Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. На примере коэффициента Джини показано, насколько сильно различается оценка неравенства в зависимости от используемых данных и способов расчета. Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами.
Коэффициент Джини
Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход. Помимо Коэффициента Джини и Децильного коэффициента, народ постоянно пытается придумать другие коэффициенты и индексы, которые бы, так или иначе, отражали неравенство.
Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца
Коэффициент концентрации Джини (G) используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе.
Gini Coefficient
Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель.
Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169.
Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0.
Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие. Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом.
Создадим искусственную бизнес-задачу из сферы free2play игр. У нас есть база данных пользователей когда-то игравших в нашу игру и по каким-то причинам отвалившихся. Мы хотим их вернуть в наш игровой проект, для каждого пользователя у нас есть некое признаковое пространство время в проекте, сколько он потратил, до какого уровня дошел и т. Оцениваем модель коэффициентом Джини и строим Lift Curve: Предположим, что в рамках маркетинговой кампании мы тем или иным способом устанавливаем контакт с пользователем email, соцсети , цена контакта с одним пользователем — 2 рубля.
Мы знаем, что Lifetime Value составляет 5 рублей. Необходимо оптимизировать эффективность маркетинговой кампании. Предположим, что всего в выборке 100 пользователей, из которых 30 вернется. Это провал кампании.
Рассмотрим график Lift Curve. Мы в плюсе. Таким образом, Lift Curve позволяет нам наилучшим образом оптимизировать нашу маркетинговую компанию. Сортировка пузырьком Коэффициент Джини имеет довольно забавную, но весьма полезную интерпретацию, с помощью которой мы его также можем легко подсчитать.
Оказывается, численно он равен: где, число перестановок, которые необходимо сделать в отранжированном списке для того, чтобы получить истинный список целевой переменной, — число перестановок для предсказаний случайного алгоритма. Напишем элементарную сортировку пузырьком и покажем это: Комбинаторно несложно подсчитать число перестановок для случайного алгоритма: Видим, что мы получили значение коэффициента, как и в рассматриваемом выше игрушечном примере. Надеюсь, статья была полезна и развеяла некоторые мифы относительно этой метрики качества. ВВП на душу населения некоторым образом подобен средней температуре по больнице — в стране может быть и огромнейшее количество бедняков, и невероятно богатых людей, и небольшая прослойка среднего класса.
Доверительный интервал коэффициента Джини. Что это? Хабаровск Время прочтения: 6 мин. В области машинного обучения коэффициент Джини, находясь в диапазоне от 0 до 1, показывает качество прогнозирования модели — чем ближе к единице, тем точнее прогноз в данном посте не будем касаться применения коэффициента Джини в социальной области. Какой же доверительный интервал может быть у единственного числа?
Определяется она так: стоимостная оценка потребительской корзины, то есть «необходимые для сохранения здоровья человека и обеспечения его жизнедеятельности минимальный набор продуктов питания, а также непродовольственные товары и услуги…» , а также обязательные платежи и сборы, к которым относятся коммунальные платежи. Конечно, имеется в виду количество рублей в месяц. В первом случае государству нужно подсчитать, сколько требуется заложить в бюджет на социальные выплаты например, пособия малоимущим и субсидии на оплату ЖКХ и пенсии. Во втором — посмотреть динамику потребления и сделать экономические прогнозы.
Величина прожиточного минимума зависит от региона и даже социальной принадлежности получателя. Всего есть три социально-демографические группы, для которых определяется прожиточный минимум: трудоспособное население, пенсионеры и дети. Отдельно он рассчитывается «в расчёте на душу населения».
Поэтому используют различные способы кодирования переменных. В данной задаче применили WOE-преобразование. Такой подход позволяет придать значимость признаку в формате числа WOE-вес и включить его в набор факторов для обучения модели прогнозирования. Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений. Для прогнозирования использую логистическую модель.
Коэффициент Джини (распределение дохода)
Насколько можно полагаться на коэффициент Джини при сравнении стран? В целом этот параметр довольно хорош, но есть и нюансы. Когда вы видите коэффициент, вы не знаете, на основании какого количества групп он рассчитывался — чем меньше групп, тем больше коэффициент.
Если в 2022 году этот коэффициент составлял 13,8 раза, то в 2023 году он возрос до 14,6 раза. Эти данные свидетельствуют о сохранении высокого уровня неравенства в стране. Росстат отметил, что неравенство доходов в России остается высоким, но наблюдается некоторое снижение этого показателя.
Источник фото: Фото редакции Помощник президента Максим Орешкин ранее указывал, что положительная динамика снижения неравенства связана с уменьшением безработицы, ростом зарплат и масштабными программами поддержки семей.
Доверительный интервал коэффициента Джини. Что это?
Хабаровск Время прочтения: 6 мин. В области машинного обучения коэффициент Джини, находясь в диапазоне от 0 до 1, показывает качество прогнозирования модели — чем ближе к единице, тем точнее прогноз в данном посте не будем касаться применения коэффициента Джини в социальной области. Какой же доверительный интервал может быть у единственного числа?
Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини.
В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными. Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов.
В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5. В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты. Он полностью учитывает разброс значений признака вариационного ряда, в то время как фондовый и децильный коэффициенты учитывают разрыв, складывающийся между крайними децильными группами[3]. Таким образом, коэффициент Джини может быть использован как дополнительный показатель к коэффициенту фондов в оценке состояния экономической безопасности по уровню неравенства населения по доходам.
Список источников и литературы: 1. Указ Президента РФ от 13. Указ Президента РФ от 7 мая 2018 г.
Доверительный интервал коэффициента Джини. Что это?
Индекс Джини | Investor's wiki | Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. |
Доверительный интервал коэффициента Джини. Что это? | Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.). |
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини
Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства.
В России вырос уровень доходного неравенства
Коэффициент Джини показывает, насколько фактическое распределение доходов населения отклоняется от показателя их равномерного распределения. Коэффициент Джини рассчитывается по формуле. На примере коэффициента Джини показано, насколько сильно различается оценка неравенства в зависимости от используемых данных и способов расчета. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход.
Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца
Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него. По результатам видно, что модель с дополнительным фактором предсказала с меньшей ошибкой. Сравним все полученные результаты метрик. Показатель Модель без доп.
Итак, выпускник ВУЗа имеет больше возможностей для получения большего дохода, чем люди, не имеющие высшего образования. Различия в профессиональном опыте. Доходы людей отличаются, в том числе и вследствие различий в профессиональном опыте. Так, если Иванов работает в фирме один год, то понятно, что он будет получать зарплату меньше, чем Петров, который в этой фирме более 10 лет и имеет больший профессиональный опыт. Различия в распределении собственности. Различия в распределении собственности является наиболее веской причиной неравенства доходов. Немалое количество людей имеют небольшую или вообще не имеют собственности и, соответственно, или получают небольшой доход или не получают его вообще. А другие являются владельцами большего количества недвижимости, оборудования, акций и т. Риск, удача, неудача, доступ к ценной информации. Эти факторы также оказывают существенное влияние на распределение доходов. Так, человек, склонный рисковать в хозяйственной деятельности, может получить больший доход, чем другие люди, которые не способны к риску. Удача также помогает получать больший доход, например, если какой-то человек найдет клад.
Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.
Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом «20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям.
Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства
Коэффициент концентрации Джини (G) используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]. Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру. Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения. В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395.
Что дает индекс?
- Help/Feedback
- Доверительный интервал коэффициента Джини. Что это?
- Новости по теме
- Коэффициент Джини (индекс концентрации доходов, индекс неравенства)
- В России вырос показатель доходного неравенства
- Коэффициент Джини - что это такое простыми словами