Новости теория струн кратко и понятно

Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля. Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями.

Теория струн: кратко и понятно о сложном. В чем она заключается?

Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать. В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым.

Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва, или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать. Насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль.

Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка, сжатая до фантастически малого объёма примерно 10-99 кубического сантиметра грубо говоря, это сфера с радиусом 10-33 сантиметра с так называемой планковской длиной. Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё.

Однако в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн. Теория струн Хотя теория струн имеет репутацию сложной теории, её основная идея очень простая. Стандартная точка зрения, до теории струн, состояла в том, что фундаментальные составляющие являются точечными частицами — точками без внутренней структуры, — которые описываются уравнениями квантовой теории поля.

Теория струн бросает вызов такому представлению, утверждая, что частицы не являются точечными. Вместо этого, предлагается рассматривать их как крошечные, струноподобные вибрирующие нити. При более детальном рассмотрении, говорит теория, вы увидите, что струны в частицах разного типа неразличимы, но вибрируют они по-разному.

Электрон менее массивен чем кварк, и согласно теории струн, это означает, что струна электрона вибрирует менее энергично, чем струна кварка. Различные свойства частиц объясняются разным вибрационным поведением нитей в теории струн, подобно тому как разные вибрации гитарных струн порождают звучание разных музыкальных нот. По причине бесконечно малого размера струны, порядка планковской длины — 10-33 сантиметра, даже самые точные современные эксперименты не могут подтвердить или опровергнуть протяжённую структуру струны.

БАК, на котором частицы сталкиваются друг с другом при энергиях, превышающих в 10 триллионов раз энергию покоящегося протона, может добраться до расстояний примерно 10-19 сантиметра; это миллионная от миллиардной доли толщины волоса, но всё же оно слишком велико, на много порядков больше планковских расстояний. Поэтому струны выглядят как точки, даже если их изучать на самых мощных в мире ускорителях частиц. Тем не менее, согласно теории струн, частицы являются струнами.

В этом, в двух словах, и заключается теория струн. Струны, точки и квантовая гравитация Следует подчеркнуть три особо важных момента. Во-первых, когда учёные физики предлагают модель описания природы с помощью квантовой теории поля, они также выбирают поля, которые войдут в теорию.

Этот выбор диктуется экспериментальными ограничениями, а также теоретическими предпосылками. Главным примером является Стандартная модель. Рассматриваемая как венец достижений физики частиц XX столетия благодаря своей способности правильно описывать большое количество данных, собранных на ускорителях частиц по всему миру, Стандартная модель является квантовой теорией поля.

Стандартная модель, безусловно, крайне успешна, но многие физики полагают, что по-настоящему фундаментальное понимание не требует такого разношёрстного набора ингредиентов. Впечатляющее свойство теории струн состоит в том, что частицы определяются самой теорией: разные типы частиц соответствуют разному вибрационному поведению струны. Тогда потенциал и перспективы теории струн заключаются в том, чтобы превзойти квантовую теорию поля путём получения всех свойств частиц математически.

Теория струн строится непоследовательными приближениями к полному описанию природы. Она предлагает полное описание с самого начала. Во-вторых, среди возможных вибраций струны есть одна, обладающая всеми нужными свойствами для того, чтобы быть квантовой частицей гравитационного поля.

Исследования выявили свойства, которыми будет обладать гипотетическая частица — получившая название гравитон, — соответствующая квантовому гравитационному полю. Было показано, что гравитон должен быть безмассовым, не иметь заряда и обладать квантовомеханическим свойством, известным как спин-2. В-третьих, как бы ни была радикальна теория струн, она идёт по протоптанному пути, известному в истории физики.

Специальная теория относительности расширяет наше понимание мира высоких скоростей; общая теория относительности идёт дальше и учитывает большие массы; квантовая механика и квантовая теория поля вводят нас в мир малых расстояний. Понятия, привлекаемые этими теориями, и предсказываемые ими свойства непохожи ни на что известное ранее. Более того, если применять эти теории в привычных рамках доступных нам скоростей, размеров и масс, они сведутся к описаниям, открытым до XX столетия — к классической механике Ньютона и классическим полям Фарадея, Максвелла и других.

Теория струн могла бы претендовать на существенный отрыв от своих предшественников и отступить от нарисованной схемы ниже. Замечательно, что этого не происходит. Теория струн достаточно революционна для преодоления барьеров физики двадцатого столетия.

При этом она достаточно консервативна, чтобы прошедшие три столетия открытий смогли уютно разместиться в её математическом аппарате. Пространственные измерения В первые годы исследований по теории струн физики столкнулись с фатальными математическими изъянами, например, спонтанное возникновение или исчезновение энергии. В 1970-х многие думали, что от теории струн необходимо отказаться.

Но некоторые исследователи упорно придерживались другой точки зрения. В результате сложных исследований было выяснено, что проблемные свойства тесно связаны с числом пространственных измерений. В уравнениях теории струн нет изъянов во вселенной с девятью пространственными измерениями и одним временным, что в совокупности составляет десять измерений.

Автор книги подмечает, что без технических подробностей будет тяжело или даже невозможно по крайней мере, для него объяснить, как это происходит. Так что здесь он дает некую техническую наводку. В теории струн есть одно уравнение, в котором присутствует вклад вида D - 10 умножить на проблему , где D — это число пространственно-временных измерений, а проблема — это некое математическое выражение, приводящее к проблемному физическому явлению, подобному ранее упомянутому нарушению закона сохранения энергии.

Автор не может предложить никакого интуитивного, нетехнического объяснения, почему уравнение имеет именно этот вид. Но в вычислениях возникает именно оно. Простое, но ключевое наблюдение состоит в том, что, если число измерений равно десяти, а не четырём, как можно было бы ожидать, вклад в уравнение становится 0 умножить на проблему.

Поскольку умножение на ноль всегда даёт ноль, во вселенной с десятью пространственно-временными измерениями проблема исчезает.

Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора. Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также.

Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Теория струн кратко и понятно стивен Хокинг. Кратко и понятно о теории струн Теория струн - это одна из самых прогрессивных теорий современной физики, претендующая на звании "теории всего", то есть такой теории, которая способна объяснить сущность мироздания на самом фундаментальном уровне. Сегодня эта теория является главной темой большинства научно-популярных передач и книг по физике. Она не дает покоя всем людям, интересующимся наукой на любительском и профессиональном уровне.

Разобраться в ней крайне сложно даже самим физикам. И тем не менее, давайте все-таки попытаемся понять в чем же суть и величии данной теории. Но для этого нам придется отправится на несколько веков назад в историю науки… Яблоко здесь ни при чем Еще в XVII веке величайший ученый, чье имя известно всем и каждому - Исаак Ньютон, заложил основы классической механики. Он показал, что есть некое абсолютное, неизменное пространство и время, в рамках которых протекают все процессы. Ньютон даже вывел три закона, объясняющие как именно функционирует наш мир, показал как работает сила притяжения гравитация. Однако, не сумел объяснить ее суть… Так вот почему он показывал всем язык!

В начале XX века другой, не менее известный и гениальный ученый Альберт Эйнштейн решил завершить дело, начатое Ньютоном - объяснить что есть гравитация. Но в ходе своих исследований Эйнштейн увидел, что не только сущность гравитации представляет собой серьезную проблему, но и сами пространство и время не являются такими уж абсолютными и неизменными. В этом и заключается Теория относительности: пространство и время могут изменяться, искривляться и происходит это под действием массы тела, а также во многом зависит от скорости движения объекта чем ближе к скорости света, тем медленнее идет время. Отсюда был сделан вывод и о гравитации: гравитация есть не какая-то загадочная "сила притяжения", а всего лишь навсего искривление пространства! Так, Ньютон показал как функционирует механика в нашем, земном мире, Эйнштейн объяснил по каким законам живет космос. И все бы ничего, но тут в дело вмешалась квантовая физика… Квантовое безобразие Ученые от квантовой физики, в свою очередь, совсем не кстати для Эйнштейна, показали, что свои, совершенно особые законы действуют не только в макромире космосе , но и в микромире.

А самый главный ночной кошмар физиков заключается в том, что законы макромира теория относительности и законы микромира квантовая механика друг с другом не сочетаются и даже взаимно исключают друг друга. Но ведь они есть! И макромир и микромир как-то же сосуществуют в нашей физической реальности! А значит что-то не так с научными теориями, неспособными объяснить это противоречие. Так начались поиски новой теории, способной объяснить и воссоединить "и то, и другое" теорию относительности и квантовую механику. Вселенская гармония Именно такой теорией сегодня и может стать теория струн.

Именно она способна "примирить" фундаментальные физические противоречия. Так в чем же ее смысл? Согласно теории струн, в основе нашего мира лежат некие практические безмерные элементы "струны" , которые несоизмеримо меньше даже атомного ядра и запрятаны в потаенных измерениях пространства согласно теории струн, пространство может иметь 10 и более измерений. Вибрации этих "струн" порождают все известные нам элементарные частицы. Далее в дело вступает математика, которая на языке формул снимает противоречие между теорией относительности и квантовой механикой. Логика примерно такая: так как в пространстве около 10 измерений, в которых "запрятаны" струны, то оно действительно может искривляться во все стороны, порождая не только гравитацию, но и саму вибрацию этих струн, что в свою очередь порождает элементарные частицы и все движения в микромире.

Есть над чем подумать Это, пожалуй, примерно и есть тот максимум, который может осознать среднестатистический человек, не прибегая к сложным математическим формулам и неукладываемым в голове физическим понятиям. Стоит отметить, что сегодня не только теория струн претендует на звание "теории всего", и как же разрешится в итоге этот фундаментальный физический парадокс несовместимость теории относительности и квантовой механики покажет лишь время и новые гении. Хочется лишь надеяться, что произойдет это на нашем веку. Теория струн и петлевой квантовой теории гравитации. Что было до Большого взрыва и откуда взялось время? В теории квантовой гравитации привычное нам гладкое и непрерывное пространство на сверхмалых масштабах оказывается структурой с очень сложной геометрией изображение с сайта www.

Однако недавно в рамках петлевой квантовой гравитации всё же удалось проследить эволюцию упрощенной модели Вселенной назад во времени, вплоть до момента Большого взрыва, и даже заглянуть за него. Попутно выяснилось, как именно в этой модели возникает время. Наблюдения за Вселенной показывают, что и на самых больших масштабах она вовсе не неподвижна, аэволюционирует с течением времени. Если на основе современныхтеорий проследить эту эволюцию назад во времени, то окажется, что наблюдаемая ныне часть Вселенной была раньше горячее и компактнее, чем сейчас, а начало ей далБольшой взрыв— некий процесс возникновения Вселенной из сингулярности: особой ситуации, для которой современные законы физики неприменимы. Физиков такое положение вещей не устраивает: им хочется понять и сам процесс Большого взрыва. Именно поэтому сейчас предпринимаются многочисленные попытки построитьтеорию, которая была бы применима и к этой ситуации.

Поскольку в первые мгновения после Большого взрыва самой главной силой была гравитация, считается, что достичь этой цели возможно только в рамках непостроенной пока квантовойтеории гравитации. Одно время физики надеялись, что квантовая гравитация будет описана с помощьютеории суперструн, нонедавний кризиссуперструнныхтеорий поколебал эту уверенность. В такой ситуации больше внимания стали привлекать иные подходы к описанию квантовогравитационных явлений, и в частности, петлевая квантовая гравитации. Именно в рамках петлевой квантовой гравитации недавно был получен очень впечатляющий результат. Оказывается, из-за квантовых эффектов начальная сингулярность исчезает. Большой взрыв перестает быть особой точкой, и удается не только проследить его протекание, но и заглянуть в то, что было до Большого взрыва.

Краткое описание этих результатов было недавно опубликовано в статье A. Ashtekar, T. Pawlowski, P. Петлевая квантовая гравитация принципиально отличается от обычных физическихтеорий и даже оттеории суперструн.

Критические замечания Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов. Среди наиболее часто высказываемых замечаний: Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами; Отсутствует возможность подтверждения.

Современный уровень развития техники не позволяет экспериментально подтвердить или опровергнуть кабинетные исследования; Последние наблюдения за астрономическими объектами не волне укладываются в положения теории, что заставляет ученых пересматривать некоторые свои выводы; Ряд физиков высказывают мнение, что концепция является спекулятивной и тормозит развитие других фундаментальных представлений. Пожалуй, легче доказать теорему Ферма, чем простыми словами разъяснить положения теории струн. Математический аппарат ее столь обширен, что понять ее под силу лишь маститым ученым из крупнейших НИИ. До сих пор не ясно, найдут ли реальное применение сделанные за последние десятки лет на кончике пера открытия. Если да, то нас ждет дивный новый мир с антигравитацией, множеством вселенных и разгадкой природы черных дыр.

Эта недоказанная теория в физике элементарных частиц объединяет квантовую механику и общую теорию относительности Эйнштейна. Некоторые физики считают, что при объединении квантовой физики и гравитации в одну именно у этой теории больше всего шансов стать "теорией всего" гипотетический фундамент, который объясняет абсолютно все физические явления. Однако есть и другие учёные, которые думают, что она является почти псевдонаукой, поскольку её практически невозможно проверить экспериментальным путём. Теория суперструн Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации: учитывает фермионы частица с полуцелым значением спина , учитывает бозоны частица с целым значением спина , включает суперсимметрию связь между фермионами и бозонами. Теория струн — это общее название всей области. Главное теоретическое отличие между теорией струн и теорией суперструн заключается в существовании суперсимметрии. Варианты теории струн Вместо одной теории, которая объясняет всё во Вселенной, на данный момент существуют целых пять теорий струн. Различия между этими теориями очень сложны математически.

Квантовая механика – следствие теории струн?

Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти… Пятое измерение Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются — прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн — это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое — то, что звучит как научная фантастика — подтверждение существования дополнительных измерений пространства. О чем идет речь? Все мы привыкли к трем измерениям пространства и одному — времени. Но теория струн предсказывает наличие и других — дополнительных — измерений. Но начнем по порядку.

На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики. Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем? Калуца нашел ответ на этот вопрос — рябь электромагнетизма может существовать в дополнительном, скрытом измерении.

Но где оно? Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть. Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн. Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна — основной компонент Вселенной. Все они имеют очень закрученную и искривленную сложную форму. И все — невообразимо малы. Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир? Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки.

Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух. Благодаря этому и рождаются разные звуки. Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам. Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая — внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина. Как устроен мир Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной. Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме… И если мы изменим эти числа даже в незначительное число раз — последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия.

Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой.

String Theory For Dummies. Дата обращения: 27 апреля 2011 — Сборник состоит из 24 статей, посвящённых вопросам современной квантовой теории поля конформная симметрия критических явлений, факторизованное рассеяние в двумерных теориях, инстантоны и монополи в калибровочных теориях, взаимодействие релятивистских струн и её математическому анализу алгебраическая топология , теория представлений бесконечномерных алгебр Ли , теория квантовых групп и др. Статьи были ранее опубликованы в отечественных и зарубежных периодических изданиях в период 1970—1990 гг.

Бринк Л. Принципы теории суперструн. Бухбиндер И. Дата обращения: 27 апреля 2011 Грин М. Теория суперструн.

Грин М. Дата обращения: 27 апреля 2011 Гуков С. Дата обращения: 27 апреля 2011 До Тьен Ф. Дата обращения: 27 апреля 2011 Дубровский В. Дата обращения: 27 апреля 2011 Макеенко Ю.

Дата обращения: 27 апреля 2011 Каку М. Арутюнова, А. Попова, С. Чудова; под ред. Кафиев Ю.

Аномалии и теория струн. Кетов С. Введение в квантовую теорию струн и суперструн.

Под единой теорией поля Эйнштейн подразумевал некую схему, которая позволит включить все силы природы в единую и самосогласованную математическую модель. Но десятилетия напряжённой работы Эйнштейна в направлении объединения не оказали в то время значительного влияния — цель была великой, но для неё не пришло ещё время.

Позднее другие исследователи подхватили идею единой теории. Наиболее успешная схема объединения получила название теория струн. Краткая история объединения Когда Эйнштейн размышлял об объединении, науке были известны две силы: гравитация, описываемая его собственными уравнениями, и электромагнетизм, описываемый уравнениями Максвелла. Эйнштейн предполагал объединить две теории в единую математическую конструкцию, которая сочленила бы действие всех сил в природе. Цель была весьма амбициозна, и Эйнштейн отнёсся к ней очень серьёзно.

У него была уникальная способность полностью отдаваться задаче, которую он перед собой поставил, и последние тридцать лет своей жизни он полностью посвятил проблеме объединения. Однако его последние вычисления не пролили больше света на вопрос объединения. После смерти Эйнштейна работа над единой теорией практически прекратилась. Многие физики переключились на изучение микромира, руководствуясь квантовой механикой. При этом делались успехи в раскрытии тайны атома и использовании его скрытой мощи.

В дальнейшем были экспериментально обнаружены другие взаимодействия: сильное ядерное и слабое ядерное. И теперь единая теория должна объединять не две силы, а четыре. Мечта Эйнштейна стала еще более призрачной. В конце 1960-х и в начале 1970-х годов пошла обратная волна. Физики осознали, что методы квантовой теории поля, успешно применённые в электромагнетизме, также хорошо описывают слабое и сильное ядерные взаимодействия.

Таким образом, все три негравитационные силы описываются на одном математическом языке. Более того, при подробном исследовании этих квантовых теорий поля обнаружились взаимосвязи, указывающие на возможное единство электромагнитных, слабых и сильных взаимодействий. Давайте рассмотрим этот вопрос подробнее. Глэшоу, Салам и Вайнберг предположили, что электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия. Электрослабая теория была подтверждена в экспериментах на ускорителе в конце 1970-х и начале 1980-х годов.

Глэшоу и Джорджи пошли дальше и предложили, что электрослабое и сильное взаимодействия являются проявлениями ещё более фундаментального взаимодействия, в рамках подхода, который был назван великим объединением. Однако простейшая версия великого объединения была отброшена, когда учёным не удалось экспериментально подтвердить одно из предсказаний — что протоны должны время от времени распадаться. Тем не менее есть много других вариантов великого объединения, которые пока экспериментально не отвергнуты, например, потому, что предсказываемая ими скорость распада протона настолько мала, что чувствительность современного экспериментального оборудования недостаточна для обнаружения распада. Однако даже если великое объединение не подкрепляется экспериментальными данными, уже нет никаких сомнений, что три негравитационных взаимодействия могут быть описаны на едином математическом языке квантовой теории поля. Всё это являлось впечатляющим продвижением к единой теории, однако на таком обнадёживающем фоне возникла досадная проблема.

Когда учёные применили методы квантовой теории к четвёртой силе в природе — гравитации, оказалось, что математика просто не работает. Как бы успешно ни работали общая теория относительности и квантовая механика на своих естественных масштабах, на больших и малых расстояниях, бессмысленный результат, полученный при попытке их объединения, означал глубокую трещину в понимании законов природы. В середине 1980-х годов произошёл следующей ключевой скачок. Новая теория, теория суперструн, завладела умами физиков по всему миру. Она смягчила разногласия между общей теорией относительности и квантовой механикой и дала надежду, что гравитация может быть встроена в объединённый квантово-механический каркас.

Была развита впечатляющая и изощрённая математическая структура, но многое в теории суперструн оставалось неясным. Открытие теории суперструн дало толчок к развитию других, тесно связанных теоретических подходов, направленных на поиски единой теории фундаментальных взаимодействий. В частности, суперсимметричная квантовая теория поля и её гравитационное расширение супергравитация глубоко изучались в середине 1970-х годов. Суперсимметричная квантовая теория поля и супергравитация основаны на новом принципе суперсимметрии, который был открыт в рамках теории суперструн, но эти подходы подключают суперсимметрию к обычным теориям точечных частиц. Позже начиная с середины 1990-х годов, попытки теоретиков распутать эти загадки неожиданно привели теорию струн к сюжету с мультивселенными.

Учёным давно было известно, что математические методы, применяемые при анализе теории струн, используют множество приближений, а потому их можно усовершенствовать. Когда была сделана часть уточнений, учёные осознали, что соответствующий математический аппарат ясно указывает, что наша Вселенная является, возможно, частью некоторой мультивселенной. Квантовые поля Начнем с рассмотрения традиционной квантовой теории поля. В классической физике поля описываются как нечто типа тумана, который пронизывает область пространства и может переносить возмущения в виде ряби и колебаний. В квантовой механике понятия поля приводит к квантовой теории поля.

Квантовая неопределенность заставляет значение поля в каждой точке случайно колебаться. Подобно воде, состоящей из молекул H2O, квантово-механическое поле состоит из бесконечно малых частиц — кванты поля. Но как бы не представлять частицы в рамках квантовой теории поля они математически описываются как крохотные точки, не имеющие пространственного размера и внутренней структуры. Осведомлённый читатель может не согласиться с утверждением, что каждое поле ассоциируется с частицей. Более точное утверждение звучит так: малые флуктуации поля около локального минимума его потенциала обычно интерпретируются как возбуждения частиц.

Этого определения будет достаточно для наших обсуждений. К тому же осведомлённый читатель заметит, что локализация частицы в точке сама по себе является идеализацией, потому что для этого потребуется — из принципа неопределённости — бесконечный импульс и энергия. Опять же суть в том, что в квантовой теории поля нет, в принципе, предела того, как можно локализовать частицу. Вера физиков в квантовую теорию поля обусловлена одним существенным фактором: ни один эксперимент не противоречит её предсказаниям. Наоборот, данные подтверждают, что уравнения квантовой теории поля описывают поведение частиц с изумительной точностью.

После такого успеха можно ожидать, что квантовая теория поля является математическим фундаментом для понимания всех сил в природе. В результате упорного труда многих из физиков к концу 1970-х было установлено, что слабое и сильное ядерные взаимодействия действительно прекрасно описываются квантовой теорией поля. Однако многие из физиков быстро пришли к выводу, что ситуация с четвёртым взаимодействием в природе — гравитацией, гораздо тоньше. Как только уравнения общей теории относительности объединяются с уравнениями квантовой теории, математика начинает бунтовать.

Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны; 1974—1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова; 1994—2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений; 2003 — н. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума.

Теория квантовых струн Ключевыми объектами в новой научной парадигме являются тончайшие объекты, которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице. Основные свойства струн согласно современным представлениям: Длина их чрезвычайно мала — около 10-35 метров. В подобном масштабе становятся различимы квантовые взаимодействия; Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта; Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры. Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли.

Современное состояние теории струн

меньших, чем атомы, электроны или кварки. Заметьте, что теория струн совсем не противоречит, а скорее дополняет Стандартную модель, в основу которой заложена теория строения атома Бора, критикуемая в начале этой статьи. Теория струн кратко и понятно. Видео от пользователя. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Если традиционно физики пытались обосновать теорию струн с помощью квантовой мезаники, Барс и Рычков исходили из того, что теория струн верна, и, исходя из постулатов этой теории, вывели принцип неопределенности. Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты.

Что такое теория струн и может ли она открыть дверь в другие измерения

Так, начал вырисовываться фундаментальный физический принцип, получивший прекрасное название Теория всего или Теория струн, которая стала воплощением мечты всех физиков по объединению двух противоречащих друг другу ОТО и квантовой механики. Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на Теория струн, или Теория всего.

Что такое Теория струн и существует ли 10-ое измерение

Главным препятствием для использования этой теории в качестве обобщения Стандартной модели элементарных частиц является то, что она 10- или 11-мерна, а число 4-мерных фаз, полученных компактификацией лишних пространственных измерений, велико. Динамических принципов, позволяющих выбрать из этих фаз одну, отвечающую нашему миру, пока не найдено, поэтому модель часто соединяют с Мультиленной и апеллируют к антропному принципу. Потребности развития методов теории струн вызвали прогресс в традиционных разделах математики от алгебраической геометрии до теории чисел , от теории узлов до теории групп и породили новые парадигмы от квантовой геометрии до голографического принципа. Теория струн позволила чётко поставить задачу и обеспечила понимание чёрных дыр , ведущее к созданию квантовой теории информации. Опубликовано 10 октября 2023 г. Последнее обновление 10 октября 2023 г. Связаться с редакцией.

Кварк самая маленькая элементарная частица вибрирует по одному шаблону, электрон — по другому. Соответственно, если собрать все элементарные частицы в один предмет, он будет связкой огромного количества таких вибраций. Это объяснение теории струн очень простыми словами, без использования терминов теории относительности и квантовой механики, на стыке которых она находится. Основные элементы теории Экспериментальных доказательств верности теории струн пока нет, но физики, работающие над ней, выделяют несколько обязательных элементов этой гипотезы: Дополнительные измерения. Чтобы «струны Вселенной», из которых могут состоять все предметы, действительно работали, измерений должно быть не меньше десяти. Суперсимметрия, под которой понимается связь между двумя классами элементарных частиц — фермионами и бозонами.

Тогда Леонард Эйлер сформулировал в математических целях бета-функцию, названную в его честь. На нее обратил пристальное внимание физик-теоретик, который работал в середине прошлого века в научном центре в Швейцарии. Габриэлле Венециано работал над созданием ускорительной установки и пытался выдвинуть различные предположения относительно существования законов Вселенной. Взглянув на старую формулу, ученый осознал, что она способна объяснить все многочисленные свойства частиц, которые участвуют в сильном ядерном взаимодействии. Однако разгадать, почему происходит такое взаимодействие и укладывается в рассчитанную формулу он не смог. Через несколько лет ряд американских ученых смогли выявить закономерности, которые стояли за формулой Эйлера все это время.

Оказалось, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами идет сильное взаимодействие этих частиц, что в точности описывается с помощью функции Эйлера. Исследователи предположили, что раз отрезки струн являются достаточно малыми, то они смогут выглядеть точечными частицами, и не будут противоречить результатам экспериментальных наблюдений. Однако через короткое время и эти предположения не смогли полностью объяснить всех происходящих процессов, поскольку выяснились дополнительные несостыковки. Эта формула нуждалась в дополнительном объяснении. Через некоторое время даже пришлось забыть о перспективной теории струн, так как возникали новые предпосылки в квантовой хромодинамики.

Квантовая теория струн может предложить новые механизмы, которые могут объяснить происхождение и свойства инфляционного поля. Вклад в единое поле физики элементарных частиц Квантовая теория струн играет важную роль в поиске единой теории, объединяющей все фундаментальные взаимодействия и элементарные частицы. Она предлагает новый подход к объединению гравитации и других фундаментальных сил, таких как электромагнитная, сильная и слабая силы. Квантовая теория струн может быть ключом к пониманию природы и происхождения всех фундаментальных частиц и взаимодействий. Кроме того, квантовая теория струн может предложить новые модели элементарных частиц, которые могут быть проверены экспериментально. Она может предсказать существование новых частиц, таких как суперсимметричные партнеры известных частиц, которые могут быть обнаружены на ускорителях частиц или в космических экспериментах. Перспективы и возможности для дальнейших исследований Квантовая теория струн остается активной областью исследований, и у нее есть много перспектив и возможностей для дальнейших разработок. Ученые продолжают исследовать различные аспекты теории струн, такие как сверхсимметрия, дополнительные измерения и свойства струнных моделей. Одной из перспективных областей исследований является разработка математических методов и техник, которые позволят более точно описывать и анализировать свойства и поведение струнных моделей. Это может привести к новым математическим открытиям и развитию смежных областей физики и математики. Кроме того, квантовая теория струн может иметь практические применения в различных областях, таких как квантовые вычисления, криптография и материаловедение. Исследования в этих областях могут привести к разработке новых технологий и приложений, которые могут иметь значительный вклад в науку и технологию. Критика и альтернативные подходы Квантовая теория струн, несмотря на свою значимость и потенциал, также подвергается критике и вызывает дискуссии среди ученых. Вот некоторые из основных критических моментов и альтернативных подходов, которые были предложены: Ограничения и проблемы квантовой теории струн Одним из основных ограничений квантовой теории струн является ее сложность и математическая трудность. Формализм теории струн требует использования высокоабстрактных математических концепций, таких как теория операторов и топология. Это делает ее трудно доступной для понимания и применения в практических расчетах. Кроме того, квантовая теория струн страдает от проблемы отсутствия экспериментального подтверждения. В настоящее время нет прямых экспериментальных данных, которые могли бы подтвердить или опровергнуть предсказания теории струн. Это ограничивает ее статус как научной теории и вызывает сомнения в ее достоверности. Альтернативные модели и гипотезы Существуют альтернативные модели и гипотезы, которые предлагают альтернативные подходы к объединению гравитации и квантовой механики. Некоторые из них включают: Петлевая квантовая гравитация: Это альтернативная теория, которая основана на квантовании гравитационного поля в терминах петель. Она предлагает другой математический формализм и подход к описанию гравитации, который может быть более фундаментальным и ближе к экспериментальным данным. Теория супергравитации: Это теория, которая объединяет гравитацию и суперсимметрию. Она предлагает другой подход к объединению фундаментальных взаимодействий и может быть более простой и понятной, чем квантовая теория струн. Нелокальные теории: Это класс теорий, которые предлагают изменить принцип локальности, который является основой квантовой теории струн. В нелокальных теориях взаимодействия могут распространяться на большие расстояния и быть связаны с неклассическими эффектами. Эти альтернативные модели и гипотезы предлагают другие подходы к объединению гравитации и квантовой механики и могут быть объектом дальнейших исследований и экспериментов.

Теория струн. Что это?

Ученый уже решил забросить свое гиблое дело, и тут его осенило — может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории — струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона — частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало.

Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн — Майкл Грин. Субатомные матрешки Несмотря ни на что, в начале 1980? Шварц и Грин принялись за их устранение.

И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие.

Каждый атом, как известно, состоит из еще меньших частиц — электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц — кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала.

Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы моды вибрации струны придают частицам их уникальные свойства — массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются. Конечно, все это более чем удивительно.

Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти… Пятое измерение Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются — прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн — это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно.

Для доказательства теории струн требуется, скорее, другое — то, что звучит как научная фантастика — подтверждение существования дополнительных измерений пространства. О чем идет речь? Все мы привыкли к трем измерениям пространства и одному — времени. Но теория струн предсказывает наличие и других — дополнительных — измерений. Но начнем по порядку.

На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года.

В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики. Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени.

Теория суперструн Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации: учитывает фермионы частица с полуцелым значением спина , учитывает бозоны частица с целым значением спина , включает суперсимметрию связь между фермионами и бозонами. Теория струн — это общее название всей области.

Главное теоретическое отличие между теорией струн и теорией суперструн заключается в существовании суперсимметрии. Варианты теории струн Вместо одной теории, которая объясняет всё во Вселенной, на данный момент существуют целых пять теорий струн. Различия между этими теориями очень сложны математически. Теория струн тип I: включает открытые и замкнутые струны; содержит форму симметрии, которая математически является группой симметрии O 32.

Теория струн тип IIA: открытые струны этого типа прикреплены к структурам D-браны с нечётным числом измерений; замкнутые струны где модели колебаний симметричны перемещаются независимо вправо и влево по замкнутой струне. Теория струн тип IIB: открытые струны прикреплены к структурам D-бранам с чётным числом измерений; у замкнутых струн модели колебаний асимметричны зависит от того, перемещаются ли они влево или вправо по струне.

Струна принципиально не может иметь размер меньше планковской длины. В теории точечных частиц физики привыкли, что чем больше энергия частицы, тем в меньшей области пространства частица может быть локализована.

Совсем иное дело со струнами: дополнительная энергия приводит не к уменьшению, а к увеличению размера струны. Поэтому расстояние, которое меньше планковской длины, принципиально недостижимо. Струны бывают открытыми и замкнутыми. И те и другие имеют определённые устойчивые формы колебаний — моды.

Механическая аналогия: зажимая по-разному скрипичные струны, можно извлекать самые разные звуки. Каждая колебательная мода струны соответствует той или иной частице и обеспечивает ей все наблюдаемые характеристики: массу, спин, заряд и прочее.

Тогда первая мода когда между зажимами умещается одна полуволна может отвечать, например, фотону. А вторая когда между зажимами умещается две полуволны или целая длина волны может отвечать какой-то другой элементарной частице: например, электрону. При этом стоит подчеркнуть, что теория струн пока не подтверждена экспериментально. Как появилась теория струн Ученые наблюдали за столкновениями частиц на ускорителях и заметили, что в результате реакций возникали целые семьи частиц. Все выглядело так, будто различные разные частицы внутри одной семьи вели себя, как различные гармоники струны. Одним из первых придал этому наблюдению математическую форму итальянский физик Габриэле Венециано. Тогда, в 1960-х годах, исследователи пытались найти теорию, которая бы точно предсказывала спектр масс частиц в обсуждаемых семьях. К сожалению, полного сходства с реальностью не получалось.

Однако ученые заметили, что в спектре струны возникали частицы, которые имели те же свойства, что и фотоны в случае открытой струны , и гравитоны в случае замкнутой струны. Так и возникла идея попробовать применить создаваемую теорию для описания гравитации и других фундаментальных теорий, а не к описанию поведения адронов — частиц, возникающих в ядерных реакциях. Футурология Загадочные частицы: что ученые знают о космических лучах Как теория струн стала «теорией всего» Где-то к началу 1980-х ученые поняли, что теория струн, изначально придуманная для описания взаимодействий адронов, имеет более фундаментальный характер. Тогда и началась так называемая «струнная революция». Около 20 лет эта концепция была основным локомотивом развития фундаментальной физики.

Что такое теория струн простыми словами (насколько это возможно)?

Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Теория струн может и не станет теорией всего, но это хотя бы теория чего-то.

Мир согласно теории струн

  • Концепция развивается
  • Что такое теория струн простыми словами (насколько это возможно)?
  • Теория струн кратко и понятно. Теория струн для чайников. | Наука для всех простыми словами
  • Теория струн: простое объяснение неоднозначной идеи

Похожие новости:

Оцените статью
Добавить комментарий