 мл свежей питательной среды, где размножение бактерий продолжалось. В эксперименте использовалась линия E. Таким образом, круг исследуемых явлений ограничивался вновь возникшими мутациями.

Не самая плохая эрудиция. Образование среднее техническое... Нет, не в том виде, в котором её представлял Ч. Дарвин тогда ещё не знали о генах , и тем более не в том, как она описана в школьном учебнике биологии, полувековой давности в СССР генетику не жаловали на идеологическом уровне.

Современная теория эволюции.

В нем содержались белковоподобные соединения, состоящие из аммиака, сероводорода, метана, углекислого газа, а также отдельных атомов водорода, углерода и азота. Со временем между ними стали происходить химические реакции. Их результатом стало образование высокомолекулярных форм, давших начало формированию сложных белковоподобных веществ. Приспособившись в процессе эволюции к развитию при низкой температуре, они стали обосабливаться, формировать так называемые коацерватные капли в форме коллоидных частиц. Теории происхождения прокариот Сформированные коацерватные капли представляли собой высокомолекулярные протеиновые образования, адсорбирующие из окружающей среды отдельные химические элементы. Эта способность положила начало обмену веществ, который является одним из признаков жизни. Растворенные в воде органические вещества, которые затем попадали внутрь коацерватов, увеличивали их массу. Когда она доходила до критической точки, связи, удерживающие молекулы вместе, разрывались, и коллоид распадался на более мелкие частицы. Так зарождался процесс размножения.

Судьба «дочерних» капель могла быть различной. Одни погибали, а другие продолжали поглощать органические элементы, расти, делиться, становясь предшественниками живых структур. Такой естественный отбор обеспечивал их развитие и усложнение, приводя к появлению новых представителей живого мира и разнообразию его форм. Незначительные размеры и отсутствие твердых компонентов не позволили большинству примитивных живых организмов сохраниться до наших дней. Однако учеными были обнаружены породы возрастом 3. Строение безъядерных микроорганизмов Основной характеристикой прокариотов является отсутствие ядра. Их ДНК, являющаяся носителем генетической информации, заключена в нуклеоид, заменяющий хромосомы. Отсутствие других мембранных органоидов митохондрий, эндоплазматической сети и других компенсируется мезосомами, выполняющих аналогичные функции. Имеется небольшое количество мелких рибосом. В процессе эволюции некоторые бактерии утратили клеточную стенку и перешли в L-форму.

Таким способом им удалось пережить возникшие неблагоприятные условия, а затем вернуться к исходному состоянию. Бактерии, у которых в естественном состоянии отсутствует клеточная стенка, называются микоплазмами. Появление в ходе эволюции жгутиковых форм бактерий определило способность микроорганизмов к передвижению. Впоследствии количество и расположение жгутиков на теле прокариот стало одним из признаков видовой принадлежности. Микробы приобрели самые разные формы и органоиды, чтобы приспособиться к изменяющимся условиям. Чем питались и дышали древнейшие бактерии Одними из старейших микроорганизмов считаются бактерии, восстанавливающие сульфаты. Они способны поглощать ионы водорода и переносить их на сульфаты, восстанавливая те до сульфидов. Усовершенствованный в процессе эволюции метод переноса электронов, используемый бактериями, происходит с участием цитохромов крупных белков. Благодаря механизму фосфорилирования, протекающему в анаэробных бескислородных условиях, накапливается энергия. Другими представителями микромира были: бактерии, обладавшие способностью фиксировать углеводородные соединения и аммиак; водородные бактерии, окислявшие молекулярный водород; микроскопические сине-зеленые водоросли, использовавшие углеводород для строительства своего тела и выделявшие кислород.

Их жизнедеятельность привела к обогащению биосферы Земли кислородом с одновременным снижением концентрации в ней углекислого газа.

Одной из причин является признание геологов, что первичная атмосфера Земли состояла из двуокиси углерода и азота. Эти газы менее активны, чем те, которые были использованы в 1953 году в опыте Миллера. Допустим даже возникновение представленной Миллером атмосферы, но каким образом могли произойти химические реакции, способные превратить такие простые молекулы как аминокислоты в гораздо более сложные соединения - полимеры, такие как белок? Здесь даже Миллер разводит руками и, вздыхая, говорит: «Это проблема.

Как получить полимеры? Ведь это не так просто». В такой ситуации рвение, с которым эволюционисты ухватились за этот опыт, лучше всего демонстрирует их безысходность. А в марте 1998 года журнал «National Geographic» опубликовал статью под заголовком «Возникновение жизни на Земле», в которой говорилось: «Сегодня многие ученые догадываются, что первичная атмосфера была отличной от того состава, которую выдвигал Миллер и склоняются к мнению, что эта атмосфера, скорее всего, состояла из двуокиси углерода и азота, а не из водорода, метана и аммиака. Что является очень плохой новостью для химиков!

При взаимодействии двуокиси углерода и азота количество получаемых органических соединений весьма незначительно. Их концентрацию можно сравнить с каплей пищевого красителя, добавленного в бассейн... Ученым трудно даже представить, как жизнь могла зародиться в таком ненасыщенном «бульоне»? Одним словом, ни опыт Миллера, ни другие эволюционисты не в состоянии ответить на вопрос о происхождении жизни. Все исследования показали, что самовозникновение жизни невозможно, тем самым, подтверждая факт ее сотворения.

Другие находки и исследования также показали, что в этот период количество кислорода было намного больше, чем предполагалось. Воздействие ультрафиолетовых лучей на поверхность Земли было в 10 тысяч раз больше, чем утверждалось эволюционистами. А плотные ультрафиолетовые лучи расщепляют водяной пар и двуокись углерода, образуя кислород. Этот случай делал опыт Миллера, упустившего из вида кислород, недействительным. Если бы в опыте был использован кислород, то метан превратился бы в двуокись углерода и воду, а аммиак — в азот и воду.

С другой стороны, в среде, где отсутствует кислород из-за отсутствия озонового слоя , очевидно разрушение аминокислот под воздействием прямых ультрафиолетовых лучей. В конечном счете, присутствие или же отсутствие кислорода в первичной атмосфере Земли является разрушительным фактором для аминокислот. В результате опыта Миллера одновременно образовались и органические кислоты, нарушающие целостность и функции живого организма. Если бы эти аминокислоты не были изолированы, то в результате химической реакции они были бы разрушены или превращены в другие соединения. Плюс ко всему, в результате опыта было получено множество D-аминокислот.

Присутствие же этих аминокислот сокрушает теорию эволюции в самой основе. Потому что D-аминокислоты отсутствуют в структуре живого организма. И наконец, среда, в которой в ходе опыта образовались аминокислоты, состояла из смеси едких кислот, разрушающих возможные полезные молекулы, то есть эта среда неблагоприятна для появления в ней живого. Все это говорит только об одном — опыт Миллера не доказывает возможность происхождения жизни в первичных условиях Земли, а является лишь контролируемой и сознательной лабораторной работой, направленной на синтез аминокислот. Виды и количество использованных газов были подобраны в самой идеальной для образования аминокислоты пропорции.

То же самое касается и количества энергии, использованной для получения желаемой химической реакции. Прибор, использованный в опыте, был изолирован от всевозможных вредных, разрушающих структуру аминокислоты элементов, присутствие которых в первичной среде не исключено. Минералы, соединения и элементы, присутствующие в ранней атмосфере и способные изменить ход реакции, также не были использованы в опыте. Одним из таких элементов является кислород, который в результате окисления способствует разрушению аминокислот. В конце концов, даже в идеальных условиях лаборатории невозможно обойтись без механизма «холодного капкана», чтобы предовратить расщепление аминокислот уже под влиянием собственной среды.

В результате, опытом Миллера эволюционисты собственными же руками загубили свою теорию. Потому что опыт доказал, что аминокислоту можно получить только в специальных лабораторных условиях при сознательном вмешательстве со стороны. То есть сила, создавшая живое, — Творец, а не слепое совпадение. Но предубеждения эволюционистов, полностью противоречащие науке, не позволяют им признать очевидную истину. Гарольд Ури, организовавший этот опыт вместе со своим учеником Миллером, признается в следующем: «Все мы, исследовавшие возникновение жизни, сколько бы исследований ни проводили, всегда приходили к выводу: жизнь настолько комплексна, что не могла эволюционировать на каком-либо этапе своего развития.

Но, следуя своим убеждениям, мы верим в то, что жизнь произошла из неживого. Однако эта комплексность настолько велика, что даже представить эволюцию для нас очень сложно. Даже сегодня они продолжают вводить в заблуждение людей, создавая вид, будто этим опытом вопрос давно уже разрешен. На второй стадии попыток разъяснения случайного возникновения жизни эволюционистов ждет проблема поважнее, чем аминокислоты — белки. То есть строительный материал жизни, образующийся путем последовательного соединения сотен различных аминокислот.

Утверждение относительно самообразования белка еще нелогичнее и фантастичнее, чем утверждение случайного образования аминокислот. Невозможность соединения аминокислот в определенном порядке для образования белка была вычислена математически на предыдущих страницах с помощью теории вероятностей. Однако самообразование белка в условиях первичной атмосферы Земли невозможно и с точки зрения химии. Синтез белка невозможен в воде Как уже упоминалось ранее, при синтезе белка между аминокислотами образуется пептидная связь. Во время этого процесса выделяется одна молекула воды.

Эта ситуация коренным образом опровергает утверждения эволюционистов о возникновении жизни в океане. Потому что в химии, согласно принципу «Ле Шателье», реакция, которая образует воду реакция конденсации , не будет завершена в среде, состоящей из воды. Протекание этой реакции в водной среде характеризуется среди химических реакций, как «наименьшая вероятность». Отсюда следует, что океаны, в которых якобы возникла жизнь, отнюдь не подходящая среда для образования аминокислоты и впоследствии — белка. С другой стороны, они не могут изменить свои суждения перед этими фактами и утверждать, что жизнь возникла на суше.

Потому что аминокислоты, предположительно образовавшиеся в ранней атмосфере Земли, могут быть защищены от ультрафиолетовых лучей только в море и океане. На суше же аминокислоты будут разрушены под воздействием ультрафиолетовых лучей. Принцип Ле Шателье опровергает возникновение жизни в море. А это в свою очередь — еще один тупик в теории эволюции. Очередная безрезультатная попытка: опыт Фокса Оказавшись в безвыходном положении, исследователи-эволюционисты начали придумывать невиданные сценарии по «проблеме воды».

Один из знаменитейших среди них Сидней Фокс вывел новую теорию, чтобы решить этот вопрос: аминокислоты, образовавшись в океане, сразу же перенеслись в скалистые места рядом с вулканами. Затем вода в смеси, в состав которой входили и аминокислоты, испарилась под воздействием высокой температуры скалистых мест. В результате «высохшие» аминокислоты могли соединяться для образования белка. Однако этот «тяжелый» выход из положения никем не был признан. Потому что аминокислоты не смогли бы выдержать температуру, о которой говорил Фокс.

Исследования показали, что аминокислоты под воздействием высокой температуры непременно разрушаются.

Прокариоты: у подножья пирамиды жизни. Интервью с чл.-корр. РАН Е.А. Бонч-Осмоловской

Они очень устойчивы к колебаниям температур, высыханию и т. Полезный совет Когда организм получает наследственный материал от своего предка, говорят о вертикальном переносе генов. Такой механизм играет ведущую роль в эволюции жизни на Земле и появлении разнообразных форм живого. Совет полезен?

Особенности эволюции вирусов на современном этапе Возникающие штаммы обладают большей вирулентностью, способностью противостоять антимикробным препаратам и дезинфицирующим средствам, а также заражать другие виды макроорганизмов. Почему вирусы называют двигателями эволюции Изучение роли вирусов в эволюции жизни на Земле привело ученых к выводу, что их жизнедеятельность спровоцировала треть всех изменений, оказывающих влияние на геном животных и человека. Постоянное противостояние этим микроорганизмам привело к формированию всех органов и тканей, выполняющих различные функции.

Поэтому вирусы еще называют стихийным злом эволюции. Однако считается, что живой мир планеты не был бы таким, какой он есть сейчас, если бы не вирусы. Влияние вирусов на эволюцию человека происходило во время инфицирования клеток, участвующих в процессе размножения.

Образовавшиеся провирусы внедрялись в геном, становясь частью наследственной информации. Подобные мутации повлияли на изменения геномов даже в большей степени, чем это было возможно в ходе естественной эволюционной изменчивости. Исследуя роль вирусов в эволюции эукариотических клеток, ученые обнаружили вирусное происхождение некоторых структурных элементов.

Также существует теория вирусного возникновения ядра. В ее основу положено происхождение клеточного ядра от большого ДНК-содержащего вируса. Проникнув в архею и начав размножаться, микроорганизм стал полностью ее контролировать.

Как повлияло появление многоклеточных организмов на ход эволюции Первыми прокариотами, которые могли появиться в водной среде, считаются анаэробные микроорганизмы, осуществлявшие свою жизнедеятельность за счет брожения. Через 1 млрд лет после того, как появился кислород, все эукариоты, большинство которых является аэробами, начали активно заселять водные пространства планеты. Размножаясь, одноклеточные микроорганизмы образовывали многочисленные колонии.

Большая скученность привела к появлению у них специализации и определенных клеточных структур. У одних сохранились жгутики и ворсинки, другие их потеряли, сохранив взамен ложноножку. Таким образом, происходит расслоение колоний, где каждый устойчивый слой выполняет определенные функции.

Это можно считать началом эволюции одноклеточных форм до наиболее высокоразвитых животных. К первым многоклеточным животным относятся губки, кишечнополостные и членистоногие. Дальнейшее развитие было направлено на усовершенствование способов передвижения, дыхания и координации функций клеток организма.

По мере того, как шла эволюция бактерий, грибов, растений и животных, произошел их выход на сушу. Это привело к быстрому появлению высокоорганизованных форм жизни. Одноклеточные микробы сыграли основную роль в образовании многоклеточных организмов.

Эволюция микробного паразитизма и происхождение патогенных микроорганизмов Эволюция паразитизма у сапрофитных бактерий и простейших базируется на расширении мест обитания, а также борьбе за новые сферы распространения. Усовершенствование паразитизма за счет увеличения зависимости от хозяина привело к появлению патогенных микроорганизмов, ставших возбудителями инфекционных заболеваний. Утратив сапрофитную форму, они стали неспособны жить самостоятельно во внешней среде.

В дальнейшем появились факультативные шигеллы, менингококки, микобактерии , а затем облигатные патогенные простейшие, хламидии, риккетсии внутриклеточные паразиты. По мере увеличения количества патогенных микроорганизмов, усовершенствования их вирулентных и токсических характеристик, развивались специфические и неспецифические способы иммунной защиты хозяев. Это стало одним из основных факторов естественного отбора.

Основные определения Экология вирусов — это область вирусологии, изучающая взаимосвязь вирусов с объектами внешней среды. Микроэволюция — это эволюционный процесс в популяции, приводящий к видообразованию новых разновидностей микроорганизмов за короткий период времени. Фотолиз — это реакция разложения химического вещества под воздействием световой энергии.

То есть, чтобы Ваш организм немедленно начал готовиться к успешному поглощению пищи. В этом случае Вы работаете как бы на опережение событий — выделяете слюну уже при виде жареного мяса. Благодаря нашему знаменитому соотечественнику Ивану Петровичу Павлову, все мы уже со школьной скамьи узнаём, благодаря чему наш организм может эффективно предугадывать события. Это происходит благодаря выработке условных рефлексов в нашей нервной системе. А вот бактерии — не имеют нервной системы. И соответственно, не имеют и условных рефлексов. Однако «работать» на опережение событий они умеют.

Без всякой нервной системы. Потому что они имеют громадную численность колоний. Просто благодаря этой численности, бактерии могут находить такие генетические комбинации, которые позволяют им «работать на опережение». Дадим слово уже многократно помянутому нами Александру Маркову Марков, 2009б : …Израильские ученые обнаружили у микроорганизмов кишечной палочки Escherichia coli и дрожжей Saccharomyces cerevisae способность к опережающему реагированию, напоминающую классические павловские условные рефлексы. Если в естественной среде обитания микробов один стимул часто предшествует другому, то микробы могут научиться реагировать на первый стимул как на сигнал, предупреждающий о скором появлении второго стимула. В отличие от собак Павлова, микробы приобретают свои «рефлексы» не путем обучения, а за счет мутаций и отбора в длинной череде поколений. Но это не значит, что они принципиально не способны к опережающему реагированию.

Теоретически, они могут научиться предвосхищать события не хуже павловских собак, но только не за счет прижизненного обучения, а за счет эволюции. Иными словами, вместо «обычной» памяти, которая записывается в структуре межнейронных связей, можно использовать память генетическую, записанную в ДНК. Благодаря гигантской численности популяций микробов, высокой скорости мутирования и очень быстрой смене поколений такое «эволюционное обучение» у микробов теоретически может быть вполне сопоставимо по своей скорости с «обычным» обучением у высших животных… Как видим, даже самые верующие дарвинисты в лице Александра Маркова понимают, что благодаря огромной численности бактериальных колоний, прямой перебор случайных мутаций у бактерий может работать не только в качестве «заменителя» сложной иммунной системы высших животных, но даже в качестве «заменителя» нервной системы, с её механизмами ассоциативного запоминания. Такое решение было бы гарантированным путем к вымиранию. Поэтому для оперативного реагирования на вызовы среды у высших организмов имеются специальные биологические механизмы. В связи с этим возникает вопрос. А что мы, собственно, наблюдаем у бактерий, когда они демонстрируют нам очередное приспособление к «сиюминутным» изменениям среды с помощью мелких генетических изменений и естественного отбора?

Мы наблюдаем эволюцию этих бактерий? Или же мы наблюдаем просто адаптацию этих бактерий? То есть, может быть, обсуждаемые генетические изменения бактерий и не ведут никуда дальше таких вот мелких приспособлений к локальным особенностям окружающей среды? Возможно, конкретно у бактерий — это просто способ выживания такой — всё время подвергаясь мелким генетическим изменениям… тем не менее, оставаться всё теми же бактериями с незапамятных времен и до сегодняшнего дня. То есть, этакий «бег на месте». Можно ли назвать это эволюцией? Действительно, получается противоречие — «эволюция» бактерий путем случайных мутаций и естественного отбора идет так быстро, что позволяет бактериальным колониям отвечать на постоянно изменяющиеся вызовы среды чуть ли не в режиме реального времени, почти заменяя в этом отношении формирование рефлексов у высших животных… Но когда мы смотрим на конечные результаты подобной «эволюции», то тут выясняется, что бактерии так и не удосужились измениться хотя бы как-нибудь за 2 миллиарда лет!

Этих 2-миллиардолетних бактерий можно определять по современным определителям. Причем некоторые группы бактерий никак не изменялись целыми сообществами см. Так может быть, бактерии — это просто такие организмы, которые имеют такую специфическую стратегию реагирования на мелкие изменения окружающей среды — с помощью случайных мутаций и естественного отбора. А вовсе не эволюционируют подобным способом?

Это именно тот тип изменения, о котором идет речь.

Другая возможность состоит в том, что существующий ген-транспортер, например, тот, который доставляет тартрат,[3] который обычно не транспортирует цитрат, мутировал и в следствии этого он потерял специфичность и теперь способен к транспортировке цитрата в клетку. Подобная потеря специфичности также является следствием случайных мутаций. Потеря специфичности приравнивается к потере информации, но для эволюции требуется появление новой информации; информация, которая определяет инструкции по созданию ферментов и кофакторов в новых биохимических путях, например, как создавать перья, крылья, кости, нервы или сложные компоненты и способ сборки сложных двигателей, таких как АТФ-синтаза, например. Однако, мутации хорошо способны разрушать, а не созидать. Иногда разрушение может быть полезным адаптационным ,[7] но это не отвечает за создание огромнейшего количества информации в ДНК всех живых существ.

Бихи в своей книге «Предел эволюции» приравнял роль мутаций в сопротивляемости антибиотиков и патогенов, к например, окопной войне, в результате которой мутации уничтожают некоторые функции, чтобы преодолеть восприимчивость. Это так, как если бы вы положили жевательную резинку в механические часы; они не могли быть созданы таким образом. Много шумихи без причины снова Бихи прав; здесь нет ничего, что было бы за «пределами эволюции», то есть все это не имеет никакого отношения к происхождению ферментов и каталитических путей, что должна объяснить эволюция. Блаунт обнаружил, что к использованию бактериями цитрата привели три шага: 1. Потенцирование: Шаг, включающий в себе по меньшей мере 2 мутации.

Он обнаружил одну возможную мутацию, единичное изменение нуклеотида SNP , повреждающее ген, известный как arcB, который регулирует работу цикла Кербса ЦТК , что могло привести к ускоренному метаболизму цитрата. Актуализация: дупликация гена, производящего белок-транспортер цитрата, что позволило использовать цитрат. Дупликация гена в месте без обычной контролирующей его последовательности позволило его экспрессии в присутствии кислорода поскольку он попал под контроль уже существующего промотора, который был «включен» в присутствии кислорода. Это важнейший шаг, позволивший появиться ограниченной способности использовать цитрат в аэробной среде. Усовершенствование: дальнейшая дупликация этой последовательности два или три раза известна как амплификация.

Этот процесс увеличил «дозу генов», что привело к росту количества произведенного белка-транспортера цитрата, таким образом увеличивая общее потребление цитрата. Прежде чем это исследование было проведено, я предположил выше , что скорее всего мутации привели к тому, что бактерия стала способна перерабатывать цитрат в присутствии кислорода. Первым моим предположением было то, что контролирующая система, останавливающая переработку цитрата в присутствии кислорода, была поломана. Несмотря на то, что все намного сложнее, чем просто поломка контролирующей системы останавливающей производство белка-транспортера в присутствии кислорода , все же оказалось, что на самом деле предположение было близким к тому, что произошло, что указывает на то, что мышление о сотворении делает хорошие научные предсказания. В то время как существующие контрольные системы не были сломаны, ген-транспортер был реплицирован скопирован в другое место без контролирующих систем, потому производство транспортера уже больше не было подавлено в присутствии кислорода.

Скопированный ген-транспортер попал под контроль уже существующего промотора последовательность промотора rnk , включенного в присутствии кислорода. Потому способность клетки контролировать транспортер цитрата была вправду нарушена клетка уже была не способна отключить производство транспортера. Потому теперь клетка производит белок-транспортер цитрата независимо от нужды клетки.

Долгая счастливая фенотипическая эволюция бактерий

В целом клетка бактерии устроена достаточно просто. «Эксперимент Ленски является еще одним тычком в глаз антиэволюционистов», утверждает Джери Койн, эволюционный биолог в Чикагском Университете. Эволюционное учение.

Как шла эволюция бактерий

Бактерии являются не только редуцентами, но и продуцентами (создателями) органического вещества, которое может быть использовано другими организмами. ответ на этот и другие вопросы получите онлайн на сайте Найди верный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Развернутый ответ на вопрос: Почему, обладая примитивной организацией, бактерии сохранились в ходе эволюции? по предмету Биология. Бактерии, микроорганизмы с прокариотным типом строения клетки: генетический аппарат у них не заключён в обособленное мембраной клеточное ядро.

Долгая счастливая фенотипическая эволюция бактерий

У прокариот вся клетка целиком и в первую очередь — клеточная мембрана берет на себя функцию митохондрии, а у фотосинтезирующих форм — заодно и хлоропласта. Как и у эукариот, внутри бактерии находятся мелкие нуклеопротеиновые структуры — рибосомы, необходимые для синтеза белка, но они не связаны с какими-либо мембранами. За очень немногими исключениями, бактерии не способны синтезировать стеролы — важные компоненты мембран эукариотической клетки. Снаружи от клеточной мембраны большинство бактерий одето клеточной стенкой, несколько напоминающей целлюлозную стенку растительных клеток, но состоящей из других полимеров в их состав входят не только углеводы, но и аминокислоты и специфические для бактерий вещества. Эта оболочка не дает бактериальной клетке лопнуть, когда в нее за счет осмоса поступает вода. Поверх клеточной стенки часто находится защитная слизистая капсула. Многие бактерии снабжены жгутиками, с помощью которых они активно плавают.

Жгутики бактерий устроены проще и несколько иначе, чем аналогичные структуры эукариот. Сенсорные функции и поведение. Многие бактерии обладают химическими рецепторами, которые регистрируют изменения кислотности среды и концентрацию различных веществ, например сахаров, аминокислот, кислорода и диоксида углерода. Для каждого вещества существует свой тип таких «вкусовых» рецепторов, и утрата какого-то из них в результате мутации приводит к частичной «вкусовой слепоте». Многие подвижные бактерии реагируют также на колебания температуры, а фотосинтезирующие виды — на изменения освещенности. Некоторые бактерии воспринимают направление силовых линий магнитного поля, в том числе магнитного поля Земли, с помощью присутствующих в их клетках частичек магнетита магнитного железняка — Fe3O4.

В воде бактерии используют эту свою способность для того, чтобы плыть вдоль силовых линий в поисках благоприятной среды. Условные рефлексы у бактерий неизвестны, но определенного рода примитивная память у них есть. Плавая, они сравнивают воспринимаемую интенсивность стимула с ее прежним значением, то есть определяют, стала она больше или меньше, и, исходя из этого, сохраняют направление движения или изменяют его. Размножение и генетика. Бактерии размножаются бесполым путем: ДНК в их клетке реплицируется удваивается , клетка делится надвое, и каждая дочерняя клетка получает по одной копии родительской ДНК. Бактериальная ДНК может передаваться и между неделящимися клетками.

При этом их слияния как у эукариот не происходит, число особей не увеличивается, и обычно в другую клетку переносится лишь небольшая часть генома полного набора генов , в отличие от «настоящего» полового процесса, при котором потомок получает по полному комплекту генов от каждого родителя. Такой перенос ДНК может осуществляться тремя путями. При трансформации бактерия поглощает из окружающей среды «голую» ДНК, попавшую туда при разрушении других бактерий или сознательно «подсунутую» экспериментатором. Процесс называется трансформацией, поскольку на ранних стадиях его изучения основное внимание уделялось превращению трансформации таким путем безвредных организмов в вирулентные. Фрагменты ДНК могут также переноситься от бактерии к бактерии особыми вирусами — бактериофагами. Это называется трансдукцией.

Известен также процесс, напоминающий оплодотворение и называемый конъюгацией: бактерии соединяются друг с другом временными трубчатыми выростами копуляционными фимбриями , через которые ДНК переходит из «мужской» клетки в «женскую». Иногда в бактерии присутствуют очень мелкие добавочные хромосомы — плазмиды, которые также могут переноситься от особи к особи. Если при этом плазмиды содержат гены, обусловливающие резистентность к антибиотикам, говорят об инфекционной резистентности. Она важна с медицинской точки зрения, поскольку может распространяться между различными видами и даже родами бактерий, в результате чего вся бактериальная флора, скажем кишечника, становится устойчивой к действию определенных лекарственных препаратов. При самых благоприятных условиях некоторые бактерии могут удваивать свою общую массу и численность примерно каждые 20 мин. Это объясняется тем, что ряд их важнейших ферментных систем функционирует с очень высокой скоростью.

Так, кролику для синтеза белковой молекулы требуются считанные минуты, а бактерии — секунды. Однако в естественной среде, например в почве, большинство бактерий находится «на голодном пайке», поэтому если их клетки и делятся, то не каждые 20 мин, а раз в несколько дней. Бактерии бывают автотрофами и гетеротрофами. Автотрофы «сами себя питающие» не нуждаются в веществах, произведенных другими организмами. В качестве главного или единственного источника углерода они используют его диоксид CO2. Включая CO2 и другие неорганические вещества, в частности аммиак NH3 , нитраты NO—3 и различные соединения серы, в сложные химические реакции, они синтезируют все необходимые им биохимические продукты.

Гетеротрофы «питающиеся другим» используют в качестве основного источника углерода некоторым видам нужен и CO2 органические углеродсодержащие вещества, синтезированные другими организмами, в частности сахара. Окисляясь, эти соединения поставляют энергию и молекулы, необходимые для роста и жизнедеятельности клеток. В этом смысле гетеротрофные бактерии, к которым относится подавляющее большинство прокариот, сходны с человеком. Главные источники энергии. Если для образования синтеза клеточных компонентов используется в основном световая энергия фотоны , то процесс называется фотосинтезом , а способные к нему виды — фототрофами. Фототрофные бактерии делятся на фотогетеротрофов и фотоавтотрофов в зависимости от того, какие соединения — органические или неорганические — служат для них главным источником углерода.

Фотоавтотрофные цианобактерии сине-зеленые водоросли , как и зеленые растения, за счет световой энергии расщепляют молекулы воды H2O. У зеленых и пурпурных серных бактерий световая энергия используется для расщепления не воды, а других неорганических молекул, например сероводорода H2S. В результате также образуется водород, восстанавливающий диоксид углерода, но кислород не выделяется. Такой фотосинтез называется аноксигенным. Фотогетеротрофные бактерии, например пурпурные несерные, используют световую энергию для получения водорода из органических веществ, в частности изопропанола, но его источником у них может служить и газообразный H2. Если основной источник энергии в клетке — окисление химических веществ, бактерии называются хемогетеротрофами или хемоавтотрофами в зависимости от того, какие молекулы служат главным источником углерода — органические или неорганические.

У первых органика дает как энергию, так и углерод. Эти организмы называют также хемолитотрофами, подчеркивая тем самым, что они «питаются» горными породами. Клеточное дыхание — процесс высвобождения химической энергии, запасенной в «пищевых» молекулах, для ее дальнейшего использования в жизненно необходимых реакциях. Дыхание может быть аэробным и анаэробным. В первом случае для него необходим кислород. Он нужен для работы т.

Анаэробным организмам кислород не нужен, а для некоторых видов этой группы он даже ядовит. Высвобождающиеся в ходе дыхания электроны присоединяются к другим неорганическим акцепторам, например нитрату, сульфату или карбонату, или при одной из форм такого дыхания — брожении к определенной органической молекуле, в частности к глюкозе. В широком смысле это означает, что представители данного вида могут давать плодовитое потомство, спариваясь только с себе подобными, но не с особями других видов. Таким образом, гены конкретного вида, как правило, не выходят за его пределы. Однако у бактерий может происходить обмен генами между особями не только разных видов, но и разных родов, поэтому правомерно ли применять здесь привычные концепции эволюционного происхождения и родства, не вполне ясно. В связи с этой и другими трудностями общепринятой классификации бактерий пока не существует.

Ниже приведен один из широко используемых ее вариантов. Gracilicutes тонкостенные грамотрицательные бактерии Класс 1. Scotobacteria нефотосинтезирующие формы, например миксобактерии Класс 2.

Дарвина разрушило креационистскую концепцию о сотворении видов, подорвало основы представления о божественном происхождении человека, об его исключительном положении в системе органического мира. Август Вейсман 1834—1914 гг. Выступал против витализма, отвергал ламаркизм. Вейсман справедливо утверждал, что вопрос о наследовании приобретенных признаков может быть решен только с помощью опыта, и экспериментально показал ненаследуемость механических повреждений. Автор умозрительных теорий наследственности и индивидуального развития, неверных в деталях, но в принципе предвосхитивших современные представления о дискретности носителей наследственной информации и их связи с хромосомами, а также концепции о роли наследственных задатков в индивидуальном развитии. Основоположник неодарвинизма.

Сергей Сергеевич Четвериков 1880—1959 гг. Организовал экспериментальное изучение наследственных свойств у естественных популяций животных. Эти исследования позволили ему стать основоположником современной эволюционной генетики. Его основной труд «О некоторых моментах эволюционного процесса с точки зрения современной генетики» 1926 г. Биология 16 Jul 2017 at 8:50 am Иван Иванович Шмальгаузен 1884—1963 гг. Создал теорию стабилизирующего отбора. Изучал закономерности эмбрионального развития животных, факторы индивидуального развития и их роль в эволюции. Томас Генри Гексли 1825—1895 гг. Дарвина за свои яркие полемические выступления он получил прозвище «Бульдог Дарвина».

Его исследовательские интересы были связаны со сравнительной анатомией и возможностями ее эволюционной интерпретации. Наиболее известны его дебаты с Ричардом Оуэном по вопросу о степени анатомической близости человекообразных обезьян и человека. Для описания своего отношения к господствовавшим в его время религиозным верованиям он ввел термин агностицизм. Владимир Онуфриевич Ковалевский 1842—1883 гг. Эрнст Геккель 1834—1919 гг. Наиболее известны труды Геккеля по развитию и пропаганде эволюционного учения. На основе теории Ч. Дарвина развил учение о закономерностях происхождения и развития живой природы, пытаясь проследить генеалогические отношения между различными группами живых существ филогенез и представить эти отношения в виде «родословного древа». Геккель сформулировал теорию гастреи происхождение многоклеточных животных от гипотетического предка, напоминающего двуслойный зародыш — гаструлу.

Связь между онтогенезом и филогенезом Геккель обосновал под названием биогенетического закона. Ввел термин «экология». Фриц Мюллер 1821—1897 гг. Наряду с Э. Геккелем автор биогенетического закона Геккеля—Мюллера. Алексей Николаевич Северцов 1866—1936 гг. Установил основные направления биологического прогресса: ароморфоз, идиоадапцию и общую дегенерацию. Чарлз Лайелль 1797—1875 гг. Сформулировал принцип актуализма, согласно которому на земле постоянно действуют сходные факторы среды.

Альфред Рассел Уоллес 1823—1913 гг. В 1850-е гг. Уоллес вместе с Генри Бейтсом проводил исследования бассейна реки Амазонки и Малайского архипелага, по результатам которых им была собрана огромная естественно-научная коллекция и выделена так называемая линия Уоллеса, отделяющая фауну Австралии от азиатской.

Часто клеточные стенки бактерий окружены слизистыми капсулами различной толщины, образованными главным образом полисахаридами иногда гликопротеинами или полипептидами. У ряда бактерий обнаружены также т. S-слои от англ. Цитоплазматическая мембрана , отделяющая цитоплазму от клеточной стенки, служит осмотическим барьером клетки, регулирует транспорт веществ; в ней осуществляются процессы дыхания , азотфиксации , хемосинтез и др. Нередко она образует впячивания — мезосомы. С цитоплазматической мембраной и её производными связан также биосинтез клеточной стенки, спорообразование и т. К ней прикреплены жгутики, геномная ДНК.

Бактериальная клетка организована довольно просто. В цитоплазме многих бактерий имеются включения, представленные различными рода пузырьками везикулами , образованными в результате впячивания цитоплазматической мембраны. Для фототрофных , нитрифицирующих и метанокисляющих бактерий характерна развитая сеть цитоплазматических мембран в виде неразделённых пузырьков, напоминающих граны хлоропластов эукариот. В цитоплазме присутствуют также рибосомы от 5 до 50 тыс. У некоторых бактерий например, у многих цианобактерий имеются карбоксисомы — тельца, в которые заключён фермент , участвующий в фиксации CO2. Геном бактерий нуклеоид представлен кольцевой молекулой ДНК, которую часто называют бактериальной хромосомой. Для бактериального генома характерно объединение многих функционально связанных генов в т. Кроме того, в клетке могут присутствовать внехромосомные генетические элементы — ДНК плазмид , которые несут несколько полезных для бактерий генов в том числе гены устойчивости к антибиотикам. Она может существовать автономно или временно включаться в хромосому. Но иногда, в результате мутаций , эта ДНК теряет способность выходить из хромосомы и становится постоянным компонентом генома.

Появление новых генов может быть также обусловлено генетическим переносом в результате однонаправленной передачи ДНК из клетки-донора в клетку-реципиент аналог полового процесса. Такая передача может осуществляться при прямом контакте двух клеток конъюгация , при участии бактериофагов трансдукция или путём попадания генов в клетку из внешней среды без межклеточного контакта. Всё это имеет большое значение для микроэволюции бактерий и приобретения ими новых свойств. Размножение Большинство бактерий размножаются путём деления надвое, реже почкованием, а некоторые например, актиномицеты — с помощью экзоспор или обрывков мицелия. Известен способ множественного деления с образованием мелких репродуктивных клеток-баеоцитов у ряда цианобактерий. Многоклеточные прокариоты могут размножаться отделением от трихом одной или нескольких клеток. Некоторые бактерии характеризуются сложным циклом развития, в процессе которого могут меняться морфология клеток и образовываться покоящиеся формы: цисты , эндоспоры, акинеты. Миксобактерии способны образовывать плодовые тела, часто причудливых конфигураций и окрасок. Отличительной особенностью бактерий является способность к быстрому размножению. Например, время удвоения клеток кишечной палочки Escherichia coli составляет 20 мин.

Подсчитано, что потомство одной клетки в случае неограниченного роста уже через 48 ч превысило бы массу Земли в 150 раз.

От неорганических соединений - к органическим, от органических — к биологическим: так последовательно совершался процесс зарождения жизни. Чарлз Дарвин был один из первых, кто рассматривал эту проблему с научной точки зрения. После Дарвина Тиндаль ставил опыты по самозарождению, Томас Гексли высказывал идеи о живой протоплазме. После Гексли в течение полувека интерес к этой проблеме был невелик. Успех в одной области знаний сдерживал дальнейшее развитие в другой.

В 1924 году Алекс. Опарин, советский биохимик, опубликовал брошюру, в которой говорилось « …вещества с большими, сложными частицами очень склонны давать коллоидные растворы в воде. Рано или поздно, но такие коллоидные растворы органических веществ должны были возникнув в первичной водной оболочке Земли, и раз возникнув, они оставались существовать, усложняя и увеличивая свою молекулу всё дальше и дальше… и …. Развиваясь и совершенствуясь дальше, они дали, наконец, те формы организмов, которые мы наблюдаем и в настоящее время». Существует обширная литература по вопросам накопления растворов органических веществ, которое сопровождалось образованием структур, напоминающих клетки. Однако такое перепрыгивание от морфологического сходства к функциональному весьма опасно, особенно, если речь идёт об объектах, возраст которых несколько миллиардов лет.

Экспериментально Опарин и его сотрудники получили коацерватные капли из большого количества различных биологических веществ. Коацерваты - мельчайшие коллоидные частицы, обладающие осмотическим свойствами. Благодаря проницаемости стенок происходит селективное проникновение молекул из окружающей среды внутрь системы и обратно. Своеобразная модель «протоклеток». Изменчивость структур коацерватов, легкость их возникновения и способность концентрироваться в слабых растворах, возможно позволили им играть исключительную роль в доклеточной эволюции. Согласно другому учёному Фоксу, возможным путём возникновения на Земле первых клеток было образование микросфер — маленьких твёрдых шариков, полученных из протеиноидов.

По форме и размерам эти микросферы часто сравнивают с бактериями. Таким образом, все предположения относительно того, каким образом могли возникнуть первые структуры, подобные клеткам, являются весьма спорными. В этой области, лежащей на стыке химии и биологии, проводилось много исследований, но получено мало чётких результатов. Примитивные организмы, возникшие в первичных океанах Земли, были анаэробными и, вероятнее всего, гетеротрофными; океаны в изобилии поставляли им пищу, и первым микроорганизмам оставалось лишь пожирать её. Но с течением времени мощные потоки солнечной энергии уже не могли достигнуть близких к поверхности океана нижних слоёв земной атмосферы мешал озон.

Какими организмами являются бактерии с точки зрения эволюции

Микроорганизмы содействуют накоплению и разложению гумуса. Количество и качество питательных веществ в почве зависит от интенсивности микробиологических процессов целлюлозоразлагающей и ферментативной активности и т. Свободноживующие азотфиксаторы, которые в почвах довольно широко распространены, вместе с симбиотическими клубеньковыми бактериями усваивают атмосферный азот и играют важную роль в поддержании азотного режима почв. Клубеньковые бактерии в значительной мере обеспечивают азотное питание бобовых культур. В трансформации серы, железа и других элементов также принимают участие микроорганизмы. Изменения, происходящие при этом в почве, отражаются в значительной степени на микрофлоре.

Обработка гербицидами — веществами, чужеродными для почвы, — влияет на количество и состав микрофлоры. В то же время микрофлора участвует в детоксикации пестицидов в почве и в ее очистке от загрязнения некоторыми химикатами.

Но иногда, в результате мутаций , эта ДНК теряет способность выходить из хромосомы и становится постоянным компонентом генома. Появление новых генов может быть также обусловлено генетическим переносом в результате однонаправленной передачи ДНК из клетки-донора в клетку-реципиент аналог полового процесса. Такая передача может осуществляться при прямом контакте двух клеток конъюгация , при участии бактериофагов трансдукция или путём попадания генов в клетку из внешней среды без межклеточного контакта. Всё это имеет большое значение для микроэволюции бактерий и приобретения ими новых свойств. Размножение Большинство бактерий размножаются путём деления надвое, реже почкованием, а некоторые например, актиномицеты — с помощью экзоспор или обрывков мицелия. Известен способ множественного деления с образованием мелких репродуктивных клеток-баеоцитов у ряда цианобактерий. Многоклеточные прокариоты могут размножаться отделением от трихом одной или нескольких клеток.

Некоторые бактерии характеризуются сложным циклом развития, в процессе которого могут меняться морфология клеток и образовываться покоящиеся формы: цисты , эндоспоры, акинеты. Миксобактерии способны образовывать плодовые тела, часто причудливых конфигураций и окрасок. Отличительной особенностью бактерий является способность к быстрому размножению. Например, время удвоения клеток кишечной палочки Escherichia coli составляет 20 мин. Подсчитано, что потомство одной клетки в случае неограниченного роста уже через 48 ч превысило бы массу Земли в 150 раз. Условия обитания Бактерии приспособились к разным условиям существования. Некоторые бактерии чрезвычайно устойчивы к ионизирующему излучению и живут даже в воде охлаждающих контуров атомных реакторов Deinococcus radiodurans. Ряд бактерий барофилы, или пьезофилы хорошо переносят гидростатическое давление до 101 тыс. В то же время есть бактерии, не выдерживающие даже незначительного увеличения атмосферного давления.

Как правило, бактерии предпочитают нейтральные условия среды обитания рН около 7,0 , хотя встречаются как экстремальные ацидифилы, способные к росту при рН 0,1—0,5, так и алкалифилы, развивающиеся при рН до 13,0. Подавляющее большинство изученных бактерий — аэробы. Факультативные анаэробы растут как в присутствии O2, так и в его отсутствие; они способны переключать метаболизм с аэробного дыхания на брожение или анаэробное дыхание энтеробактерии. Рост аэротолерантных анаэробов не угнетается в присутствии небольшого количества O2, т. Для строгих анаэробов даже следы O2 в среде обитания являются губительными. Многие бактерии переживают неблагоприятные условия среды, образуя покоящиеся формы. Типы питания Для бактерий характерны интенсивный обмен веществами между клеткой и внешней средой и пластичность метаболизма. Они обладают высокой способностью к адаптации, легко приспосабливаясь к различным в том числе экстремальным условиям среды, способны переключаться с одного типа питания на другой. Как и другие организмы, бактерии запасают энергию главным образом в форме АТФ , образующегося в процессе фотосинтеза, дыхания и различных типов брожения.

В зависимости от источника используемого углерода они делятся на автотрофов полностью удовлетворяют свои потребности за счёт CO2 и гетеротрофов нуждаются в готовых органических соединениях. Однако эти термины не отражают всё многообразие типов питания у бактерий. Поэтому при их характеристике указывают на источник энергии, доноров водорода электронов и вещества, используемые в биосинтетических процессах.

Такая способность связана с их быстрым размножением - при благоприятных условиях бактерии делятся каждые 20 минут. При изменении условий внешней среды за счет мутаций выживают и размножаются те формы, которые устойчивы к действию того или иного фактора к примеру, радиации. Строение бактерий Бактерии имеют клеточную стенку, состоящую из муреина пептидогликана и выполняющую защитную функцию. У бактерий прокариот, доядерных отсутствуют мембранные органоиды. В их клетке можно найти только немембранные: рибосомы, жгутики, пили. Пили - поверхностные структуры, которые служат для прикрепления бактерии к субстрату.

Наследственный материал находится прямо в цитоплазме не в ядре, как у эукариот в виде нуклеоида. Нуклеоид лат. Долгое время выделяли "особый органоид" бактерий - мезосомы, считали, что они могут участвовать в некоторых клеточных процессах. Спешу сообщить, что на данный момент установлено однозначно: мезосомы это складки цитоплазматический мембраны, образующиеся только лишь при подготовке бактерий к электронной микроскопии это артефакты, в живой бактерии их нет. При наступлении неблагоприятных для жизни условий бактерии образуют защитную оболочку - спору. При образовании споры клетка частично теряет воду, уменьшаясь при этом в объеме. В таком состоянии бактерии могут сохраняться тысячи лет! В состоянии споры бактерии очень устойчивы к изменениям температуры, механическим и химическим факторам. При изменении условий среды на благоприятные, бактерии покидают спору и приступают к размножению.

Ответ 2 разделение долин скальными гребнями; 3 низкая миграционная способность улиток невозможность преодолеть скальные гребни ; 4 изоляция; 5 изоляция популяций друг от друга препятствовала обмену генами; 6 мутации; 7 мутации приводили к изменению генофонда в каждой популяции; 8 дрейф генов эффект основателя ; 9 каждая изолированная группа отличалась изначальным генофондом 13. При каких условиях генетически разнообразная популяция организмов может со временем образовать два вида? Укажите возможные причины разделения популяции с образованием двух видов. Ответ 1 Для того, чтобы образовались два вида, должна возникнуть изоляция: 2 географическая изоляция возникает в результате появления физической преграды между частями популяции; 3 экологическая изоляция возникает при смене экологической ниши частью популяции; 4 изоляция может привести к образованию двух видов в случае невозможности скрещивания и обмена генами между новыми популяциями репродуктивная изоляция. Объясните, как переселение человеком собак в Австралию привело к образованию нового вида Дикая собака динго. Для объяснения используйте знания о факторах эволюции. Ответ 1 популяция собак, переселённых в Австралию, оказалась пространственно изолированной от популяций собак волков других континентов; 2 в изолированной популяции собак появились новые мутации признаки, аллели , которые оказались полезными в новых условиях жизни; 3 длительный естественный отбор сохранил полезные признаки мутации и привёл к изменению генофонда; 4 репродуктивная изоляция привела к формированию нового вида. Определите по рисунку вид изоляции севанской форели, приведший к образованию различных популяций. Ответ обоснуйте.

Почему учёные относят эти популяции к одному виду? Почему севанская форель требует пристального внимания со стороны природоохранных организаций? Ответ 2 в исходном виде сформировались популяции с разными местами нереста; 3 в исходном виде сформировались популяции с разными сроками нереста; 4 между популяциями нет репродуктивной изоляции, поэтому это один вид; 5 этот вид-эндемик обитает только в озере Севан 16. Как с позиции современного эволюционного учения объясняется появление собачьих блох, устойчивых к противоблошиному шампуню? Ответ 1 в популяции блох присутствуют особи с различной степенью устойчивости к ядовитым веществам разными мутациями ; 2 при обработке шампунем в ходе борьбы за существование неустойчивые к яду шампуня блохи погибают, а устойчивые выживают; 3 выжившие блохи передают гены устойчивости к яду мутацию своим потомкам получим преимущество в размножении ; 4 в результате естественного отбора формируется новая популяция, устойчивая к яду шампуня 17. Вид азиатской птицы зеленоватой камышевки Phylloscopus trochiloides распространился на восток и запад Тибетского плато с юга, огибая непроходимые Гималаи направление распространения вида указано стрелками , где миграция из-за высоты гор невозможна. При этом образовалось множество подвидов, которые различаются по мотивам песни и окраске. Соседние подвиды способны свободно скрещиваться и давать плодовитое потомство например, P. Однако дальние подвиды не могут скрещиваться и давать плодовитое потомство например, P.

Какой тип видообразования иллюстрирует данный пример? Почему у дальних подвидов P. Дайте аргументированный ответ. Ответ 2 дальние подвиды долгое время не контактировали между собой отсутствовал поток генов ; 3 в результате между подвидами накопились значимые генетические различия генофонд подвидов стал различаться ; 4 поэтому возникла репродуктивная изоляция. Виды тихоокеанской саламандры Ensatina распространены вокруг долины в Калифорнии, которая ограничена горным массивом. В процессе эволюции последовательно образовались виды, которые отличались друг от друга по окраске и другим морфологическим признакам направление распространения видов указано на рисунке стрелками. Соседние виды способны свободно скрещиваться например, E. Однако виды E. Почему у видов E.

Ответ 1 географическое аллопатрическое видообразование; 2 виды E. Многие животные совершают в течение своей жизни регулярные или нерегулярные миграции. Назовите не менее трёх возможных причин таких перемещений. Каждую причину сопроводите примером. Ответ 2 например, миграция рыб из морей в реки на нерест; 3 смена экосистем пожар в лесу, истощение природных ресурсов, увеличение внутривидовой конкуренции ; 4 например, перемещение грызунов после пожара; 5 сезонные изменения условий обитания; 6 например, перелёты птиц миграция северных оленей ; 7 суточные изменения условий обитания; 8 например, вертикальная миграция зоопланктона приливно-отливные миграции. В пунктах 2, 4, 6, 8 возможны иные подходящие по смыслу примеры. Среди позвоночных животных известны случаи заразного рака: трансмиссивная венерическая опухоль собак, передающаяся половым путём, и лицевая опухоль тасманийского дьявола, передающаяся при укусах. Трансмиссивная венерическая опухоль собак появилась порядка 10 000 лет назад. После заражения у собак образуются опухоли на гениталиях, которые со временем регрессируют и не приводят к смерти хозяина, но некоторое время активно передаются другим особям.

Бактерии эволюционировали в лаборатории?

Бактерии, микроорганизмы с прокариотным типом строения клетки: генетический аппарат у них не заключён в обособленное мембраной клеточное ядро. С позиций эволюционного учения Ч. Дарвина любое приспособление организмов является результатом. Для эволюции бактерий характерен ярко выраженный физиолого-биохимический уклон: при относительной бедности жизненных форм и примитивном строении, они освоили практически все известные сейчас биохимические процессы.

Планета бактерий

Из перечисленных признаков, общим для клеток растений и животных является а) наличие. Как перемещаются бактерии? №1. Каких химических эллементов больше всего в живом организме? №2. Что указывает на почему молекула воды является диполем. Бактерии являются не только редуцентами, но и продуцентами (создателями) органического вещества, которое может быть использовано другими организмами. С точки зрения эффективной эволюции это гораздо круче, чем наш секс. 3)Какими организмами являются бактерии с точки зрения эволюции (примитивные, высокоорганизованными)? Найдите правильный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология, а если вы сомневаетесь в правильности ответов или ответ отсутствует.

Похожие новости:

Оцените статью
Добавить комментарий