29 июля команда сети магазинов "КАТОД" приняла участие в забеге Trail Run от "Гонки Героев".
Разработаны новые органические электродные материалы для калий-ионных аккумуляторов
На натриевом электроде тоже образуется слой хлорида натрия, и ионам натрия постепенно становится труднее проходить через него. Фторид натрия и другие фтор-содержащие соли способствуют образованию пустот в этом слое и облегчают движение ионов натрия. Авторы также изготовили перезаряжаемый источник тока с литиевым анодом. Он показывал чуть более высокую емкость первого разряда 3250 миллиампер-час на грамм катода , но при последующих разрядах и зарядах емкость была такая же, как и у натриевого варианта. Впрочем, данных о сходстве и различии двух новых источников тока пока что недостаточно, и авторы собираются продолжить их изучение. Говорить о том, смогут ли подобные устройства в будущем выйти на рынок и составить конкуренцию литий-ионным аккумуляторам, тоже пока преждевременно. Пока что Дай и его коллеги отметили только, что за все время работы над статьей они собрали и испытали несколько сотен ячеек, но ни одна из них не взорвалась. В прошлом году корейские химики разработали новый подход для синтеза галогензамещенного тиофосфата лития со структурой аргиродита и получили электролит для твердотельного литий-ионного аккумулятора с рекордной проводимостью. А об устройстве и истории создания литий-ионных аккумуляторов можно почитать в нашем материале «Заряженный Нобель». Наталия Самойлова.
Полученный материал обладал высочайшей кинетикой, позволяя быструю зарядку, и приблизил его по этому параметру к суперконденсаторам. Похожим образом, но с использованием других материалов, был создан катод, отличающийся рекордной ёмкостью. Тем самым учёные как бы сократили дисбаланс в характеристиках между аккумуляторными анодами и катодами суперконденсаторов. Созданный в лаборатории прототип гибридного натриево-ионного аккумулятора превзошёл по плотности энергии коммерческие литиево-ионные аккумуляторы как показано на графике выше и показал характеристики плотности мощности, свойственные суперконденсаторам. Ожидается, что он подойдет для быстрой зарядки в самых разных сферах — от электромобилей до интеллектуальных электронных устройств и аэрокосмической техники.
Но номинальный вольтаж у них составляет 2,4 В. Особенности катода В роли катода используют разные соединения лития, и от их выбора зависят характеристики аккума. Так, для получения высокотоковых ячеек используется катодный материал LiMn2O4. Для увеличения проводимости в активную массу катода включают электропроводные добавки. Оксиды кобальта обеспечивают Li-ion аккумуляторам большое напряжение 3,7 В и солидный запас емкости. Иногда для изготовления катода используют смешанные оксиды или фосфаты, которые улучшают эксплуатационные характеристики элементов питания. Ячейки с катодом из литий-железо-фосфата LiFePO4 выдерживают большие токовые нагрузки, отличаются морозоустойчивостью, химической стабильностью и ресурсом свыше 2000 циклов. Но номинальное напряжение у них ниже — 3,2—3,3 В. Кроме экспериментов с разными материалами, изучается возможность покрытия катода тонкодисперсными оксидами. Электрохимические процессы в Li-ion аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду. Они временно покидают графит анода и встраиваются в кристаллическую решетку оксида на катоде.
Александр Солдатов — научный руководитель направления ЮФУ, профессор МИИ ИМ ЮФУ Ученые Международного исследовательского института интеллектуальных материалов ЮФУ провели исследование, в ходе которого предложили новый, простой и масштабируемый метод производства конверсионного катодного материала на основе фторида железа. Благодаря конверсионной электрохимической реакции удается получить ту же величину емкости электрической энергии для значительно меньшей массы катодного материала. В отличие от ранее известных способов получения подобных материалов, разработанный в ЮФУ метод подразумевает, что один из компонентов для производства катода — металл-органический каркас MIL-88A фумарат железа — синтезируется в водной среде без каких-либо токсичных добавок, что говорит о минимальном вреде окружающей среде. Полученный материал был применен в качестве катода для литий-ионного аккумулятора и показал хорошую стабильность и высокую емкость. Схема синтеза FeF 2 «Фторид железа не заменит литий в аккумуляторах, однако конверсионные катодные материалы позволяют создавать более эффективные аккумуляторы и, таким образом, эффективнее этот литий применять.
Новый LMR-катод минимизирует падение напряжения в литий-ионных батареях
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов 08:53, 30 декабря 2020 г. Наука Техника Такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. Также с применением новых катодов могут быть созданы калиевые двухионные аккумуляторы, не использующие дорогостоящий литий. Человечество производит и потребляет всё больше электричества, и вместе с этим растёт спрос на энергонакопители, потому что многие устройства часто работают в автономном режиме. Литий-ионные аккумуляторы могут давать большую мощность, обеспечивая при этом сравнительно высокие скорости разряда и заряда, а также хранят достаточно много энергии в расчете на единицу своей массы. Поэтому их применяют в качестве накопителей энергии не только в электронике и электротранспорте, но уже и в масштабах глобальных энергосетей.
Например, в Австралии построят сеть огромных энергонакопителей на основе литий-ионных аккумуляторов, чтобы запасать излишки энергии, произведенной солнечными и ветровыми электростанциями.
Как заявляют на предприятии, серийный выпуск электронно-оптических преобразователей 3-го поколения сейчас налажен только в двух странах: на российском «Катоде» и в США. И здорово, что коллектив так быстро — буквально за полгода — в разы увеличил объёмы производства. Мы, конечно, будем оказывать всяческую поддержку. Ведь кратное увеличение объёмов производства, в частности, на «Катоде», — это серьезный вклад в повышение эффективности работы наших бойцов», — заявил губернатор во время визита на завод.
Фото пресс-службы правительства региона По данным правительства региона, подразделения военнослужащих из Новосибирска полностью обеспечены приборами ночного видения. Как отметил Андрей Травников, множество предприятий области сейчас обеспечивает военных всем необходимым.
Менделеева и ИПХФ РАН была использована перспективная постлитиевая технология двухионных аккумуляторов,в электрохимических процессах которых задействованы как анионы, так и катионы электролита, что в разы повышает скорости заряда батарей по сравнению с литий-ионными. При этом в качестве катодов тестировались материалы на основе полимерных ароматических аминов, которые можно синтезировать из различных органических соединений. Они формируют объемные сетчатые структуры, которые обеспечивают более быструю кинетику электродных процессов.
Стабильные, быстрые, ёмкие Стандартный литий-ионный аккумулятор - это ячейка объем которой заполнен литий-содержащим электролитом и разделен сепаратором на две части - в одной находится анод, а в другой катод. В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные.
Учёные же пошли дальше и воспользовались научными достижениями и прогрессом, чтобы снять аккумуляторный катод в 3D-проекции для форсирования дальнейших улучшений в литий-ионной технологии. Cрок службы батареи 5-8 лет беспокоит производителей электромобилей [«Неудобная правда об электромобилях», Autonews ]. Учёные использовали сканирующий электронный микроскоп. Методом сфокусированного ионного пучка они обследовали положительный электрод просто купленного в магазине аккумулятора. И пришли к весьма интересным выводам. Частицы оказались совершенно неправильной формы и это проблема.
Учёные также просят нас обратить внимание, какое значительное внутреннее растрескивание. Трещина на 3D-модели кобальтового катода под увеличением.
«Катод»: трудно быть лидером
Электрохимические процессы в LiIon аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду. Короткое время заряда/разряда разработанных калиевых источников тока на органической основе позволяет рассматривать их как альтернативу суперконденсаторам. Литий-ионная батарея заряжается и разряжается в процессе движения ионов лития между двумя электродами — анодом и катодом. Органические материалы, составляющие катод, в котором функциональные группы в ходе реакций заряда и разряда попеременно окисляются и восстанавливаются. В электрохимии катод — электрод, на котором происходят реакции восстановления. История «Катода» — это история развития наукоемкого бизнеса в России, который, несмотря на внутренние и внешние проблемы, все же достиг успеха и мирового признания.
Исследователи создали энергоемкий органический катод для аккумуляторов
Анод и катод аккумулятора содержат металлы, которые в зависимости от направления тока (заряд или разряд). Органические материалы, составляющие катод, в котором функциональные группы в ходе реакций заряда и разряда попеременно окисляются и восстанавливаются. Вот казалось бы, только вчера мы начали работу над проектом Заряд.
Новосибирский завод «Катод» изготовил сложнейшее оборудование для участников спецоперации
Автоматическое зарядное устройство КАТОДЪ-501 здорово всем народ сегодня решила разобрать и посмотреть что с этим зарядным устройством так как он работает неправильно. КАТОД – профессиональный ремонт турбин, стартеров и генераторов для всех видов транспорта. Анод и катод аккумулятора содержат металлы, которые в зависимости от направления тока (заряд или разряд).
Химики впервые перезарядили тионилхлоридный аккумулятор
Электрохимические процессы в LiIon аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду. Построена модель термополевой электронной эмиссии из металлического катода с тонкой поверхностнойдиэлектрической пленкой при его температуре 200–400 К. Получено выражение. Что такое Анод и Катод? У аккумуляторов полярность на аноде и катоде изменяется от того, работает он как гальванический элемент (при разряде) или как электролизёр (при заряде). Новосибирское оборонное предприятие Катод поставило приборы ночного видения воинским подразделения из региона, участвующим в спецоперации, сообщили в.
Создан уникальный катод для металл-ионных аккумуляторов
Литий-ионная батарея заряжается и разряжается в процессе движения ионов лития между двумя электродами — анодом и катодом. Профессор Нисихара и его команда полагают, что GMS-лист станет важной вехой в производстве углеродных катодов для литий-O2-батарей. Плотность энергии литий-ионных аккумуляторов может быть улучшена за счет сохранения заряда при высоких напряжениях за счет окисления оксидных ионов в материале катода. История «Катода» — это история развития наукоемкого бизнеса в России, который, несмотря на внутренние и внешние проблемы, все же достиг успеха и мирового признания.
Новый материал катода ускорит зарядку литий-ионных батарей
В зависимости от того, как сворачивается такая лента, получаются элементы питания цилиндрической и призматической формы. Снаружи их защищает прочный герметичный корпус из металла. Электроды соединяют с клеммами-токосъемниками. Особенности анода Углеродным материалам графиту, саже, коксу свойственно обратимо встраивать катионы лития в пространства между слоями с минимальным увеличением удельного объема. Это важно, чтобы исключить риск возникновения огромных внутренних напряжений и вызываемого ими разрушения активных материалов.
Удачным экспериментом стало использование в роли анодного материала пентатитаната лития — Li4Ti5O12. Но номинальный вольтаж у них составляет 2,4 В. Особенности катода В роли катода используют разные соединения лития, и от их выбора зависят характеристики аккума. Так, для получения высокотоковых ячеек используется катодный материал LiMn2O4.
Для увеличения проводимости в активную массу катода включают электропроводные добавки. Оксиды кобальта обеспечивают Li-ion аккумуляторам большое напряжение 3,7 В и солидный запас емкости.
Вывод элемента из p-области именуется «А», из n-области — «К». Полупроводниковый диод Знак анода и катода Каким знаком обозначается «К», каким «А», зависит от того, какая процедура и в какой области рассматривается. В электрохимии есть два устройства, имеющие различие в обозначении знаками: электролизёр и гальванический элемент. При электролизе окислительно-восстановительном химическом взаимодействии под влиянием внешнего ИП минусом «-» обозначают катод. Именно на нём восстанавливаются металлы, из-за избытка электронов. Знаки зарядов при электролизе В гальваническом элементе окисление происходит без внешнего воздействия электричества. Если взять в качестве примера медно-цинковую батарею, то большое количество электронов минус скапливается на аноде.
Они при продвижении по внешней цепи участвуют в восстановлении меди. Значит, в этом случае положительным электродом будет катод. У гальванических элементов плюсом является катод, минусом — анод. У электролизёров наоборот — плюсом считают анод, минусом — катод. Знаки зарядов у гальванической батареи У полупроводниковых приборов, как знак, так и термин, чётко закреплены за выводами детали. Анод — это «плюс», катод — это «минус» диода. Почему существует путаница Всё происходит от того, что нет чёткой привязки минуса и плюса к компонентам, которые называются «К» и «А». Ещё Майкл Фарадей придумал простое правило маркировки полярности для этой пары электродов.
Они ввели ионы переходного металла TM в слои лития выше или ниже сотовой структуры, чтобы повысить ее стабильность. Используя метод ионного обмена то есть систему для эффективного удаления или растворения ионов , исследователи превратили комбинированный материал на основе натрия, лития, марганца и никеля в желаемый катод LMR O2-типа. Преимущество нашего катода LMR заключается в значительно более низком спаде напряжения при использовании батареи по сравнению с традиционными катодами», — пояснил профессор Лю. В тестовых испытаниях новый катод, обогащенный литием, показал себя успешно, подтвердив возможности продлить срок службы и повысить производительность литий-ионных аккумуляторов. Однако основное внимание при тестировании было уделено тому, насколько удалось преодолеть недостатки, вызываемые явлением «утечки напряжения». По оценке исследователей, эта давняя проблема была почти полностью устранена.
Выяснилось, что на межзёренных границах отрицательного электрода на катоде в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. При прохождении через такие скопления ионов лития что происходит в момент зарядки и разрядки аккумуляторов они захватывают электроны и восстанавливаются до металлического лития. На аноде такие процессы практически не наблюдались. Тем самым стало абсолютно понятно, что «во всём виноват катод» и исследователям необходимо более пристально изучить его для подавления процессов роста игл дендритов, которые в процессе работы аккумулятора буквально протыкают его насквозь до возникновения короткого замыкания. Своими выводами учёные поделились в статье в журнале Nature Communications, которая свободна доступна по этой ссылке.